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Order Sequencing and Capacity Balancing in Synchronous Manufacturing 

 

Abstract 

Synchronous manufacturing aims at achieving the benefits of intermittent production lines in production 

situations that operate without lines. Benefits such as short and constant throughput times and predictable 

capacity loading can be acquired through an appropriate design of the synchronous manufacturing system and 

its control system. The order release mechanism is an essential part of this control system. It determines the 

sequence in which orders are released to the shop floor. As orders may differ in the amount and distribution of 

their capacity requirements over subsequent production stages, total capacity load may vary over time. If the 

available capacity per period is not flexible, capacity balancing becomes an issue in the order release decision. 

In practice, heuristics or rules of thumb are used to solve this problem, but their effectiveness is questioned. 

This paper examines the effectiveness of some new heuristics that are based on insights from assembly system 

design and work load control, and compare their performance with an optimal solution approach. The 

approaches are evaluated in a rolling schedule environment, and under different levels of capacity fluctuations 

and problem sizes. The results show that the performance of the heuristic solutions deteriorates if capacity 

fluctuations between the stages increase. If we measure both the amount and frequency of shortages over a 

long period of time in a rolling schedule environment, a quite simple rule that only takes the available 

capacity during the first stage into account outperforms more intelligent rules. 

 

Keywords: Synchronous manufacturing; order release; sequencing, heuristics; integer programming 

 

1 Introduction 

Synchronous manufacturing is a concept that is behind several popular shop floor management approaches, 

such as Lean and Quick Response Manufacturing. The basic idea is to create a flow of work through the 

manufacturing system, either continuous or intermittent, in order to achieve short and constant throughput 

times and a predictable loading of the resources in the system. Both the structure of the production system and 

the control system are to be designed such that this flow can be achieved (Schmenner and Swink 1998).  

One of the earliest and most famous synchronization methods is single product assembly line balancing (see 

Scholl and Becker (2006) for an overview). The production system is designed as a connected line, progress 

control is eliminated at all, and the order release decision reduces to the decision on the cycle time of the line, 

i.e. the time between subsequent releases. The concept was applied first in the high volume automobile plant 

of Henry Ford. As changing the cycle time (a control decision) may require a different design of the 

production line (i.e., number of stations and assignment of tasks), the relation between both design decisions 

is central in the assembly line balancing problem. 

More recent approaches give attention to the issues in case the manufacturing process is not connected as a 

single product line. For multi-product lines, the concept of assembly line balancing has been extended to 

mixed and multi model assembly line balancing and generalized (Becker and Scholl 2006). If the product(s) 

are no longer produced within a single line but in several stages of production, a control system can be used to 

connect several autonomous parts of the manufacturing system. Period Batch Control (PBC) (Burbidge 1962, 

1996, Benders and Riezebos 2002) is to be considered as the earliest example in this category. PBC 
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synchronizes the assembly stage with one or more preceding and feeding stages of production, such as parts 

manufacturing and material acquisition. Ahmadi and Wurgraft (1994) give attention to the issue of designing 

such manufacturing systems. The control system becomes more essential in achieving a synchronized flow of 

work through the manufacturing system. Control within a stage of production is often decentralized to 

relatively autonomous production units, denoted as cells or teams. Here the concept of cellular manufacturing 

or team oriented assembly emerges (Bukchin and Masin 2004). PBC provides the control between the stages 

through short but fixed offset times that are identical for all stages. Orders are released at fixed time intervals. 

The resulting capacity load variation over time is predictable and managed through the order release decision 

and capacity management instruments, as sufficient time remains for capacity level changes and outsourcing 

decisions. 

An important characteristic of this synchronization approach is the use of a fixed cycle time for each stage. 

Other approaches, such as the Kanban system and the Drum Buffer Rope system, do not use a fixed cycle 

time for each stage, which complicates the capacity management problem. They focus on the order release 

decision and use a type of master production schedule (denoted as a level schedule in Kanban systems 

(Miltenburg 1989), and as a drum schedule in DBR systems (Riezebos et al. 2003)) to balance the load for 

specific stages over time.  

Recently, fixed cycle-time synchronization approaches have been developed that no longer implicitly assume 

an inflexible capacity. They consider total capacity to be limited, but capacity to be flexible between the 

stages of the production system. The reason for relaxing this assumption is that workers are nowadays 

increasingly multi-skilled and cross-trained. This flexibility makes it possible to handle capacity fluctuations 

between stages in a production system. However, total capacity in terms of the number of workers available 

does not increase through such measures. Therefore, these synchronization approaches aim at an order release 

decision that effectively uses the available capacity of the multi-skilled workers while still realizing a high 

output for the whole production system. Examples of papers in this area are Lee and Vairaktarakis (1997), 

Vairaktarakis et al. (2002), Gronalt and Hartl (2003), Bukchin and Masin (2004), and Cevikcan et al. (2007). 

The complexity of the resulting synchronization problems has been analyzed by Vairaktarakis and Cai (2003). 

They showed that most levelling problems in such systems are NP-complete, even if they only consist of two 

stages. Therefore, in practice heuristic solutions are being used to solve the order release decision, as the 

number of stages often is much larger than two.  

This paper discusses various single pass heuristics for the order release decision in such a synchronization 

approach with a fixed cycle time in a multi-product multi-stage situation. Single pass heuristics determine a 

sequence without back tracking or pair wise interchanging parts of a solution. Such heuristics are often used 

in practice. The question is whether these heuristics can be improved by incorporating insights from related 

fields, such as workload control and assembly line balancing. Moreover, the performance of these heuristics 

may or may not be sensitive to problem size and capacity fluctuation. This paper will examine the 

performance of several heuristics in a rolling schedule environment as faced by firms that apply such a 

synchronization approach. Testing in a rolling schedule environment provides better insights in the 

performance of these heuristics in the long term, as it prohibits the negative impact of postponing problems to 

the end of the cycle.  

This paper is organized as follows. We introduce the problem by discussing an illustrative problem, based on 

the case of a jewellery firm in Ssection 2. Section 3 presents the heuristics that we developed for supporting 

the order release decision. Section 4 develops a mathematical programming model that determines the 

sequence of order releases. This model not only aims at a feasible solution for the near future, but takes also in 

account the possibility of achieving feasible solutions behind the planning horizon. Section 5 evaluates the 

performance of both approaches using a simulation approach. It describes the experimental design and 

presents the results. Section 6 gives our conclusions and suggestions for future research. 
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2 Problem definition 

An illustration of the order sequencing and capacity balancing problem is found in the longitudinal study of 

Süer (see e.g. Süer and Gonzalez 1993, Süer 1998) on a jewellery firm. Production of jewellery requires 

similar operations for various product types, such as earrings, rings, bracelets and chains. The processing 

plans may vary per product type in terms of type of plating. Most operations are performed manually, using 

simple tools, small machines and equipment. Examples are casting, cleaning, and tumbling. The employees of 

a cell have been trained to perform all tasks in all stages of the production process. Speed differences between 

employees are minor. Capacity management is therefore mainly oriented towards work force scheduling, and 

hiring/firing decisions.  

The firm operates in synchronous manufacturing mode. The stages represent a subset of operations that are to 

be performed within a single period of time (four hours in case of the jewellery firm). At the end of each 

period, the various subsets of operations all need to be completed, as all jobs that are in progress are 

transferred to their next stage at the same moment in time. At such a transfer moment, employees may have to 

switch to other tasks within the cell. Some operations, such as tumbling and plating, are necessarily performed 

in batch. The minimal throughput time for a batch of products determines the length of the period that can be 

used in a synchronous manufacturing system. 

The cell starts each period with a new order that is selected from a list of orders that should be completed 

during the cycle (i.e., at the end of the week). The batch size, process plans, and work content per stage may 

differ per order. Therefore, capacity requirements may vary strongly, both per order and per stage. The 

expected throughput time of a batch within a stage is a function of the number of employees allocated to this 

stage. In a synchronous manufacturing system, the minimal number of employees required in each stage in 

order to finish this batch within the end of each period can be calculated.  

An important problem faced in such synchronous manufacturing systems concerns the capacity balance over 

time (Cesani and Steudel 2005). A cellular system makes it less appropriate to vary the total number of 

employees over time. Employees should feel themselves responsible for the whole task of the cell. A 

relatively constant number of employees over various periods is therefore preferred.  

There are two planning decisions that affect the objective of achieving a uniform loading of total capacity in 

multi-model systems. The batch-size decision, and the order sequencing or release decision (Karabati and 

Sayin 2003). This paper will give attention to the latter decision. The release decision can be supported either 

by intelligent design of an order sequencing heuristic, or by creating beforehand one or more feasible order 

release sequences from which the cell can choose. This paper compares these two approaches for direct 

support of the order release decision.  

2.1 Illustrative example 

Table 1 presents a realistic example with 10 orders that have to be released during one week. We have 10 

orders (A,…,J) and five stages j=1,…,5. An order that starts in period t=1 in stage j=1 arrives in period t=2 in 

stage j=2, and leaves the system at the end of period t=5, if stage j=5 has been finished. Orders are represented 

using different shades. The amount of capacity required in a stage differs per order and is presented in the 

cells of the table. A row shows the fluctuating capacity requirements of that stage. Orders may also require a 

different total number of employees (i.e. the sum of the cells with identical shade). However, the sum of the 

cells in the same column is more important for the capacity management of the firm. This shows the total 

number of employees needed in a single period. If this number exceeds the available capacity, the firm has to 

hire additional employees or change the sequence of orders. The problem is to determine one or more 

sequences for the orders A,…,J such that the available capacity of 20 employees in each period t is not 

exceeded as long as possible.  
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For the first four periods, earlier decisions on the sequence in a previous week affect the loading of the 

available capacity. The cells at the bottom-left side express the capacity requirements of these already started 

orders that still have to complete one or more stages. The same effect appears at the end of the week, as the 

last four orders in the sequence affect not only capacity in this week, but also capacity requirements in the 

next week. Here the end-of-horizon effect or truncated-horizon effect appears (see e.g. Baker 1977, Stadler 

2000). 

 

***INSERT TABLE 1 ABOUT HERE*** 

 

Literature uses various approaches to cope with the end-of-horizon effect. Some papers (e.g., Ding and Cheng 

1993, Lee and Vairaktarakis 1997, Ouenniche and Boctor 1998) totally neglect the end-of-horizon effect. 

Others (e.g., Karabati and Sayin 2003, Vairaktarakis and Cai 2003) assume that exactly the same order release 

pattern will be repeated during the next week. These methods do not address the end-of-horizon effect in a 

realistic way. Gronalt and Hartl (2003) introduce the overall average worker assignment in their numerical 

experiments. We propose a slightly different approach that uses the stage-average capacity requirements as 

capacity load factor if the actual capacity load is unknown. According to Stadler (2000), this provides a 

terminal condition that improves the quality of the solutions in a rolling schedule environment. The upper-

right side of Table 1 shows the average required capacity per stage. For example, stage j=1 has an average 

capacity load of ( )+ + + + + + + + + =3 5 3 2 2 3 2 4 3 6 10 3.3 employees, which is used to estimate 

the load in stage j=1 in periods t=11-14. 

Note that in Table 1 no order exceeds the capacity limit of 20 employees. For example, order A requires 

3+5+4+6+2=20, and J requires 6+2+2+2+2=14 employees. The mean required capacity per order equals 18.6 

employees.  

The loading should result in a sequence for which the available capacity per period is not exceeded. The 

sequence presented in Table 1 results in four periods that encounter a capacity shortage: t=2,6,9,10. Can a 

better order sequence be found?  

2.2 Mathematical problem formulation 

Let i=1,…,n index for orders  

j=1,…,m index for stages 

t=1,…,n+m-1 index for periods 

Parameters 

ijC  Capacity requirements to complete stage j of order i 

 i=1,…,n; j=1,…,m 

tjCR  Capacity requirements to complete stage j in period t for an order from a former cycle  

 t=1,…,m-1; j=t+1,…,m 

jARC  Average required capacity in stage j = 

1

1 1

1

j n

tj ijt i
CR C

n j

−

= =
+

+ −
∑ ∑

  

 j=1,…,m-1 

tAC  Available capacity in period t (assuming the capacity is fully cross-trained) 

 t=1,…,n+m-1 
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tw  Weight factor for capacity shortage in period t (i.e. 1 1,..., ; 1t tw if t n w if t n= = ≤ > ) 

 t=1,…,n+m-1 

Decision variable 

itX  =1 if order i starts in period t (determines the sequence) 

 =0 else 

 i=1,…,n; t=1,…,n 

Intermediate variables 

tjY  Capacity requirements to complete stage j in period t 

 t=1,…,n+m-1; j=1,…,m 

tCS  Capacity shortage (expected) in period t = ( )1
max 0,

m
tj tj
Y AC= −∑  

 t=1,…,n+m-1 

 

The problem can now be formulated as: 

 

Given:  

• a set of i=1,…,n orders that have to start during periods t=1,…,n; 

• their capacity requirements ijC during j=1,…,m stages of completion; 

• the capacity requirements tjCR for orders that have already started but are not yet completed; 

• available capacity per period tAC ,  

determine ( )1,..., ; 1,...,itX i n t n= =  (the sequence of the n orders)  

such that 
1

1

n m
t tt

w CS
+ −
=∑ is minimized. 

 

**INSERT FIGURE 1 ABOUT HERE*** 

 

Figure 1 provides an overview of the variables and parameters in terms of the structure of Table 1. Note that 

the value of the variable tjY  in this table is area-specific.  

• In the lower-left side of the table, tjY is determined by the given capacity requirements tjCR of already 

started but not yet completed orders.  

• In the upper-right side of the table, it is estimated by calculating the average required capacity in the 

stage.  

• In the remaining part of the table, it is calculated as a linear function of the order sequence decision and 

the known capacity requirement of the orders. We use the following expression for calculating this stage 

load:  

 1, 1
1,..., 1,...,

n

t j j it iji
Y X C t n j m+ − =

= ⋅ ∀ = ∀ =∑  (1) 

Analogues to job scheduling, this problem can be viewed as a weighted tardiness problem, where tardiness is 

not related to exceeding the due date of a job but to exceeding the available capacity in a period. Morton and 

Pentico (1993: p. 54) denote that problems using this objective are very difficult to solve exactly. The 
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complexity of this problem has not yet been determined, but similar problems that are discussed in 

Vairaktarakis and Cai (2003) are NP complete in the strong sense for situations with the number of stages m 

greater or equal to three. 

3 Order release heuristics  

This section describes several single pass heuristics to determine a sequence of orders for release. Single pass 

heuristics do not reconsider decisions taken during the procedure. The heuristics are based on insights from 

assembly system design and work load control. We will introduce the heuristics and show the results of 

applying the heuristic on the data of Table 1. 

FillCap This heuristic is actually being applied in the jewellery firm. It chooses at the start of period t 

from the set of assignable orders the order that maximally fills capacity in that period. The set of assignable 

orders contains all orders that still have to be released and have a capacity requirement in stage j=1 nearest to 

but not exceeding the available capacity. If there are more orders to select from, it chooses randomly. We 

denote this heuristic as FillCap. See the Appendix for a pseudo-coded description of the heuristic. 

From Table 2 we see that the heuristic FillCap does not take into account the effect of a selected order on the 

available capacity for the next m-1 periods. As a consequence, in period 9 a capacity shortage occurs.  

 

*** INSERT TABLE 2 ABOUT HERE *** 

AvgLoad The AvgLoad heuristic applies the principle of bottleneck loading that is known from mixed 

model assembly line balancing (e.g. Askin and Standridge 1993: 56-59). The idea is to select the job that will 

result in a future load on the bottleneck as close to its average rate as possible. Each new assignment will try 

to correct the gap between the average rate and the cumulative load on the bottleneck that has resulted from 

earlier assignments. 

The bottleneck of this synchronous manufacturing system is not a single stage, as is usually the case in mixed 

model line assembly problems, but the number of employees available. The heuristic should select an order 

that (if possible) can be assigned to the first period and that brings the total released workload as close as 

possible to the long time average.  

The calculation of the long time average uses all information available, i.e. the load of the set orders to be 

released in this cycle (each order requires on average 18.6 employee periods) and the load of the already 

released orders from the former cycle (these four orders generate a total workload of 37 employee periods 

during 10 buckets (4+3+2+1). As each order generates workload during 5 buckets (m=5 stages), the backlog 

from the preceding cycle corresponds to 2 complete orders. The average load of an order on the bottleneck 

equals (10*18.6 + 37) / (10+2) = 18.58 employees per order. 

So for the first release decision, we would like to choose an order with a total workload as near as possible to 

the average rate minus already released load, i.e. 3*18.58–37 = 18.75. After selecting the order (either D or I), 

the load aimed at for the next release decision is calculated. We denote this heuristic as AvgLoad. See Table 2 

for the results in the example problem. 

StageLoad The heuristic StageLoad aims at achieving a balanced workload distribution over the stages. It 

is based on insights from the field of workload control (Land and Gaalman 1996, Riezebos et al. 2003, 

Stevenson et al. 2005). It searches for an order that fits best within the expected peaks and troughs of the 

already generated workload distribution from the past assignments. The order to be selected should have a 

dissimilar workload pattern as compared to the already generated pattern. This generates a less variable 
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stageload pattern, which also reduces the variability of the sum of the m stageloads. In this way we might be 

able to avoid suddenly appearing large fluctuations in the required number of employees.  

StageLoad considers the release of one order as a release of m separate workloads for the stages. Each one of 

them should receive a workload that brings the total as close to the desired average amount as possible. 

StageLoad selects the order that minimizes the sum of these m quadratic distances. The sum of squares in the 

first step of StageLoad is minimal for order C, so C is chosen. See Table 2 for the results on the example 

problem. 

By choosing the order with minimal quadratic sum of distances to the average stage loads, the creation of 

sudden peaks and troughs in capacity load is avoided. However, this does not guarantee that sufficient 

capacity will always be available. For example, in period 4 order B is selected, as this order realizes the best 

stage load distribution, but this order creates a conflict with the available capacity in period 4.  

AvailStageLoad The fourth heuristic tries to avoid the conflicts with available capacity and applies the 

StageLoad heuristic only to the set of orders that fit within the available capacity. Note that the FillCap and 

AvgLoad heuristic do the same. If no orders fit within the available capacity, the whole set of unassigned 

orders is used to determine the order that fits best. The heuristic AvailStageLoad therefore combines the two 

approaches.  

The results of the heuristic AvailStageLoad in the example problem are exactly equal to heuristic StageLoad, 

as in each stage the preferred order belongs to the set of orders from which it should be chosen (see Table 2). 

In general, the performance of heuristic AvailStageLoad is expected to be better than heuristic StageLoad.  

The computational complexity of all four heuristics is ( )2O n , as in a single pass heuristic the whole cycle is 

repeated n-1 times, and step 2-3 is of order n. The first heuristic FillCap is a simple straightforward rule. The 

other three are more sophisticated in their computations, as they aim at achieving not only a short-term 

advantage, but a long-term balance as well. However, they allow a lower than possible fill in the current 

period in order to achieve the long-term balance.  

No guarantee is given that any of the heuristics is able to find an optimal solution. For the example problem, 

all four heuristics were unable to find an order sequence without violating the capacity constraint in at least 

one period. This raises the question on the possibility of finding a sequence that results in a feasible solution. 

The total number of sequences is n!. Complete enumeration is therefore no realistic alternative for large n. 

However, the advantages of a good order sequence for the productivity and acceptance of this synchronous 

manufacturing system makes it worthwhile to search for an improved solution procedure. The next section 

will proceed with such a procedure. 

4 A mathematical model to support the order release decision  

This section discusses a mathematical model that generates an optimal order sequence for all orders that have 

to be released in the cycle. The mathematical model is as follows:  
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1

1

=1

=1

(2)

:

1 1,..., (each period exactly one order has to start) (3)

1 1,..., (each order is assigned to one starting period) (4)

2,..., 1,...,

n m

t t

t

n

it

i

n

it

t

tj tj

Minimize w CS

suchthat

X t n

X i n

Y CR j m t j

+ −

=

⋅

= ∀ =

= ∀ =

= ∀ = ∀ =

∑

∑

∑

1, 

1

1 (stage load already determined in former cycle) (5)

1,..., 1 (stage load in future cycles assumed 

1,..., to be equal to the average load) (6)

1,..., 1,...

tj j

n

t j j it ij

i

Y ARC t n n m

j t n

Y X C t n j+ −
=

−

= ∀ = + + −

∀ = −

= ⋅ ∀ = ∀ =∑

[ ]
1

, (stage load resulting from release sequence) (7)

1,..., 1 (exceeding available capacity results in shortage) (8)

0,1 ; 0; 0; (9)

m

tj t t

j

it t tj

m

Y CS AC t n m

X CS Y

=

− ≤ ∀ = + −

∈ ≥ ≥

∑

 

This mathematical model uses itX  as binary decision variable, indicating that order i starts in period t 

whenever the variable has value 1. The other variables are non-negative and continuous (see (9)). Constraints 

(3) and (4) guarantee that a feasible assignment is obtained. The third constraint (5) shows that we use this 

model in a rolling schedule environment, as we take the effects of the release decisions in the former cycle 

into account in the current decision. Constraint (6) calculates the consequences for future periods that will be 

affected by the current decision. We use the average load in a stage if the actual load is not being determined 

in the current decision round. Constraint (7) determines the consequences of the release decision for the stage 

load in subsequent periods and is similar to Formula (1). Constraint (8) calculates the capacity shortage per 

period.  

The objective function (2) minimizes a weighted sum of the capacity shortages over time. Through the use of 

positive weights < 1 for periods behind the sequence horizon, the end of horizon effect (Stadtler 2000) is 

avoided. Most sequencing algorithms that are known from assembly line balancing (Scholl and Becker 2006) 

or suggested for synchronous systems (e.g. Vairaktarakis et al. 2002, Gronalt and Hartl 2003) do not treat the 

end-of-horizon problem. As a result, infeasible solutions may be encountered at the next decision moment. 

Sometimes the special case of a cyclic schedule (Vairaktarakis and Cai 2003) is used to tackle this problem. 

Our mathematical model avoids this effect by taking into consideration that the loading in the periods behind 

the horizon should not exceed the on-average available remaining capacity.  

Note that the proposed mathematical model is rather easy to read due to the introduction of the intermediate 

variable tjY . This holds especially true for modelling the stage load resulting from the release sequence (7).  

The model has been implemented in Lingo in order to find a solution for the problem of Table 1. As weights 

we selected 1 ; 0.5t tw for t n w for t n= ≤ = > . The last column of Table 2 shows the results. During the first 

ten periods no shortages occur, neither are they expected for the periods 11-14, i.e. for the periods behind the 

sequence horizon. Hence we conclude that none of the four heuristics achieved an optimal result. The 

question is whether there are differences in the performance between these heuristics.  
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5 Experimental design and simulation results 

5.1 Experimental design 

The former sections have introduced the four heuristics and the mathematical model and illustrated their 

performance using a realistic example. We would like to extend this comparison to a rolling schedule context, 

as this is the usual situation where such a solution procedure is being applied in synchronous manufacturing 

systems.  

The basic premise we would like to test is whether the solution approaches perform different when the 

distribution of workload over the stages changes ( ( )2

ijCMixVar f σ= ) or the variation in the total workload 

per order increases (
1

2
m

ijj
C

VolVar f σ
=

 
=  ∑ 

). The first is a mix-oriented factor, while the second is a volume-

oriented factor. In addition, we would like to test whether the performance of the approaches under these 

experimental settings changes if production characteristics (the number of stages m) or planning 

characteristics (the schedule horizon n) are modified. Table 3 shows the full factorial experimental design. 

 

*** INSERT TABLE 3 ABOUT HERE*** 

 

Each of the configurations (experiments) is replicated 100 times with a run length (rolling schedule) of 50 

cycles. For each cycle a random problem is generated with n orders and m stages. The total workload per 

order and the distribution of this workload over the stages varies randomly according to the specified factorial 

design of the experiment. The problem that has to be solved consists of determining a sequence for the orders. 

The consequence of the chosen sequence is input to the scheduling problem of the same solution approach for 

the next cycle, as we test the approaches in a rolling scheduling environment. So, although the approaches 

receive the same set of new orders at the start of a new cycle, only the first sequencing problem in a 

replication is completely identical for all solution approaches.  

Since we do not know if the size of the problem matters, we have tested the approaches using low and high 

values for both the scheduling horizon/number of orders n and the number of stages m. 

In total 4*4*100*50 = 80000 sets of orders were generated and the five solution approaches solved the 

resulting problems.  

We evaluate the approaches first on the average total capacity shortage per cycle. This is a kind of tardiness 

measure, as capacity shortage is zero if there is overcapacity in every bucket. For each bucket t=1,…,n we 

calculate the capacity shortage tCS  and add it to the total capacity shortage in that cycle. The average total 

capacity shortage is calculated over the number of cycles in the rolling schedule. 

Secondly, the frequency of a shortage in a schedule of one cycle is measured. If in any of the buckets a 

shortage occurs, this cycle is counted as one with shortages. The mean frequency per replication of 50 runs 

was calculated. This performance indicator shows how often a schedule that is constructed with this approach 

will face a shortage. The ratio of the two performance indicators (Exp.Shortage = Shortage / Frequency) 

reveals the mean total amount of capacity short in a cycle that faces a shortage.  

Available capacity is constant at 20 units per period. Average capacity requirement per order is also constant 

and set at 18 for all configurations. At a low volume variation, the actual capacity requirement is 18 ± 1, while 

a high volume variation has actual requirements equal to 18 ± 3. The capacity requirement of an order is 

therefore either in the interval [17,19] or [15,21], depending on the value of VolVar. We use a uniform 

distribution within an interval, so each element in the set has equal probability. As the maximal mix variation 
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in a stage, MV, may change in the course of the procedure, we first select randomly a stage and next determine 

the number of units in that stage. This number has to be at least one, as described in the sampling procedure 

(see Appendix).  

The problem generator and the five solution approaches have been programmed in Delphi 6, where the 

procedure that determines the optimal solution to the mixed integer programming problem uses the dll of the 

Lingo 5 solver. Generating these 80000 problems and solving them with the five solution approaches took 

37.4 hours CPU time on a 2.4 GHz Pentium IV PC running Windows XP, the majority of it being used by the 

optimization approach. The average CPU time of solving a problem to optimality was 1.5 seconds. The 

smallest problems ( )15n m+ =  took on average 0.7 seconds CPU time. The use of this version of Lingo in the 

rolling schedule experimental design did not allow us to solve problems with 25n m+ > . 

5.2 Expectations with respect to the results 

The solution approaches are expected to perform differently according to the variation in the experimental 

design factors. We number our expectations in order to enable testing in the next Section.  

(i) The heuristic FillCap is expected to perform better if MixVar is high instead of low. 

(ii) The effect of an increased variation in the total workload (VolVar high) on the performance of FillCap 

is uncertain. 

The reason for (i) is that a high MixVar will result in a higher chance of orders available that fit within the 

available capacity, even if the amount of capacity available is small.  

 

(iii) Compared to FillCap, AvgLoad is on average expected to result in a lower shortage, while frequency is 

not changed  

(iv) AvgLoad will perform better if MixVar is low instead of high. 

(v) AvgLoad will be more effective if VolVar is high. 

The heuristic AvgLoad improves the selection procedure of FillCap, but allows idle time earlier in the cycle 

as it favours a total workload near the average load on the bottleneck. The effect of an increased variation in 

the total workload (VolVar high) on the performance of FillCap is uncertain. The reason for (iv) is that 

AvgLoad does not take the distribution of workload over the stages into account. A higher variation in this 

distribution will result in relatively more shortages. Further, as it aims at balancing the total volume, it will be 

more effective if VolVar is high (v).  

 

(vi) StageLoad is not effective in managing shortage and frequency. 

(vii) StageLoad is more effective for high MixVar. 

We do not expect the heuristic StageLoad to be effective in managing shortage and frequency (vi), as it allows 

choosing an order while knowing that a shortage occurs. However, it might result in a more stable loading of 

the stages, which is more effective for high MixVar (vii).  

 

(viii) AvailStageLoad is expected to perform better than StageLoad 

(ix) AvailStageload is more effective if MixVar is high. 

The heuristic AvailStageLoad uses the basic idea of StageLoad in selecting an appropriate order that fits in the 

available capacity. It is expected to perform better than StageLoad (viii) and improve if MixVar is high (ix).  

 

(x) Zero shortage solutions are less easy to find in case either MixVar or VolVar is high. 

In case either MixVar or VolVar is high, we expect that it will be more difficult to find a solution with zero 

shortage (x). 
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(xi) Both the average shortage per cycle as the frequency of shortages will increase if n increases. 

(xii) The average shortage per bucket decreases if n increases. 

(xiii) Only StageLoad and AvailStageLoad benefit from an increase in m. 

The experimental variable n is expected to have an equal effect on all approaches. If the length of the horizon 

n increases, both the average shortage per cycle and the frequency of shortages are expected to increase (xi). 

However, longer cycles (n↑) means a larger set of orders to select for release, and hence more possibilities to 

reduce or avoid shortages. So the increase might not be proportional to the increase in n, in other words the 

average shortage per bucket might decrease (xii). More stages (m↑) increases the sensitivity for unbalances 

between the stages. We therefore expect a performance improvement only for the heuristics that take this into 

account (i.e., StageLoad and AvailStageLoad) (xiii). Next subsection will describe the results of the 

experiments, which enables us to determine if these expectations are valid. 

5.3 Results 

The results of the experiments were analyzed on differences in the mean performance. We used ANOVA to 

test whether the means were equal or not. Table 4 shows significant differences with respect to the mean 

shortage for all main effects and all interaction effects except one. Most contributing to differences in the 

mean are MixVar, Approach, and the combined effect of these two factors. For the frequency of shortages, the 

same factors are most important in explaining the total variation. Note that the size of the problem (n and m) 

has a significant, but minor contribution to explaining the variance in the data. We conclude that the mean 

performance of the various approaches cannot be assumed to be equal for all factorial levels.  

 

***INSERT TABLE 4 ABOUT HERE*** 

In order to see if the performance of all approaches differs significantly (expectations iii, vi, and viii), we 

applied multiple comparisons and tested for significant differences using the Tamhane test statistic. Table 5 

shows the results of this comparison. The type of approach used shows up to be a highly significant factor, as 

the difference with all other approaches is significant. We only present the differences between Optimal and 

the other approaches, but the same holds true for the remaining comparisons. Note that Table 5 presents the 

average differences, based on all values of the experimental variables n, m, VolVar, and MixVar. 

 

***INSERT TABLE 5 ABOUT HERE*** 

The optimal solution clearly outperforms the other heuristics. The difference in mean shortage with FillCap 

equals 2.762 employee periods per cycle, while the frequency of cycles with a shortage is 43.7% higher, as 

can be seen from Table 5 (column Mean Difference (I-J)). AvgLoad performs even worse -contrary to what 

we expected in (iii), but still better than the AvailStageLoad heuristic. The StageLoad heuristic performs 

worst, as was expected in (vi) and (viii)). However, the good performance results of FillCap were not 

expected at all. For all factorial levels, the less sophisticated FillCap appears to be significantly better than the 

other heuristics that aim at an improved selection process. FillCap just chooses the order that fills the 

available capacity in the first stage, and this results both in a lower average capacity shortage and less frequent 

shortages than more sophisticated heuristic selection procedures. Sophistication in these single pass heuristics 

does not seem to be of value.  

 

***INSERT TABLE 6 ABOUT HERE*** 

The question now remains how the solution approaches perform at the two levels of the experimental factors.  

The descriptive statistics in Table 6 show that an increase in MixVar has a much stronger impact on the extra 

capacity required and the frequency of shortages than an increase in the variation in the total workload of an 

Page 12 of 28

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 

 

order (VolVar). However, this holds only true for the heuristic approaches, as the optimal solution is 

completely insensitive for changes in these experimental factors. For each row in Table 6, 5000 problems 

have been solved (80000 in total), and the number of problems that did result in a shortage in the optimal 

solution was zero. Hence, expectation (x) cannot be confirmed.  

The performance difference between the heuristic approaches depends on the settings of the experimental 

factors. Figure 2 shows that a change in MixVar results in slightly different gradients of the curves that 

represent the five solution approaches. Hence, relative performance of the heuristics if compared with each 

other changes if MixVar changes. However, (i), (iv), and (ix) do not hold, as the absolute performance of all 

heuristics deteriorates for high MixVar, while expectation (iv) can be confirmed. And even for the relative 

performance improvement in average shortage, FillCap is better than the other heuristics.  

 

***INSERT FIGURE 2 ABOUT HERE*** 

The results show that the difference between heuristics and the optimal solution is high. Figure 2 shows that if 

MixVar is low, the mean frequency of shortages during a cycle is between 20% and 55% if the heuristics are 

being used, and increases to 60%-95% if MixVar is high, while the optimal solution approach is still able to 

find a solution without shortages. The frequency of shortages equals zero if the optimal solution approach is 

used. The required CPU time for obtaining the optimal solution is less than 10 seconds, with an average of 1.5 

seconds. Therefore, the use of the optimal solution approach is a realistic alternative if the size of the problem 

is restricted and leads to substantial savings and an improved capacity balance. Note that the size of problems 

considered in this study is realistic for many real life situations. Note also that in our experiments the optimal 

solution was insensitive to the value of the parameter tw =0.5, as a trade off between short term and long term 

effects could be avoided (the optimal solution was always able to avoid overtime).  

Table 6 shows that VolVar has less effect on the heuristics. FillCap is indeed relatively insensitive to changes 

in VolVar, which confirms (ii), but AvgLoad is not performing better for high VolVar, as expected in (v).  

Finally, we take a look at the effect of the parameters n and m. An increase in the number of periods per cycle 

decreases the performance, and hence expectation (xi) is confirmed. However, in case of low mix variation, 

the effect is very small. That means that the average shortage per bucket decreases if n increases (xii). 

Apparently, longer cycles actually make capacity balancing more effective. With respect to an increase in m, a 

strange phenomenon appears. The direction of the effect depends on the value of MixVar. If MixVar is low, an 

increase in m deteriorates the performance of the heuristics, but if MixVar is high, an increase in m improves 

the performance of all heuristics. Therefore, expectation (xiii) is not confirmed. There is an effect for all 

heuristics if m changes, but we have to accommodate for the interaction effect with MixVar. Note that Table 4 

already showed that this interaction is important, especially for explaining the variance in the shortage 

performance measure. 

6 Conclusions 

The concept of synchronous manufacturing is behind several popular shop floor management approaches. It 

aims at achieving short and reliable throughput times through the introduction of fixed transfer moments 

between several stages of production. This causes a loading of the resources that can be predicted in advance, 

which makes it easier for planners to do their job.  

If capacity requirements fluctuate over time, planners may have to enhance the order release decision in order 

to avoid costs of changing the total available capacity. Our study reveals that the quality of the order release 

decision is the key to an improved capacity balance over the periods.  

In order to develop solution approaches for this multi-product multi-stage problem, we used insights from 

mixed-model assembly line sequencing algorithms and workload control literature. Four heuristics and a 

Page 13 of 28

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 

 

mathematical model were developed to solve the capacity balancing problem in a synchronous manufacturing 

system.  

We tested the five solution approaches in a rolling schedule. This enabled us to take into account the 

consequences of the former sequence decisions of the approaches for the new cycle. We evaluate the average 

total capacity shortage per cycle and the frequency of shortages for the various solution approaches.  

Our experimental design evaluates the performance of the approaches for two levels of variation of total 

capacity requirements per order and for two levels of variation of the distribution of the workload over the 

stages. Moreover, we evaluated the effect of changing the length of the planning horizon and the number of 

stages.  

Surprisingly, the simple FillCap heuristic that selects an order that consumes as much capacity in the first 

stage of its release as possible performs in all experiments better than the more sophisticated capacity 

balancing heuristics. This holds true even if the number of stages m increases. We expect that the main 

reasons are to be found in the bad balance at the end of the cycle, as the more sophisticated heuristics do aim 

at a very good balance at the start of the cycle, without taking into consideration the effects of their choices at 

the end of the cycle. However, this study has not examined the main reasons for the bad performance of the 

sophisticated heuristics, as it expected them to perform better. Future research should elaborate on this.  

The performance of the heuristics is very sensitive to an increase in the variation of the distribution of 

workload over the stages. Increased variation of the total capacity requirements of an order has only a 

marginal impact on performance.  

The use of the mathematical model instead of one of the heuristics results in an almost total elimination of 

shortages in our experiments. Shortage frequencies of at least 30-60 percent were avoidable by using the 

mathematical model. The time needed for finding an optimal solution is very short for the problems we have 

solved (up to 15 orders and 10 stages). The size of problems that we have investigated is realistic for real life 

manufacturing systems, and implementation of the mathematical optimization model is easy to accomplish. 

We conclude therefore that the use of such a solution approach should be considered, as it strongly improves 

the capacity balance in synchronous manufacturing systems.  

Future research should verify if modifications of the proposed heuristics for synchronous manufacturing lead 

to performance improvements. We suggest to develop and test heuristics that take into account uncertainty 

with respect to the work content and available capacity. Genetic algorithms can be applied as well. The 

current study has applied deterministic optimization in a rolling schedule horizon. We think that the use of a 

rolling schedule has important benefits when testing the performance of solution approaches and should be 

applied to other problems as well.  
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FillCap heuristic: 
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AvgLoad heuristic 
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Table 1. Order sequencing with 10 products a week 

 

day Mon Tue Wed Thu Fri Mon2 Tue2 

bucket (4 hours) am pm am pm am pm am pm am pm am pm am pm 

period t      1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Stage \ Order A B C D E F G H I J     

j=1 3 5 3 2 2 3 2 4 3 6 3.3 3.3 3.3 3.3 

j=2 4 5 3 2 6 2 2 2 4 3 2 3.2 3.2 3.2 

j=3 6 4 4 4 2 6 5 2 5 4 5 2 4.1 4.1 

j=4 3 4 5 6 4 8 3 4 8 4 4 5 2 4.6 

j=5 2 3 2 4 2 4 5 2 4 5 4 4 3 2 

Total 18 21 17 18 16 23 17 14 24 22 21 22 21 28 

(Exp.) Shortage 0 1 0 0 0 3 0 0 4 2 0 0 0 0 
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Table 2. Comparison of the solution approaches 

 

 Sequence Unused capacity in period t 

t FillCap AvgLoad 
(Avail-) 

StageLoad 
Optimal FillCap AvgLoad 

(Avail-) 

StageLoad 
Optimal 

1 B I C A 0 2 2 2 

2 J D H F 0 4 3 1 

3 H E I B 3 0 4 2 

4 A A B E 3 0 -4 3 

5 C G E C 2 2 1 1 

6 F B A H 5 3 2 0 

7 I C G J 3 -1 1 0 

8 D J J D 3 2 0 0 

9 E H F I -6 4 0 0 

10 G F D G 0 -1 8 3 

11     3.7 3.7 2.7 4.7 

12     2.5 5.5 -2.5 1.5 

13     1.4 -2.6 1.4 2.4 

14     0.8 -0.2 2.8 0.8 

Value objective function    -6 -3.4 -5.25 0 
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Table 3. Full factorial design 

 

Variable n m MixVar VolVar 

Low value 10 5 ± 1 ± 1 

High value 15 10 ± 2 ± 3 
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Table 4. ANOVA results 

 

 Shortage Frequency 

Source Sum of Squares df F Sig. Sum of Squares df F Sig. 

Model 
a,b 

236367.162 80 9581.563 .000 2562.783 80 13035.129 .000 

MixVar 57556.686 1 186653.009 .000 292.712 1 119106.098 .000 

Approach 39059.124 4 31666.621 .000 495.800 4 50435.970 .000 

n 3037.496 1 9850.425 .000 7.517 1 3058.548 .000 

VolVar 599.304 1 1943.510 .000 1.350 1 549.502 .000 

m 463.213 1 1502.172 .000 32.362 1 13168.366 .000 

MixVar * Approach 22250.719 4 18039.449 .000 75.846 4 7715.564 .000 

m * MixVar 4468.346 1 14490.588 .000 28.429 1 11567.998 .000 

n * MixVar 1789.586 1 5803.524 .000 .022 1 8.943 .003 

n * Approach 1729.621 4 1402.265 .000 1.972 4 200.636 .000 

m * Approach 1641.318 4 1330.675 .000 8.338 4 848.199 .000 

VolVar * Approach 275.833 4 223.627 .000 .823 4 83.688 .000 

VolVar * MixVar 239.135 1 775.499 .000 .373 1 151.965 .000 

n * VolVar 31.408 1 101.853 .000 .008 1 3.174 .075 

m * VolVar 2.554 1 8.282 .004 .915 1 372.171 .000 

n * m .061 1 .197 .657 .702 1 285.648 .000 

m * MixVar * Approach 3734.784 4 3027.922 .000 8.738 4 888.889 .000 

n * MixVar * Approach 1003.472 4 813.550 .000 1.697 4 172.672 .000 

n*m*VolVar*MixVar*Approach 615.358 41 48.672 .000 3.432 41 34.058 .000 

Error 2442.227 7920   19.464 7920   

Total 238809.388 8000   2582.247 8000   

     a R Squared Shortage = .990   b R Squared Frequency = .992 
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Table 5. Multiple comparisons of performance solution approaches 

 

 95% Confidence Interval 

Dependent 

Variable 
(I) APPROACH (J) APPROACH 

Mean Difference 

(I-J) 

Standard 

Error 
Sig. 

Lower Bound Upper Bound 

FillCap -2.762(*) .058 .000 -2.925 -2.598 

AvgLoad -3.638(*) .081 .000 -3.864 -3.412 

Stageload -6.817(*) .150 .000 -7.237 -6.397 
Shortage Optimal 

AvailStageLoad -4.271(*) .086 .000 -4.513 -4.029 

FillCap -.437(*) .007 .000 -.456 -.418 

AvgLoad -.497(*) .008 .000 -.518 -.475 

Stageload -.760(*) .006 .000 -.778 -.742 
Frequency Optimal 

AvailStageLoad -.543(*) .007 .000 -.562 -.524 

FillCap -4.887(*) .066 .000 -5.074 -4.701 

AvgLoad -5.539(*) .083 .000 -5.770 -5.307 

Stageload -7.492(*) .139 .000 -7.882 -7.101 
Exp. Shortage Optimal 

AvailStageLoad -6.308(*) .088 .000 -6.556 -6.061 

       * The mean difference is significant at the .05 level.  
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Table 6. Performance of solution approaches 
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± 1 .05 .07 .45 .12 .00 .03 .04 .26 .07 .00 1.39 1.56 1.75 1.67 .00 
± 1 

± 3 .19 .20 .79 .67 .00 .08 .09 .36 .22 .00 2.18 2.26 2.18 3.01 .00 

± 1 4.15 5.44 11.84 6.83 .00 .59 .70 .98 .75 .00 7.08 7.81 12.04 9.15 .00 
5 

± 2 
± 3 4.72 7.36 12.15 7.47 .00 .60 .77 .98 .74 .00 7.85 9.62 12.45 10.05 .00 

± 1 .83 1.04 2.03 1.29 .00 .29 .34 .66 .39 .00 2.89 3.07 3.07 3.32 .00 
± 1 

± 3 .96 1.25 2.02 1.50 .00 .31 .37 .64 .39 .00 3.07 3.37 3.15 3.78 .00 

± 1 3.53 4.13 6.64 4.97 .00 .64 .69 .93 .74 .00 5.54 5.97 7.12 6.74 .00 

10 

10 

± 2 
± 3 4.15 5.34 7.19 5.91 .00 .64 .72 .93 .74 .00 6.53 7.40 7.77 7.98 .00 

± 1 .05 .08 .74 .13 .00 .03 .04 .39 .07 .00 1.33 1.50 1.89 1.69 .00 
± 1 

± 3 .23 .18 1.12 1.12 .00 .09 .08 .47 .33 .00 2.41 2.15 2.37 3.44 .00 

± 1 5.43 6.98 17.86 8.71 .00 .68 .77 1.00 .80 .00 7.96 9.11 17.90 10.88 .00 
5 

± 2 
± 3 6.07 9.70 18.59 10.04 .00 .70 .84 1.00 .81 .00 8.70 11.61 18.66 12.36 .00 

± 1 1.25 1.37 3.06 1.72 .00 .39 .43 .82 .47 .00 3.21 3.21 3.73 3.65 .00 
± 1 

± 3 1.29 1.57 3.05 2.21 .00 .38 .43 .78 .49 .00 3.42 3.64 3.93 4.46 .00 

± 1 5.12 5.73 10.25 7.05 .00 .76 .81 .99 .83 .00 6.78 7.10 10.37 8.50 .00 

15 

10 

± 2 
± 3 6.16 7.79 11.28 8.60 .00 .78 .84 .98 .84 .00 7.86 9.25 11.49 10.25 .00 
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Figure 1. Variables, parameters and structure of Table 1 
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Figure 2. Performance for increased variation in distribution of workload over stages 
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