A note on stable point processes occurring in branching Brownian motion

Abstract : We call a point process $Z$ on $\mathbb R$ \emph{exp-1-stable} if for every $\alpha,\beta\in\mathbb R$ with $e^\alpha+e^\beta=1$, $Z$ is equal in law to $T_\alpha Z+T_\beta Z'$, where $Z'$ is an independent copy of $Z$ and $T_x$ is the translation by $x$. Such processes appear in the study of the extremal particles of branching Brownian motion and branching random walk and several authors have proven in that setting the existence of a point process $D$ on $\mathbb R$ such that $Z$ is equal in law to $\sum_{i=1}^\infty T_{\xi_i} D_i$, where $(\xi_i)_{i\ge1}$ are the atoms of a Poisson process of intensity $e^{-x}\,\mathrm d x$ on $\mathbb R$ and $(D_i)_{i\ge 1}$ are independent copies of $D$ and independent of $(\xi_i)_{i\ge1}$. In this note, we show how this decomposition follows from the classic \emph{LePage decomposition} of a (union)-stable point process. Moreover, we give a short proof of it in the general case of random measures on $\mathbb R$.
Type de document :
Article dans une revue
Electronic Communications in Probability, Institute of Mathematical Statistics (IMS), 2013, 18 (5), pp.1-9. <10.1214/ECP.v18-2390>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00564630
Contributeur : Pascal Maillard <>
Soumis le : dimanche 20 janvier 2013 - 14:33:33
Dernière modification le : jeudi 27 avril 2017 - 09:46:36
Document(s) archivé(s) le : dimanche 21 avril 2013 - 03:52:25

Fichiers

stable.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

UPMC | INSMI | USPC | PMA

Citation

Pascal Maillard. A note on stable point processes occurring in branching Brownian motion. Electronic Communications in Probability, Institute of Mathematical Statistics (IMS), 2013, 18 (5), pp.1-9. <10.1214/ECP.v18-2390>. <hal-00564630v2>

Partager

Métriques

Consultations de
la notice

136

Téléchargements du document

145