Random products of automorphisms of Heisenberg nilmanifolds and Weil’s representation
Bachir Bekka, Jean-Romain Heu

To cite this version:

HAL Id: hal-00564615
https://hal.archives-ouvertes.fr/hal-00564615
Submitted on 9 Feb 2011
Random products of automorphisms of Heisenberg nilmanifolds and Weil’s representation

Bachir Bekka and Jean-Romain Heu

November 1, 2009

Abstract

For $n \geq 1$, let H be the $(2n+1)$-dimensional real Heisenberg group, and let Λ be a lattice in H. Let Γ be a group of automorphisms of the corresponding nilmanifold $\Lambda \backslash H$ and U the associated unitary representation of Γ on $L^2(\Lambda \backslash H)$. Denote by T the maximal torus factor associated to $\Lambda \backslash H$. Using Weil’s representation (also known as the metaplectic representation), we show that a dense set of matrix coefficients of the restriction of U to the orthogonal complement of $L^2(T)$ in $L^2(\Lambda \backslash H)$ belong to $\ell^{4n+2+\varepsilon}(\Gamma)$ for every $\varepsilon > 0$.

We give the following application to random walks on $\Lambda \backslash H$ defined by a probability measure μ on $\text{Aut}(\Lambda \backslash H)$. Denoting by Γ the subgroup of $\text{Aut}(\Lambda \backslash H)$ generated by the support of μ and by U^0 and V^0 the restrictions of U respectively to the subspaces of $L^2(\Lambda \backslash H)$ and $L^2(T)$ with zero mean, we prove the following inequality:

$$\|U^0(\mu)\| \leq \max \left\{ \|V^0(\mu)\|, \|\lambda_\Gamma(\mu)\|^{1/(2n+2)} \right\},$$

where λ_Γ is the left regular representation of Γ on $\ell^2(\Gamma)$. In particular, the action of Γ on $\Lambda \backslash H$ has a spectral gap if and only if the corresponding action of Γ on T has a spectral gap.

1 Introduction

Let (X, m) be a probability space and G a locally compact group of measure preserving transformations of X. Given a probability measure μ on G,
consider a sequence of independent μ-distributed random variables X_n^ω with values in G and the corresponding random products $S_n^\omega = X_n^\omega \ldots X_1^\omega$ for $n \in \mathbb{N}$. This defines a random walk on X with initial distribution m and trajectories $S_n^\omega(x)$ for $x \in X$ and $n \in \mathbb{N}$. A question of interest is whether this random walk has a spectral gap. To define this notion, let U be the unitary representation of G on $L^2(X, m)$ defined by $U_g(\xi) = \xi(g^{-1}(x))$ for $g \in G$, $\xi \in L^2(X, m)$, and $x \in X$. Let $L^2_0(X, m)$ be the $U(G)$-invariant subspace of functions ξ in $L^2(X, m)$ with zero mean, that is, with $\int_X \xi(x)dm(x) = 0$. Denote by U^0 the restriction of U to $L^2_0(X, m)$. Let $U^0(\mu)$ be the convolution operator defined on $L^2_0(X, m)$ by

$$U^0(\mu)\xi = \int_G U^0_g(\xi)d\mu(g) \quad \text{for all} \quad \xi \in L^2_0(X, m).$$

Observe that $\|U^0(\mu)\| \leq 1$. We say that μ has a spectral gap in (X, m) if $\|U^0(\mu)\| < 1$. This spectral gap property has several interesting applications; the most immediate one is the exponentially fast convergence of the sequence of functions $x \mapsto E(\xi(S_n^\omega(x)))$ to $\int_X \xi dm$ in the L^2-norm for every $\xi \in L^2(X, m)$. Other applications include the existence of a rate of convergence for random ergodic theorems, a central limit theorem, and the uniqueness of invariant means on $L^\infty(X, m)$; see [FuSh99], [Guiv05], [Lubo94], [Sarn90].

The spectral gap property can be formulated in terms of weak containment of group representations (see [BeHV08, G.4.2]). Assume that the subgroup generated by the support of μ is dense in G. Assume moreover that μ is aperiodic (that is, the support of μ is not contained in the coset of a proper closed subgroup of G). Then μ has a spectral gap in (X, m) if and only if there is no G-almost invariant vectors in $L^2_0(X, m)$. If this is the case, we say for short that the G-action on X has a spectral gap.

We emphasize that the existence of a spectral gap property is a phenomenon which can occur only in the context of non-amenable groups: when G is a discrete amenable group and m is non-atomic, then G has never a spectral gap on X (see [JuRo79] or [Schmi80]).

When X is the n-dimensional torus $\mathbb{R}^n/\mathbb{Z}^n$, equipped with the normalized Lebesgue measure m, sufficient conditions were given in [FuSh99] for the existence of a spectral gap for the action of a subgroup of $GL_n(\mathbb{Z})$ by automorphisms on $\mathbb{R}^n/\mathbb{Z}^n$ (see also Example 4 below). In this paper, we will consider the case where X is a Heisenberg nilmanifold and G a group of automorphisms of X.

2
For \(n \geq 1 \), let \(H = H_{2n+1}(\mathbb{R}) \) be the \((2n+1)\)-dimensional real Heisenberg group. This is a two step nilpotent Lie group with one-dimensional centre \(Z \) (see Section 2 below). Let \(\Lambda \) be a lattice in \(H \): \(\Lambda \) is a discrete subgroup of \(H \) such that there exists a (unique) probability measure \(m \) on the Borel sets of the corresponding nilmanifold \(\Lambda \setminus H \) which is invariant under right translation by elements from \(H \). (Observe that \(\Lambda \) is cocompact in \(H \).) Denote by \(\text{Aut}(H) \) the group of continuous automorphisms of \(H \) and by \(\text{Aut}(\Lambda \setminus H) \) the subgroup of all \(g \in \text{Aut}(H) \) such that \(g(\Lambda) = \Lambda \); every automorphism \(g \in \text{Aut}(\Lambda \setminus H) \) induces a homeomorphism of \(\Lambda \setminus H \).

Let \(\Gamma \) be a subgroup of \(\text{Aut}(\Lambda \setminus H) \). The action of \(\Gamma \) on \(\Lambda \setminus H \) preserves the \(H \)-invariant probability measure \(m \) on \(\Lambda \setminus H \). Let \(U \) be the associated unitary representation of \(\Gamma \) on \(L^2(\Lambda \setminus H, m) \). Let \(T = \Lambda Z \setminus H \) be the maximal torus factor of \(\Lambda \setminus H \). Observe that \(T \cong \mathbb{R}^{2n}/\mathbb{Z}^{2n} \) and \(\text{Aut}(T) \cong GL_{2n}(\mathbb{Z}) \). Since \(\text{Aut}(\Lambda \setminus H) \) preserves \(Z \Lambda \), we have a homomorphism \(p : \text{Aut}(\Lambda \setminus H) \to \text{Aut}(T) \) and an induced action of \(\Gamma \) on \(T \). This defines a unitary representation of \(\Gamma \) on \(L^2(T) \), where \(T \) is equipped with normalized Lebesgue measure. We can (and will) identify \(L^2(T) \), as \(\Gamma \)-space, with a closed \(U(\Gamma) \)-invariant subspace of \(L^2(\Lambda \setminus H) \). Denote by \(\mathcal{H} \) the orthogonal complement of \(L^2(T) \) in \(L^2(\Lambda \setminus H) \), so that we have an orthogonal decomposition

\[
L^2(\Lambda \setminus H) = L^2(T) \oplus \mathcal{H}
\]

into \(U(\Gamma) \)-invariant subspaces. Here is our main result.

Theorem 1 The matrix coefficients of the restriction of \(U \) to \(\mathcal{H} \) are strongly \(L^{4n+2+\varepsilon} \): there are dense subspaces \(D_1 \) and \(D_2 \) of \(\mathcal{H} \) such that, for any \(v \in D_1 \) and \(w \in D_2 \), the matrix coefficient \(\gamma \mapsto \langle U_\gamma v, w \rangle \) belongs to \(\ell^{4n+2+\varepsilon}(\Gamma) \), for every \(\varepsilon > 0 \).

Concerning the proof of the previous theorem, we first show that the representation \(U \) is linked with Weil’s representation, which is also known as Segal-Shale-Weil, metaplectic, or oscillator representation (see [Shal62], [Weil64]). The crucial tool is then a result from [HoMo79] about the decay of the matrix coefficients of Weil’s representation.

Here is an immediate consequence of Theorem 1. Recall that, if \(X \) is a locally compact space, \(C_0(X) \) denotes the space of complex-valued continuous functions on \(X \) which tend to zero at infinity.

Corollary 2 The restriction of the unitary representation \(U \) to \(\mathcal{H} \) is mixing: the matrix coefficients \(\gamma \mapsto \langle U_\gamma v, w \rangle \) belong to \(C_0(\Gamma) \) for all \(v, w \in \mathcal{H} \).
The previous corollary immediately implies that the ergodicity or mixing of
the \(\Gamma \)-action on \(\Lambda \setminus H \) is equivalent to the ergodicity or mixing of the \(\Gamma \)-action
on \(T \) (see Corollary 6 below).

We apply Theorem 1 to the existence of a spectral gap for the random
walk on \(\Lambda \setminus H \) associated to a probability measure \(\mu \) on \(\text{Aut}(\Lambda \setminus H) \).

Theorem 3 Let \(\mu \) be a probability measure on \(\text{Aut}(\Lambda \setminus H) \). Denote by \(\Gamma \) be
the subgroup of \(\text{Aut}(\Lambda \setminus H) \) generated by the support of \(\mu \). Let \(U^0 \) and \(V^0 \) be the
associated unitary representations of \(\Gamma \) on \(L^2_0(\Lambda \setminus H) \) and \(L^2_0(T) \) respectively. Then
\[
\|U^0(\mu)\| \leq \max\{\|V^0(\mu)\|, \|\lambda_\Gamma(\mu)\|^{1/(2n+2)}\},
\]
where \(\lambda_\Gamma \) is the left regular representation of \(\Gamma \) on \(\ell^2(\Gamma) \). In particular, the
action of \(\Gamma \) on \(\Lambda \setminus H \) has a spectral gap if and only if the corresponding action
of \(\Gamma \) on \(T \) has a spectral gap.

Example 4 Let \(\Gamma \) be a subgroup of \(\text{Aut}(\Lambda \setminus H) \) such that its image \(p(\Gamma) \subset
GL_{2n}(\mathbb{Z}) \) under the homomorphism \(p : \text{Aut}(\Lambda \setminus H) \to \text{Aut}(T) \cong GL_{2n}(\mathbb{Z}) \) acts
irreducibly on \(\mathbb{R}^{2n} \) and does not have an abelian subgroup of finite index (this
is for instance the case if \(p(\Gamma) \) is Zariski dense in \(GL_{2n}(\mathbb{R}) \)). Then, as shown
in [FuSh99, Theorem 6.5], the action of \(\Gamma \) on \(T \) has a spectral gap.

In the case \(n = 1 \), we have the following more precise result.

Corollary 5 Let \(H_3(\mathbb{R}) \) be the 3–dimensional Heisenberg group and \(\Lambda \) a
lattice in \(H \). Let \(\mu \) be a probability measure on \(\text{Aut}(\Lambda \setminus H) \). Then
\[
\|U^0(\mu)\| \leq \|\lambda_\Gamma(\mu)\|^{1/4},
\]
where \(\Gamma \) is the subgroup generated by the support of \(\mu \). In particular, if \(\mu \) is
aperiodic, \(\|U^0(\mu)\| < 1 \) if and only if \(\Gamma \) is non-amenable.

Acknowledgments We are grateful to J.-P. Conze, A. Gamburd and Y. Guiv-
arc'h for interesting discussions.
2 Proofs

We first recall the definition of the Heisenberg group \(H = H_{2n+1}(\mathbb{R}) \); we then describe the automorphism group of \(H \) as well as its irreducible unitary representations.

Let \(n \geq 1 \) be an integer. Consider the symplectic form \(\beta \) on \(\mathbb{R}^{2n} \) given by
\[
\beta((x, y), (x', y')) = (x, y)^t J (x', y') \quad \text{for all} \quad (x, y), (x', y') \in \mathbb{R}^{2n},
\]
where \(J \) is the \((2n \times 2n)\)-matrix
\[
J = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}
\]
and \(I_n \) is the \(n \times n \)-identity matrix. The \((2n + 1)\)-dimensional Heisenberg group (over \(\mathbb{R} \)) is the group \(H = H_{2n+1}(\mathbb{R}) \) with underlying set \(\mathbb{R}^{2n} \times \mathbb{R} \) and product
\[
((x, y), s)((x', y'), t) = \left((x + x', y + y'), s + t + \frac{1}{2}\beta((x, y), (x', y'))\right),
\]
for \((x, y), (x', y') \in \mathbb{R}^{2n}, s, t \in \mathbb{R} \). This is a two-step nilpotent Lie group. Its centre \(Z \) coincides with its commutator subgroup and is given by
\[
Z = \{((0, 0), s) : s \in \mathbb{R}\}.
\]

The symplectic group \(Sp_{2n}(\mathbb{R}) \), which is the subgroup of \(GL_{2n}(\mathbb{R}) \) of all matrices \(g \) with \(^t g J g = J \), acts by automorphisms on \(H = H_{2n+1}(\mathbb{R}) \):
\[
g((x, y), t) = (g(x, y), t) \quad \text{for all} \quad g \in Sp_{2n}(\mathbb{R}), (x, y) \in \mathbb{R}^{2n}, \quad t \in \mathbb{R}.
\]
As is well-known (see [Foll89, 1.22]), the automorphism group \(\text{Aut}(H) \) of \(H \) is generated by:

- the inner automorphisms,
- the automorphisms defined by matrices from \(Sp_{2n}(\mathbb{R}) \) as above,
- the dilations \(((x, y), t) \mapsto ((rx, ry), r^2t) \) for \(r > 0 \), and
- the inversion \(i : ((x, y), t) \mapsto ((y, x), -t) \).
The connected component \(\text{Aut}(H)_0 \) of the identity in \(\text{Aut}(H) \) is a subgroup of index two and can be viewed as the group of \((2n + 1) \times (2n + 1)\)-matrices of the form
\[
\begin{pmatrix}
 rA & 0 \\
 a^t & r^{2n}
\end{pmatrix}
\]
with \(A \in \text{Sp}_{2n}(\mathbb{R}) \), \(r > 0 \), and \(a \) a column vector in \(\mathbb{R}^{2n} \) (the action on \(H \) corresponding to the usual action on \(\mathbb{R}^{2n+1} \)). The subgroup of automorphisms of \(H \) fixing pointwise the centre can be identified with the group of matrices of the form
\[
\begin{pmatrix}
 A & 0 \\
 a^t & 1
\end{pmatrix}
\]
and is hence isomorphic to the semi-direct product \(\text{Sp}_{2n}(\mathbb{R}) \ltimes \mathbb{R}^{2n} \), for the standard action of \(\text{Sp}_{2n}(\mathbb{R}) \) on \(\mathbb{R}^{2n} \).

The unitary dual \(\hat{H} \) of \(H \) (that is, the set of classes of irreducible unitary representations of \(H \) under unitary equivalence) consists of the equivalence classes of the following representations (see [Foll89, 1.50]):

- the unitary characters of the abelianized group \(H/Z \);
- for every \(t \in \mathbb{R} \setminus \{0\} \), the infinite dimensional representation \(\pi_t \) defined on \(L^2(\mathbb{R}^n) \) by the formula
 \[
 \pi_t((a, b), s)\xi(x) = \exp(2\pi its) \exp \left(2\pi \langle a, x - \frac{b}{2} \rangle \right) \xi(x - b)
 \]
 for \((a, b), s) \in H, \xi \in L^2(\mathbb{R}^n)\), and \(x \in \mathbb{R}^n \).

For \(t \neq 0 \), the representation \(\pi_t \) is, up to unitary equivalence, the unique irreducible unitary representation of \(\hat{H} \) whose restriction to the centre \(Z \) is a multiple of the unitary character \(s \mapsto \exp(2\pi its) \).

The group \(\text{Aut}(H) \) acts on \(\hat{H} \) by
\[
\pi^g(h) = \pi(g^{-1}(h)) \quad \text{for all } \pi \in \hat{H}, g \in \text{Aut}(H), h \in H.
\]

Let \(g \in \text{Sp}_{2n}(\mathbb{R}) \). For \(t \in \mathbb{R} \setminus \{0\} \), the representation \(\pi^g_t \) is unitary equivalent to \(\pi_t \), since both representations have the same restriction to \(Z \). Therefore, there exists a unitary operator \(\sigma(g) \) on \(L^2(\mathbb{R}^n) \) such that
\[
\sigma(g)\pi_t(g^{-1}(h))\sigma(g)^{-1} = \pi_t(h) \quad \text{for all } h \in H.
\]
By Schur’s lemma, \(\sigma(g) \) is unique up to a scalar multiple of the identity operator. Hence, for \(g_1, g_2 \in Sp_{2n}(\mathbb{R}) \), there exists a complex number \(c(g_1, g_2) \) of modulus one such that \(\sigma(g_1)\sigma(g_2) = c(g_1, g_2)\sigma(g_1g_2) \). This means that \(g \mapsto \sigma(g) \) is a projective unitary representation of \(Sp_{2n}(\mathbb{R}) \). We extend \(\sigma \) to a projective unitary representation \(\omega_t \), called Weil’s representation, of \(Sp_{2n}(\mathbb{R}) \ltimes \mathbb{R}^{2n} \) by setting

\[
\omega_t(g, a) = \sigma(g)\pi_t(a) \quad \text{for all} \quad (g, a) \in Sp_{2n}(\mathbb{R}) \ltimes \mathbb{R}^{2n}.
\]

Although we will not need this fact, it is worth mentioning that \(\omega_t \) lifts to an ordinary representation of a two-fold cover of \(Sp_{2n}(\mathbb{R}) \ltimes \mathbb{R}^{2n} \) (see [Foll89, Chapter 4]).

How, let \(\Lambda \) be a lattice in \(H \). (As an example, \(\Lambda \) can be the standard lattice \(\{(x, y), s/2) : x, y \in \mathbb{Z}^n, s \in \mathbb{Z}\} \); a full classification of the lattices in \(H \) is given in [Ausl77, I. 2].)

The Lebesgue measure on \(\mathbb{R}^{2n} \times \mathbb{R} \) is a Haar measure on \(H \) and induces an invariant measure \(m \) on the nilmanifold \(\Lambda \backslash H \). (For the classification of \(\Gamma \)-invariant measures on \(\Lambda \backslash H \) for “large” groups \(\Gamma \subset \text{Aut}(\Lambda \backslash H) \), see [Heu09].)

Proof of Theorem 1.

Let \(\Gamma \) be a subgroup of \(\text{Aut}(\Lambda \backslash H) \). Then \(\Gamma \) is a discrete subgroup of \(\text{Aut}(H) \), for the topology of uniform convergence on compact subsets of \(H \). Moreover, the subgroup of \(\Gamma \) consisting of the automorphisms fixing pointwise the centre of \(H \) has finite index in \(\Gamma \). Indeed, the mapping

\[
\text{Aut}(H)_0 \to \mathbb{R}^*, \quad \left(\begin{array}{cc} rA & 0 \\ a^t & r^{2n} \end{array} \right) \mapsto r
\]

is a homomorphism and the image of \(\Gamma \cap \text{Aut}(H)_0 \) is a discrete subgroup of \(\mathbb{R}^* \).

It is clear that, if Theorem 1 is true for a subgroup of finite index in \(\Gamma \), then it is true for \(\Gamma \). So, we can (and will) assume that \(\Gamma \) is a subgroup of \(Sp_{2n}(\mathbb{R}) \ltimes \mathbb{R}^{2n} \).

Since every \(\gamma \in \Gamma \) preserves the measure \(m \) on \(\Lambda \backslash H \), we have an associated unitary representation \(U : \gamma \mapsto U_\gamma \) of \(\Gamma \) on \(L^2(\Lambda \backslash H, m) \).

Let \(\rho_{\Lambda \backslash H} \) be the unitary representation of \(H \) on \(L^2(\Lambda \backslash H, m) \) given by right translation:

\[
\rho_{\Lambda \backslash H}(h)\xi(x) = \xi(xh) \quad \text{for all} \quad h \in H, \xi \in L^2(\Lambda \backslash H, m), \ x \in \Lambda \backslash H.
\]
The representations U and $\rho_{\Lambda \setminus H}$ are linked in the following way. For every $\gamma \in \Gamma$, we have:

(1) \quad U_{\gamma} \rho_{\Lambda \setminus H}(h) U_{\gamma^{-1}} = \rho_{\Lambda \setminus H}(\gamma(h)) \quad \text{for all} \quad h \in H.

We have a decomposition of $L^2(\Lambda \setminus H, m)$ into $\rho_{\Lambda \setminus H}$-invariant subspaces

$$L^2(\Lambda \setminus H, m) = \bigoplus_{m \in \mathbb{Z}} H_m,$$

where

$$H_m = \{ \xi \in L^2(\Lambda \setminus H) : \rho_{\Lambda \setminus H}(0, 0, s) \xi = e^{2\pi i m s} \xi \quad \text{for all} \quad t \in \mathbb{R} \}.$$

The space H_0 coincides with the space $L^2(T)$, where $T \cong \mathbb{R}^{2n}/\mathbb{Z}^{2n}$ is the maximal torus factor associated to $\Lambda \setminus H$. Moreover, for every $m \in \mathbb{Z} \setminus \{0\}$, the subspace H_m is an isotypical component for $\rho_{\Lambda \setminus H}$ and is equivalent to a finite multiple of the irreducible representation π_m from above. (For a computation of the multiplicities, see [Tol78], [Moo65].)

Let $m \in \mathbb{Z} \setminus \{0\}$. Since Γ fixes pointwise Z, we see from (1) that

$$U_{\gamma}(H_m) = H_m \quad \text{for all} \quad \gamma \in \Gamma.$$

Denote by $U^{(m)}$ the restriction of U to H_m.

Since H_m is equivalent to a finite multiple of the irreducible representation π_m, we can assume that H_m is the tensor product

$$H_m = K_m \otimes L_m$$

of the Hilbert space K_m of π_m with a finite dimensional Hilbert space L_m, in such a way that

(2) \quad \rho_{\Lambda \setminus H}(h)|_{H_m} = \pi_m(h) \otimes I_{L_m} \quad \text{for all} \quad h \in H.

Let $\gamma \in \Gamma$. By (1) and (2) above, we have

(3) \quad U_{\gamma}^{(m)} (\pi_m(h) \otimes I_{L_m}) U_{\gamma^{-1}}^{(m)} = \pi_m(\gamma(h)) \otimes I_{L_m} \quad \text{for all} \quad x \in H.

Let ω_m be Weil’s representation from above. Recall that ω_m is a projective representation of $Sp_{2n}(\mathbb{R}) \ltimes \mathbb{R}^{2n}$ defined on $K_m = L^2(\mathbb{R}^n)$ and that ω_m extends π_m. We have

(4) \quad \omega_m(\gamma) \pi_m(h) \omega_m(\gamma)^{-1} = \pi_m(\gamma(h)) \quad \text{for all} \quad h \in H.
It follows from (3) and (4) that, on H_m, the operator $(\omega_m(\gamma)^{-1} \otimes I_{L_m}) U_{\gamma}^{(m)}$ commutes with $(\pi_m(h) \otimes I_{L_m})$ for all $h \in H$. Hence, since π_m is irreducible, there exists a bounded operator $V_{\gamma}^{(m)}$ on L_m such that

\[(\omega_m(\gamma)^{-1} \otimes I_{L_m}) U_{\gamma}^{(m)} = I_{K_m} \otimes V_{\gamma}^{(m)},\]

that is,

\[(5) \quad U_{\gamma}^{(m)} = \omega_m(\gamma) \otimes V_{\gamma}^{(m)}.\]

Since $U^{(m)}$ is a unitary representation, it is clear that $\gamma \mapsto V_{\gamma}^{(m)}$ is a projective unitary representation of Γ.

Let $\xi, \eta \in S(\mathbb{R}^n)$ be Schwartz functions on \mathbb{R}^n. By [HoMo79, Proposition 6.4], for every $\varepsilon > 0$, the matrix coefficient

\[C_{\xi, \eta}^{\omega_m} : g \mapsto \langle \omega_m(g)\xi, \eta \rangle\]

of the metaplectic representation ω_m belongs to $L^{4n+2+\varepsilon}(Sp_{2n}(\mathbb{R}) \ltimes \mathbb{R}^{2n})$. Set $G = Sp_{2n}(\mathbb{R}) \ltimes \mathbb{R}^{2n}$; observe that Γ is a discrete and hence closed subgroup of G. Choosing a Borel subset $X \subset G$ which is a fundamental domain for the quotient space $\Gamma \backslash G$, we can write (compare with the proof of Proposition 6.4 in [Howe82])

\[
\int_G |C_{\xi, \eta}^{\omega_m}(g)|^{4n+2+\varepsilon} dg = \int_G |\langle \omega_m(g)\xi, \eta \rangle|^{4n+2+\varepsilon} dg
\]

\[= \int_X \left(\sum_{\gamma \in \Gamma} |\langle \omega_m(\gamma g)\xi, \eta \rangle|^{4n+2+\varepsilon} \right) dg < \infty.
\]

Therefore, by Fubini’s theorem, for almost every $g \in X$, we have

\[
\sum_{\gamma \in \Gamma} |\langle \omega_m(\gamma)\omega_m(g)\xi, \eta \rangle|^{4n+2+\varepsilon} < \infty,
\]

that is, $C_{\omega_m|_{\omega_m(\gamma)\xi, \eta}}^{\omega_m} \in \ell^{4n+2+\varepsilon}(\Gamma)$.

Since $S(\mathbb{R}^n)$ contains a countable set which is dense in $L^2(\mathbb{R}^n)$, it follows that there exist dense subspaces $D_1^{(m)}$ and $D_2^{(m)}$ of $L^2(\mathbb{R}^n)$ such that

\[C_{\xi, \eta}^{\omega_m|_{\Gamma}} \in \ell^{4n+2+\varepsilon}(\Gamma)\]
for all $\xi \in D_1^{(m)}$ and $\eta \in D_2^{(m)}$.

Since $U^{(m)} = \omega_m(\gamma) \otimes V^{(m)}_\gamma$ and since matrix coefficients of projective unitary representations are bounded, the matrix coefficients $C_{\xi\otimes\xi',\eta\otimes\eta'}^{U^{(m)}}$ of $U^{(m)}$ belong to $\ell^{4n+2+\varepsilon}(\Gamma)$ for $\xi \in D_1^{(m)}$, $\eta \in D_2^{(m)}$ and $\xi' \in \mathcal{L}_m$, $\eta' \in \mathcal{L}_m$.

Let now D_1, D_2 be the linear subspaces of \mathcal{H} generated respectively by

$$
\{ \xi \otimes \xi' : \xi \in D_1^{(m)}, \xi' \in \mathcal{L}_m, m \in \mathbb{Z} \setminus \{0\} \}
$$

and

$$
\{ \eta \otimes \eta' : \eta \in D_2^{(m)}, \eta' \in \mathcal{L}_m, m \in \mathbb{Z} \setminus \{0\} \}.
$$

Then D_1 and D_2 are dense in \mathcal{H} and the matrix coefficients $C_{v,w}^{U}$ belong to $\ell^{4n+2+\varepsilon}(\Gamma)$ for $v \in D_1$ and $w \in D_2$. ■

Proof of Theorem 3

Let μ be a probability measure on $\text{Aut}(\Lambda\backslash H)$. Denote by Γ the subgroup of $\text{Aut}(\Lambda\backslash H)$ generated by the support of μ.

Let λ_Γ be the left regular representation of Γ on $\ell^2(\Gamma)$. Let U^0 and V^0 be the corresponding unitary representations of Γ on $L_0^0(\Lambda\backslash H)$ and $L_0^0(T)$, respectively. We claim that

$$
\|U^0(\mu)\| \leq \max\{\|V^0(\mu)\|, \|\lambda_\Gamma(\mu)\|^{1/k}\}
$$

for $k = 2n + 2$.

Denoting by $U^\mathcal{H}$ the restriction of U to \mathcal{H}, it suffices to show that

$$
\|U^\mathcal{H}(\mu)\| \leq \|\lambda_\Gamma(\mu)\|^{1/k}.
$$

By Theorem 1, the matrix coefficients $C_{v,w}^{U^\mathcal{H}}$ of $U^\mathcal{H}$ are in $\ell^{2k}(\Gamma)$ for v and w in dense subspaces D_1 and D_2 of \mathcal{H}. It follows that the k-fold tensor power $(U^\mathcal{H})^\otimes k$ of $U^\mathcal{H}$ is unitarily equivalent to a subrepresentation of an infinite multiple $\infty \lambda_\Gamma$ of λ_Γ (see [HoTa92, Chapter V, 1.2.4]). Hence,

$$
\| (U^\mathcal{H})^\otimes k (\mu) \| \leq \| \infty \lambda_\Gamma(\mu) \| = \| \lambda_\Gamma(\mu) \|
$$

and Inequality (7) will be proved if we show that

$$
\|U^\mathcal{H}(\mu)\| \leq \| (U^\mathcal{H})^\otimes k (\mu) \|^{1/k}.
$$
To show Inequality (8), we use the following argument from [Nevo98]. Denote by \(\tilde{\mu} \) the probability measure on \(\Gamma \) defined by \(\tilde{\mu}(\gamma) = \mu(\gamma^{-1}) \). For every vector \(v \in H \), using Jensen’s inequality, we have

\[
\|U(\mu)v\|^{2k} = \left| \langle U(\tilde{\mu} \ast \mu)v, v \rangle \right|^{k} = \sum_{\gamma \in \Gamma} \left| \langle U(\gamma)v, v \rangle \right|^{k}(\tilde{\mu} \ast \mu)(\gamma) = \left| \langle U^{\otimes k}(\tilde{\mu} \ast \mu)v^{\otimes k}, v^{\otimes k} \rangle \right| = \|U^{\otimes k}(\mu)v^{\otimes k}\|^{2}.
\]

Hence, \(\|U^{H}(\mu)\| \leq \| (U^{H})^{\otimes k}(\mu) \|^{1/k} \), as claimed.

Assume that \(\mu \) is aperiodic and that the \(\Gamma \) action on \(T \) has a spectral gap. Then, as mentioned in the Introduction, \(\Gamma \) is not amenable. Hence, \(\|\lambda_{\Gamma}(\mu)\| < 1 \) (see [BeHV08, G.4.2]) and therefore \(\|U^{0}(\mu)\| < 1 \), that is, the \(\Gamma \) action on \(\Lambda \setminus H \) has a spectral gap. ■

Proof of Corollary 5

Let \(H = H_{3}(\mathbb{R}) \) be the 3-dimensional Heisenberg group and \(\Lambda \) a lattice in \(H \). The unitary representation \(V \) of \(\text{Aut}(\Lambda \setminus H) \) on \(L^{2}(T) \) factors through \(p : \text{Aut}(\Lambda \setminus H) \to \text{Aut}(T) \cong GL_{2}(\mathbb{Z}) \) to the standard representation of \(GL_{2}(\mathbb{Z}) \) on \(L^{2}(T) = L^{2}(\mathbb{R}^{2}/\mathbb{Z}^{2}) \). By Fourier duality, this last representation is unitarily equivalent to the representation of \(GL_{2}(\mathbb{Z}) \) on \(\ell^{2}(\mathbb{Z}^{2}) \) obtained from the dual action of \(GL_{2}(\mathbb{Z}) \) on \(\mathbb{Z}^{2} \). We have an orthogonal decomposition into \(GL_{2}(\mathbb{Z}) \)-invariant subspaces

\[
\ell^{2}(\mathbb{Z}^{2}) = C\delta_{0} \bigoplus \bigoplus_{t \in T} \ell^{2}(GL_{2}(\mathbb{Z})/\Gamma_{t}),
\]

where \(T \) is a set of representatives for the \(GL_{2}(\mathbb{Z}) \)-orbits in \(\mathbb{Z}^{2} \setminus \{0\} \) and \(\Gamma_{t} \) is the stabilizer of \(t \) in \(GL_{2}(\mathbb{Z}) \). Since every \(\Gamma_{t} \) is solvable (and hence amenable), it follows that \(V^{0} \) is weakly contained in \(\lambda_{GL_{2}(\mathbb{Z})} \circ p \) (see [BeHV08, Appendix F]). Hence, for every probability measure \(\mu \) on \(\text{Aut}(\Lambda \setminus H) \), we have

\[
\|V^{0}(\mu)\| \leq \| (\lambda_{GL_{2}(\mathbb{Z})} \circ p)(\mu) \|.
\]
Since
\[\ker p \subset \left\{ \left(\begin{array}{cc} I_2 & 0 \\ a^2 & 1 \end{array} \right) : a \in \mathbb{R}^2 \right\} \cong \mathbb{R}^2, \]
\[\ker p \] is amenable and it follows that
\[\| (\lambda_{GL_2(\mathbb{Z})} \circ p)(\mu) \| \leq \| \lambda_{\text{Aut}(\Lambda \setminus H)}(\mu) \|. \]

Therefore, we have
\[\| V^0(\mu) \| \leq \| \lambda_{\text{Aut}(\Lambda \setminus H)}(\mu) \|. \]

Denote by \(\Gamma \) the subgroup generated by the support of \(\mu \). Since
\[\| \lambda_\Gamma(\mu) \| = \| \lambda_{\text{Aut}(\Lambda \setminus H)}(\mu) \|, \]
it follows from Theorem 3 that
\[\| U^0(\mu) \| \leq \max\{ \| V^0(\mu) \|, \| \lambda_\Gamma(\mu) \|^{1/4} \} = \| \lambda_\Gamma(\mu) \|^{1/4}. \]

Assume that \(\mu \) is aperiodic. If \(\Gamma \) is non-amenable, then \(\| \lambda_\Gamma(\mu) \| < 1 \) and hence \(\| U^0(\mu) \| < 1 \). If \(\Gamma \) is amenable, then \(\Gamma \) has no spectral gap in \(\Lambda \setminus H \). \(\blacksquare \)

3 Some further applications

Let \(G \) be a locally compact group acting by measure preserving transformations on a probability space \((X, m)\). Let \(U \) denote the associated unitary representation of \(G \) on \(L^2(X, m) \). The action of \(G \) on \(X \) is weakly mixing if \(L^2_0(X, m) \) contains no non-zero finite dimensional \(U(G) \)-invariant subspace (equivalently: if the diagonal action of \(G \) on \(X \times X \) is ergodic; see [BeMa00, Chapter I, 2.17]). The action is strongly mixing if, for all \(\xi, \eta \in L^2_0(X, m) \), the matrix coefficient \(g \mapsto \langle U_g \xi, \eta \rangle \) belongs to \(c_0(G) \).

With the notation of Theorem 1, all matrix coefficients \(C^{U}_{v, w} \) are in \(c_0(\Gamma) \) for \(v \in D_1 \) and \(w \in D_2 \). By density of \(D_1 \) and \(D_2 \) in \(\mathcal{H} \), the same is true for all \(v, w \in \mathcal{H} \). It follows that \(\mathcal{H} \) contains no non-zero finite dimensional \(U(G) \)-invariant subspace if \(\Gamma \) is infinite (see [BeMa00, Chapter I, 2.15.iii]). Therefore, we immediately obtain the following corollary.

Corollary 6 Let \(\Gamma \) be a group of automorphisms of the compact Heisenberg nilmanifold \(\Lambda \setminus H \) and \(T \) the maximal \(T \) torus factor associated to \(\Lambda \setminus H \). The following properties are equivalent.
(i) The action of Γ on $\Lambda \setminus H$ is ergodic (weakly mixing or strongly mixing, respectively).

(ii) The action of Γ on T is ergodic (weakly mixing or strongly mixing, respectively).

Remark 7 In the case where Γ is generated by a single automorphism (or even an affine transformation) of an arbitrary compact nilmanifold, the previous corollary was obtained by W. Parry (see [Parr69], [Parr70]). The result concerning ergodicity has been generalized by J.-P. Conze ([Conz09]) to arbitrary groups of affine transformations of a general compact nilmanifold $\Lambda \setminus H$. Moreover, [Conz09] gives an example of an ergodic group Γ of automorphisms of the standard 7-dimensional Heisenberg nilmanifold $\Lambda \setminus H_7(\mathbb{R})$ such that no element $\gamma \in \Gamma$ acts ergodically on $\Lambda \setminus H_7(\mathbb{R})$.

Let G be a locally compact group acting by measure preserving transformations on a probability space (X, m) and U the associated unitary representation of G on $L^2(X, m)$. Assume that $\| (U^0 \otimes U^0)(\mu) \| < 1$. This condition, which is formally stronger than the spectral gap condition $\| U^0(\mu) \| < 1$, plays an important role in [FuSh99]. Indeed, it is shown in Theorem 1.4 there that, with the notation as in the Introduction, for every $\xi, \eta \in L^2(X, m)$, the correlation coefficient $\langle U(S^\omega_n)\xi, \eta \rangle$ converge almost surely to $\int_X \xi dm \int_X \eta dm$, with exponentially fast speed.

However, we can see that both conditions are equivalent in our situation.

Corollary 8 With the notation as in Theorem 3, the following properties are equivalent.

(i) $\| (U^0 \otimes U^0)(\mu) \| < 1$;

(ii) $\| U^0(\mu) \| < 1$;

(iii) $\| V^0(\mu) \| < 1$.

Indeed, a proof similar to the one of Theorem 3 shows that the following inequality holds:

$$\|(U^0 \otimes U^0)(\mu)\| \leq \max\{\|(V^0 \otimes V^0)(\mu)\|, \|\lambda(\mu)\|^{1/k}\}.$$

On the other hand, as was shown in [FuSh99, Theorem 6.4], the condition $\| V^0(\mu) \| < 1$ is equivalent to the condition $\|(V^0 \otimes V^0)(\mu)\| < 1$. This shows the equivalence of Conditions (i), (ii), and (iii).
References

Address

UFR Mathématiques, Université de Rennes 1,
Campus Beaulieu, F-35042 Rennes Cedex
France
E-mail: bachir.bekka@univ-rennes1.fr, jean-romain.heu@univ-rennes1.fr