Coupling techniques for nonlinear hyperbolic equations. I. Self-similar diffusion for thin interfaces

Abstract : We investigate various analytical and numerical techniques for the coupling of nonlinear hyperbolic systems and, in particular, we introduce here an augmented formulation which allows for the modeling of the dynamics of interfaces between fluid flows. The main technical difficulty to be overcome lies in the possible resonance effect when wave speeds coincide and global hyperbolicity is lost. As a consequence, non-uniqueness of weak solutions is observed for the initial value problem which need to be supplemented with further admissibility conditions. This first paper is devoted to investigating these issues in the setting of self-similar vanishing viscosity approximations to the Riemann problem for general hyperbolic systems. Following earlier works by Joseph, LeFloch, and Tzavaras, we establish an existence theorem for the Riemann problem under fairly general structural assumptions on the nonlinear hyperbolic system and its regularization. Our main contribution consists of nonlinear wave interaction estimates for solutions which apply to resonant wave patterns.
Type de document :
Article dans une revue
Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Cambridge University Press (CUP), 2011, 141, pp.921-956. 〈10.1017/S0308210510001459〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00564176
Contributeur : Benjamin Boutin <>
Soumis le : mardi 8 février 2011 - 11:03:26
Dernière modification le : vendredi 4 janvier 2019 - 17:32:30

Lien texte intégral

Identifiants

Citation

Benjamin Boutin, Frédéric Coquel, Philippe G. Lefloch. Coupling techniques for nonlinear hyperbolic equations. I. Self-similar diffusion for thin interfaces. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Cambridge University Press (CUP), 2011, 141, pp.921-956. 〈10.1017/S0308210510001459〉. 〈hal-00564176〉

Partager

Métriques

Consultations de la notice

302