Minimum-weight perfect matching for non-intrinsic distances on the line

Abstract : Consider a real line equipped with a (not necessarily intrinsic) distance. We deal with the minimum-weight perfect matching problem for a complete graph whose points are located on the line and whose edges have weights equal to distances along the line. This problem is closely related to one-dimensional Monge-Kantorovich trasnport optimization. The main result of the present note is a "bottom-up'' recursion relation for weights of partial minimum-weight matchings.
Type de document :
Pré-publication, Document de travail
13 pages, figures in TiKZ, uses xcolor package; introduction and the concluding section have been.. 2011
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00564173
Contributeur : Andrei Sobolevskii <>
Soumis le : samedi 26 mars 2011 - 16:06:56
Dernière modification le : jeudi 11 janvier 2018 - 06:23:39
Document(s) archivé(s) le : lundi 27 juin 2011 - 02:30:07

Fichiers

JSSrecursion2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00564173, version 2
  • ARXIV : 1102.1558

Citation

Julie Delon, Julien Salomon, Andrei Sobolevski. Minimum-weight perfect matching for non-intrinsic distances on the line. 13 pages, figures in TiKZ, uses xcolor package; introduction and the concluding section have been.. 2011. 〈hal-00564173v2〉

Partager

Métriques

Consultations de la notice

438

Téléchargements de fichiers

119