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Abstract
Let {Xn}n≥0 be a V -geometrically ergodic Markov chain. Given some real-valued

functional F , define Mn(α) := n−1
∑n

k=1 F (α, Xk−1, Xk), α ∈ A ⊂ R. Consider an
M−estimator α̂n, that is as a measurable function of the observations satisfying Mn(α̂n) ≤
minα∈AMn(α) + cn with {cn}n≥1 some sequence of real numbers going to zero. Under
some standard regularity and moment assumptions, close to those of the i.i.d. case, the
estimator α̂n satisfies a Berry-Esseen theorem uniformly with respect to the underlying
probability distribution of the Markov chain.

AMS subject classification : 62F12, 62M05, 60F05, 60J05

Keywords : spectral method

I Introduction

Let (E, E) be a measurable space with E a countably generated σ-field, and let {Xn}n≥0 be
a Markov chain with state space E and transition kernels {Qθ(x, ·) : x ∈ E} where θ is a
parameter in some general set Θ. The initial distribution of the chain, i.e. the probability
distribution of X0, is denoted by µ and may or may not depend on θ. Although {Xn}n≥0

does not need to be the canonical version, we use the standard notation Pθ,µ to refer to the
probability distribution of {Xn}n≥0 (and Eθ,µ for the expectation w.r.t. Pθ,µ). We consider
that {Xn}n≥0 is a V -geometrically ergodic Markov chain, where V : E→[1, +∞) is some
fixed unbounded function. This class of Markov chains is large enough to cover interesting
applications (see [MT93, §16.4,§16.5]).

The parameter of interest is α0 = α0(θ) ⊂ A, where α0(·) is a function of the parameter θ
and A is an open interval of R. To estimate α0, let us introduce the statistic

Mn(α) :=
1
n

n∑

k=1

F (α,Xk−1, Xk), (1)

where F is a real-valued measurable functional on A×E2. We define an M−estimator1 to be
a random variable α̂n depending on the observations (X0, . . . , Xn) such that

Mn(α̂n) ≤ min
α∈A

Mn(α) + cn,

∗Université Europénne de Bretagne, INSA-IRMAR, UMR-CNRS 6625. Institut National des Sciences
Appliquées de Rennes, 20, Avenue des Buttes de Cöesmes CS 14315, 35043 Rennes Cedex, France. Loic.Herve,
James.Ledoux, Valentin.Patilea@insa-rennes.fr

1This is slightly more general than the usual definition of M−estimators or minimum contrast estimators,
where cn = 0, see [Arc98].
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where {cn}n≥1 is a sequence of non-negative real numbers going to zero to be specified later.
Assume that for all θ ∈ Θ

Mθ(α) := lim
n→∞Eθ,µ[Mn(α)]

is well defined everywhere on A and does not depend on µ. In addition, assume that there
exists a unique “true” value α0 of the parameter of interest, that is Mθ(α0) < Mθ(α), ∀α 6= α0.
We want to prove the following uniform Berry-Esseen bound for α̂n

sup
θ∈Θ

sup
u∈R

∣∣∣∣Pθ,µ

{ √
n

τ(θ)
(α̂n − α0) ≤ u

}
− Γ(u)

∣∣∣∣ = O

(
1√
n

)
, (BE)

where Γ denotes the standard normal distribution function, and τ(θ) is some positive real
number defined in Theorem 3.

To derive (BE), we use Pfanzagl’s approach [Pfa71]. Besides technical assumptions, this
approach relies on several ingredients. First, we need the uniform consistency condition:

(UC) ∀d > 0, supθ∈Θ Pθ,µ

{|α̂n − α0| ≥ d
}

= O(1/
√

n).

Second, consider the following two convergence properties: if Sn(α0) =
∑n

k=1 ξ(α0, Xk−1, Xk)
with ξ(α0, Xk−1, Xk) centered,

(a) the sequence
{
Eθ,µ[S2

n(α0)]/n
}

n≥1
converges to a real number σ2(θ);

(b) there exists a positive constant B(ξ) such that for any n ≥ 1

sup
θ∈Θ

sup
u∈R

∣∣∣∣Pθ,µ

{
Sn(α0)
σ(θ)

√
n
≤ u

}
− Γ(u)

∣∣∣∣ ≤
B(ξ)√

n
.

The properties (a) and (b) will be required for certain ξ(α0, x, y) defined as linear combi-
nations of some functionals related to F . To obtain (a) and (b) for such ξ(α0, x, y)’s with
V -geometrically ergodic Markov chains, a natural moment (or V−domination) condition is
used: there exist positive constants Cξ and m such that

∀(x, y) ∈ E2, ∀α ∈ A, |ξ(α, x, y)|m ≤ Cξ (V (x) + V (y)). (2)

The paper is organized as follows. In Section II, an extended version of Pfanzagl’s theorem
[Pfa71, Th 1] is stated for any sequence of observations, not necessarily markovian. Sec-
tion III is devoted to a Berry-Esseen bound for the additive functional

∑n
k=1 ξ(α0, Xk−1, Xk)

of a V -geometrically ergodic Markov chain {Xn}n≥0 with ξ satisfying Inequality (2). In Sub-
section III.2, we prove that the properties (a) and (b) are fulfilled when Inequality (2) holds
with the (almost expected) order m, namely: m > 2 ⇒ (a), and m > 3 ⇒ (b). These results
follow from the weak spectral method based on the theorem of Keller and Liverani [KL99].
This approach, introduced in [HH04], is fully described in [HP10] in the Markov context (see
also [GL06, Gou08] and other references given in [HP10]). It is important to notice that Pfan-
zagl’s method requires the precise control of the constant B(ξ) in Property (b) as a function
of the size of ξ. The present operator-type approach shows that B(ξ) depends only on the
constant Cξ in Inequality (2). Thanks to these preliminary results, in Section IV we prove
our main statement, that is:

2



(R) under some technical assumptions and the uniform consistency condition (UC), if two
functionals F ′ and F ′′ related to F (in the basic case F ′ and F ′′ are the first and second
order derivatives of F with respect to α) satisfy Inequality (2) for some m > 3 and
constants CF ′ , CF ′′ that do not depend on α, then α̂n satisfies property (BE).

To the best of our knowledge, the result (R) is new. It completes the central limit theorem for
{α̂n}n≥1 proved in [DY07] when Inequality (2) holds with m = 2. The domination condition
(2) required by (R) is almost optimal in the sense that we impose m > 3 in place of the best
possible value m = 3 obtained in the i.i.d. case. In Section V, our results are applied to the
AR(1) process with ARCH (AutoRegressive Conditional Heteroscedastic) of order 1 errors.
The paper ends with a conclusion section.

Let us close the introduction with a brief review of previous related work in the litera-
ture. In [Pfa71], {Xn}n∈N is a sequence of i.i.d. random variables and Pfanzagl proved a
Berry-Esseen theorem for minimum contrast estimators (which are special instances of M -
estimators) associated with functionals of the form F (α,Xk). In [Pfa71], the moment condi-
tions on F ′ := ∂F/∂α, F ′′ := ∂2F/∂α2 are the expected ones since the property (b) is fulfilled
under the expected third moment condition [Fel71, Chap. XVI]. Using convexity arguments,
Bentkus et al. [BBG97] proposed an alternative method for deriving Berry-Esseen bounds for
M−estimators with i.i.d. data. In the Markov context, the method proposed by Pfanzagl is
extended, first by Rao to cover the case of uniformly ergodic Markov chains [Rao73], second in
[MR89] to the case of the linear autoregressive model. However, their assumptions to get (BE)
include much stronger moment conditions involving both the functional F and the Markov
chain. Here, as already mentioned, the weak spectral method of [HP10] enables us to have an
(almost) optimal treatment of (a) and (b), and hence an improved Berry-Esseen result (BE).

II The Pfanzagl method revisited

We state and prove a general result that allows to derive uniform Berry-Esseen bounds for
M−estimators. This result is an extended version of Theorem 1 in [Pfa71] and is applied to
our Markov context in Section IV.

II.1 The result

Consider a statistical model
(
Ω,F , {Pθ, θ ∈ Θ}), where Θ denotes some parameter space,

and let {Xn}n≥0 be any sequence of observations (not necessarily Markovian). Let us denote
the expectation with respect to Pθ by Eθ.

For each n, let Mn(α) be a measurable functional of the observations X0, . . . , Xn and the
parameter of interest α ∈ A where A is some open interval of R. Let {cn}n≥1 be a sequence of
non-negative real numbers going to zero at some rate to be specified later. An M−estimator
is a measurable function α̂n of the observations (X0, . . . , Xn) such that

Mn(α̂n) ≤ min
α∈A

Mn(α) + cn. (3)

This is the usual definition of minimum contrast estimators as soon as cn ≡ 0.
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Assumptions. Suppose that for all n ≥ 1 and α ∈ A, there exist M ′
n(α), M ′′

n(α) some
measurable functions depending on X0, X1, ..., Xn and on the parameter of interest such that
the following properties hold true:

(A1) ∀θ ∈ Θ, there exists a unique α0 = α0(θ) ∈ A such that M ′
θ(α0) = 0 where M ′

θ(α) :=
limn→∞ Eθ[M ′

n(α)] (the limit is assumed to be well defined for all (θ, α) ∈ Θ×A);
(A2) 0 < infθ∈Θ m(θ) ≤ supθ∈Θ m(θ) < ∞ where m(θ) := limn→∞ Eθ[M ′′

n(α0)] (the limit is
assumed to be well defined for all θ);

(A3) for every n ≥ 1, there exists rn > 0 independent of θ such that rn = o(n−1/2) and

sup
θ∈Θ

Pθ

{|M ′
n(α̂n)| ≥ rn

}
= O(n−1/2);

(A4) for j = 1, 2, there exists a function σj(·) such that 0 < infθ∈Θ σj(θ) ≤ supθ∈Θ σj(θ) < ∞
and there exists a positive constant B such that for all n ≥ 1

sup
θ∈Θ

sup
u∈R

∣∣∣∣Pθ

{ √
n

σ1(θ)
M ′

n(α0) ≤ u

}
− Γ(u)

∣∣∣∣ ≤
B√
n

,

sup
θ∈Θ

sup
u∈R

∣∣∣∣Pθ

{ √
n

σ2(θ)
(
M ′′

n(α0)−m(θ)
) ≤ u

}
− Γ(u)

∣∣∣∣ ≤
B√
n

;

(A4’) for n ≥ 1, |u| ≤ 2
√

lnn, and θ ∈ Θ, there is a positive number σn,u(θ) such that

|σn,u(θ)− σ1(θ)| ≤ A′
|u|√

n
,

∣∣∣∣Pθ

{ √
n

σn,u(θ)

(
M ′

n(α0) +
uσ1(θ)√
nm(θ)

(
M ′′

n(α0)−m(θ)
) )

≤ u

}
− Γ(u)

∣∣∣∣ ≤
B′
√

n

with some positive constants A′, B′ independent of n, u, θ;

(A5) for any (α, α′) ∈ A2, let Rn(α, α′) be defined by the equation

M ′
n(α′) = M ′

n(α) + [M ′′
n(α) + Rn(α, α′)](α′ − α).

For each n, there exist ωn ≥ 0 and a real-valued measurable function Wn depending on
X0, . . . , Xn, both independent of θ, such that ωn = o(1) and

∀(α, α′) ∈ A2, |Rn(α, α′)| ≤ {|α− α′|+ ωn

}
Wn,

and there is a constant cW > 0 such that

sup
θ∈Θ

Pθ{cW ≤ Wn} = O(n−1/2).

(A6) α̂n is assumed to be uniformly consistent, that is there exists γn = o(1) such that

sup
θ∈Θ

Pθ

{ |α̂n − α0| ≥ d
} ≤ γn,

where d := infθ∈Θ m(θ)/8cW with cW and m(θ) defined in (A5) and (A2) respectively.

4



Let us comment on these assumptions. Condition (A1) identifies the true value of the
parameter. In Conditions (A1) and (A2), the expectations Eθ[M ′

n(α)] and Eθ[M ′′
n(α0)] may

depend on n, like for instance in the Markovian framework considered in the sequel when
the initial distribution is not the stationary distribution. Condition (A3) ensures that the
estimator (approximately) satisfies a kind of first order condition. Such a condition allows to
take into account the numerical errors we are faced when computing α̂n. It may also be useful
when the estimator of the parameter α0 depends on some “nuisance” parameters (see the
example in the second part of Section V). Conditions (A4) and (A4’) are the uniform Berry-
Esseen bounds for M ′

n(α0), M ′′
n(α0) and for some of their linear combinations. The identity

defining Rn(α, α′) in Condition (A5) is guaranteed by a Taylor expansion when the criterion
Mn(α) is twice differentiable with respect to α. In this case M ′

n and M ′′
n are nothing else but

the first and second order derivatives of Mn with respect to α. The reminder Rn(α, α′) must
satisfy a Lipschitz condition. For instance, when ωn = 0, this holds true if α 7→ Mn(α) is
three times continuously differentiable with a bounded third order derivative. Condition (A6)
is a standard consistency condition (e.g. see [BBG97]). General sufficient conditions for (A6)
with γn = O(n−1) have been proposed in the case of i.i.d. observations or uniformly ergodic
Markov chains (see [MP71, Lemma 4] and [Rao73, Lemma 4.1] respectively). Such general
arguments can easily be adapted to the geometrically ergodic Markov chain framework. In
specific examples, like the one investigated in Section V, Condition (A6) can be checked by
direct arguments.

The proof of Theorem 1, which adapts the arguments of [Pfa71], is given in Subsection II.2.

Theorem 1 Under Conditions (A1-A6), there exists a positive constant C such that

∀n ≥ 1, sup
θ∈Θ

sup
u∈R

∣∣∣∣Pθ

{ √
n

τ(θ)
(α̂n − α0) ≤ u

}
− Γ(u)

∣∣∣∣ ≤ C

(
1√
n

+
√

nrn + ωn + γn

)
(4)

with τ(θ) := σ1(θ)/m(θ).

To obtain the classical order O(n−1/2) of the Berry-Esseen bound, one needs γn = O(n−1/2),
rn = O(n−1) and ωn = O(n−1/2). Note that this usually requires that the sequence {cn}n≥1

in (3) decreases at the rate n−3/2. This is to be compared to the rate n−1 that is usually
required to obtain the asymptotic normality of M−estimators (see [Arc98]).

Remark 1 A close inspection of the proof of Theorem 1 below , shows that the constant C in
inequality (4) can be tracked provided that the O(·) and o(·) rates in Assumptions (A3)-(A6)
are more explicit. For the sake of brevity, we only consider the case where cn = rn = ωn = 0,
α(θ) = θ and (A3) is: for any n ≥ 1, |M ′

n(θ̂n)| = 0. The constants C in the various
inequalities of Assumptions (A4)-(A6) are denoted by C1, C2 in (A4), C3, C4 in (A4’), C5 in
(A5) and we choose γn ≤ C6 n−1/2 in (A6). Then, we can obtain from Propositions 1-2 that

∀n ≥ 1, sup
θ∈Θ

∣∣∣∣Pθ

{ √
n

τ(θ)
(α̂n − α0) ≤ u

}
− Γ(u)

∣∣∣∣ ≤
C√
n

where C := 1
2 + 1√

2π
+ 2C1 + 2C2 + exp(−a2/2)

a + C5 + C6 when |u| ≥ 2
√

ln n;

or C := 2
[

1√
2π

+ 2C1 + 4C2 + 2 exp(−a2/2)
a + 2C5 + C6

]
+ C4 + 16e−1(C3+σ2cW )

σ1

√
2π

when |u| < 2
√

ln n provided that
√

n/ ln n ≥ max
(
8cW σ2, 4

)
/σ1;

with a := infθ∈Θ

(
m(θ)/4σ2(θ)

)
, σ := supθ∈Θ σ1(θ)/m(θ), σ1 = infθ∈Θ σ1(θ).
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II.2 Proof of Theorem 1.

The hypotheses of Theorem 1 are assumed to hold. For the sake of brevity, the sequence
{rn}n≥1 in (A3) is supposed to be such that rn = o(n−1/2), and |M ′

n(α̂n)| ≤ rn for every
n ≥ 1. In the general case, it suffices to work on the event {|M ′

n(α̂n)| ≤ rn} and to bound
the probability of the event {|M ′

n(α̂n)| > rn} using (A3). From Conditions (A2) and (A4),

τ(θ) :=
σ1(θ)
m(θ)

, m := inf
θ∈Θ

m(θ), m := sup
θ∈Θ

m(θ), σj := inf
θ∈Θ

σj(θ), σj := sup
θ∈Θ

σj(θ) (j = 1, 2)

are well defined. Recall that 0 < m ≤ m < ∞ and 0 < σj ≤ σj < ∞. Note that the function
τ(·) is positive and bounded. In the following, C denotes a positive constant whose value may
be different from line to line.

Inequality (4) is proved, first for |u| ≥ 2
√

ln n, second for |u| < 2
√

lnn. In fact, for
|u| ≥ 2

√
ln n, the bound in Inequality (4) does not involve rn and ωn.

Proposition 1 There exists a positive constant C such that for each n ≥ 1 and all u ∈ R
such that |u| ≥ 2

√
lnn

sup
θ∈Θ

∣∣∣∣Pθ

{ √
n

τ(θ)
(α̂n − α0) ≤ u

}
− Γ(u)

∣∣∣∣ ≤
C√
n

+ γn. (5)

Proof. For |u| ≥ 2
√

ln n, it is easily checked that
∣∣∣∣Pθ

{ √
n

τ(θ)
(α̂n − α0) ≤ u

}
− Γ(u)

∣∣∣∣ ≤ Pθ

{ √
n

τ(θ)

∣∣α̂n − α0

∣∣ ≥ 2
√

lnn

}
+ Γ(−2

√
ln n).

Now,

Γ(−2
√

ln n) ≤ 1
2
√

ln n

1√
2π

∫ +∞

2
√

ln n
v e−

v2

2 dv =
1

2
√

lnn

1√
2π

1
n2

.

Finally, the proof is complete if there exists C > 0 such that (see [MP71, Lem. 6])

∀n ≥ 1, sup
θ∈Θ

Pθ

{ √
n

τ(θ)

∣∣α̂n − α0

∣∣ > 2
√

lnn

}
≤ C√

n
+ γn. (6)

It follows from (A5) and (A3) that |M ′
n(α0)|+rn ≥ |α̂n−α0| |M ′′

n(α0)+Rn(α̂n, α0)|. Then,
√

n

σ1(θ)

∣∣α̂n − α0

∣∣ > 2

√
ln n

m(θ)
=⇒

√
n

σ1(θ)
(∣∣M ′

n(α0)
∣∣ + rn

)
> 2

√
ln n

m(θ)

∣∣M ′′
n(α0) + Rn(α̂n, α0)

∣∣

provided that M ′
n(α̂n) 6= M ′

n(α0). Next, introducing the event
{
2|M ′′

n(α0) + Rn(α̂n, α0)| >
m(θ)

}
and its complement (which includes the event {M ′

n(α̂n) = M ′
n(α0)}), we obtain

Pθ

{ √
n

τ(θ)

∣∣α̂n − α0

∣∣ > 2
√

lnn

}
≤ Pθ

{ √
n

σ1(θ)
{|M ′

n(α0)|+ rn} >
√

lnn

}

+ Pθ

{
2|M ′′

n(α0) + Rn(α̂n, α0)| ≤ m(θ)
}
.

It is easily checked from (A4) and rn = o(n−1/2) that

sup
θ∈Θ

Pθ

{ √
n

σ1(θ)
{|M ′

n(α0)|+ rn} >
√

ln n

}
= O

(
1√
n

)
+ 2 Γ

(
−
√

lnn +
√

nrn

σ1(θ)

)
= O

(
1√
n

)
.
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Finally, to obtain the bound (6), it remains to justify the use of the following bound:

sup
θ∈Θ

Pθ

{
2|M ′′

n(α0) + Rn(α̂n, α0)| ≤ m(θ)
}

= O(n−1/2) + γn. (7)

Using elementary inequalities and Assumption (A5),

Pθ

{
2|M ′′

n(α0) + Rn(α̂n, α0)| ≤ m(θ)
}

≤ Pθ

{|M ′′
n(α0)−m(θ)| ≥ m(θ)/4

}
+ Pθ {|Rn(α̂n, α0)| ≥ m(θ)/4}

≤ Pθ

{|M ′′
n(α0)−m(θ)| ≥ m(θ)/4

}
+ Pθ {[|α̂n − α0)|+ ωn]Wn ≥ m(θ)/4}

=: P1,n,θ + P2,n,θ.

It follows from (A4) that a := infθ∈Θ

(
m(θ)/4σ2(θ)

)
is well defined and positive, and

sup
θ∈Θ

P1,n,θ ≤ O
(
n−1/2

)
+ 2Γ(−a

√
n) = O

(
n−/1/2

)
. (8)

Now, let d(θ) := m(θ)/4cW with cW defined in (A5) and notice that d = infθ′∈Θ d(θ′)/2 in
(A6). Use the event

{|α̂n − α0

∣∣ ≤ d(θ)− ωn

}
and its complement to write

P2,n,θ ≤ Pθ

{
m(θ)

4
≤ [|α̂n − α0|+ ωn] Wn ≤ Wn d(θ)

}
+ Pθ

{|α̂n − α0| > d(θ)− ωn

}

≤ sup
θ∈Θ

Pθ {cW ≤ Wn}+ sup
θ∈Θ

Pθ

{|α̂n − α0| > d
}

= O(n−1/2) + γn,

from (A5-A6) and provided that ωn ≤ d. Therefore, Inequality (7) holds true. ¤
Now, it remains to investigate the case |u| < 2

√
ln n.

Proposition 2 There exists a positive constant C such that, for any |u| < 2
√

ln n,

sup
θ∈Θ

∣∣∣∣Pθ

{ √
n

τ(θ)
(α̂n − α0) ≤ u

}
− Γ(u)

∣∣∣∣ ≤ C

(
1√
n

+
√

n rn + ωn + γn

)
. (9)

Proof. We just have to prove that (9) holds true for all n ≥ n0, for some n0 ∈ N. Let us
introduce some sets and derive their probability bounds:

– En,θ :=
{√

n |α̂n − α0|/τ(θ) ≤ 2
√

lnn
}
. From (6), supθ∈Θ Pθ(Ec

n,θ) = O(n−1/2 + γn).

– An := {0 ≤ Wn ≤ cW } where the r.v. Wn and the constant cW are defined in (A5). Then
supθ∈Θ Pθ(Ac

n) = O(n−1/2).

– Dn,θ :=
{
2M ′′

n(α0) > m(θ)
}
. We have Pθ{Dc

n,θ} ≤ Pθ

{∣∣M ′′
n(α0)−m(θ)

∣∣ ≥ m(θ)/2
} ≤

Pθ

{∣∣M ′′
n(α0)−m(θ)

∣∣ ≥ m(θ)/4
}
. We know from (8) that supθ∈Θ Pθ(Dc

n,θ) = O(n−1/2).

Then, we obtain from the previous estimates that the following set

Bn,θ := En,θ ∩An ∩Dn,θ.

is such that
sup
θ∈Θ

Pθ(Bc
n,θ) ≤ O(n−1/2 + γn). (10)
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Now, if Dn,θ,u := {√n(α̂n − α0)/τ(θ) ≤ u}, then we can write from (10)
∣∣Pθ(Dn,θ,u)− Γ(u)

∣∣ ≤ ∣∣Pθ(Dn,θ,u ∩Bn,θ)− Γ(u)
∣∣ + O(n−1/2 + γn). (11)

From (A2) and (A4), 0 < σ := supθ∈Θ τ(θ) < ∞. Define the piecewise quadratic functions

g−(v) := c− + b−v + a−v2, g+(v) := c+ + b+v + a+v2

where c± := n[M ′
n(α0)± rn], b± := τ(θ)

√
n
[
M ′′

n(α0)± sign(v)cW ωn

]
, a± := ±σ2 cW ,

and sign(v) denotes the sign of v when v 6= 0 and sign(0) = 0. Notice that g− and g+ are
continuous on the whole real line. To bound the term

∣∣Pθ(Dn,θ,u ∩ Bn,θ) − Γ(u)
∣∣ in (11), let

us introduce the events
E±

n,θ,u := {g±(u) ≥ 0}. (12)

It follows from Lemma A.2 in Appendix A that, for n large enough and |u| < 2
√

ln n,

Pθ(E−
n,θ,u ∩Bn,θ) ≤ Pθ(Dn,θ,u ∩Bn,θ) ≤ Pθ(E+

n,θ,u ∩Bn,θ)

so that

∣∣Pθ(Dn,θ,u ∩Bn,θ)− Γ(u)
∣∣ ≤ max

{∣∣Pθ

(
E−

n,θ,u ∩Bn,θ

)− Γ(u)
∣∣, ∣∣Pθ

(
E+

n,θ,u ∩Bn,θ

)− Γ(u)
∣∣
}

≤ max
{∣∣Pθ

(
E−

n,θ,u

)− Γ(u)
∣∣, ∣∣Pθ

(
E+

n,θ,u

)− Γ(u)
∣∣
}

+ Pθ(Bc
n,θ). (13)

Then, the proof of Proposition 2 is easily completed using (10) and the following estimate:
there exists a constant C such that for n large enough and |u| < 2

√
ln n

sup
θ∈Θ

∣∣Pθ

(
E±

n,θ,u

)− Γ(u)
∣∣ ≤ C

(
1√
n

+
√

nrn + ωn

)
. (14)

Indeed, E±
n,θ,u = {g±(u) ≥ 0} with g± defined in (II.2). We can write

E±
n,θ,u =

{
n[M ′

n(α0)± rn] + uτ(θ)
√

n[M ′′
n(α0)± sign(u)cW ωn]± u2σ2 cW ≥ 0

}

=
{ √

n

σn,u(θ)

(
M ′

n(α0) +
uσ1(θ)√
n m(θ)

(
M ′′

n(α0)−m(θ)
) )

≥ −an(u, θ) + bn(u, θ)
σn,u(θ)

}

where the positive real number σn,u(θ) is that of Condition (A4’) and

an(u, θ) = u

[
σ1(θ)

(
1± sign(u)cW ωn

m(θ)

)
± uσ2cW√

n

]
, bn(u, θ) = ±√nrn.

From the second statement of (A4’) it follows that there exists a constant B′ such that we
have, for n large enough and |u| < 2

√
ln n

sup
θ∈Θ

∣∣∣∣Pθ(E±
n,θ,u)− Γ

(
an(u, θ) + bn(u, θ)

σn,u(θ)

)∣∣∣∣ ≤
B′
√

n
.
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Now, from σ1 = infθ∈Θ σ1(θ) > 0 and from the first property of σn,u(θ) in (A4’), it follows
that, for n large enough and |u| < 2

√
lnn, and for all θ ∈ Θ, we have σn,u(θ) ≥ σ1/2, and

∣∣∣∣
an(u, θ)
σn,u(θ)

− u

∣∣∣∣ ≤ |u|
σn,u(θ)

(∣∣σn,u(θ)− σ1(θ)
∣∣ +

cW ωn

m(θ)
+
|u|σ2cW√

n

)

≤ 2|u|
σ1

[(
A′ + σ2cW

) |u|√
n

+
cW

m
ωn

]
≤ C ′

(
u2

√
n

+ |u|ωn

)

where C ′ is independent of n, u, θ. We obtain from estimates on the characteristic function
of the standard Gaussian distribution reported in [Pfa71, p.89] that, for n large enough,
|u| < 2

√
ln n, and θ ∈ Θ,

∣∣∣∣Γ
(

an(u, θ)
σn,u(θ)

)
− Γ(u)

∣∣∣∣ ≤ C1

(
1√
n

+ ωn

)

for some C1 > 0. We deduce from similar arguments that, for some constant C2,
∣∣∣∣Γ

(
an(u, θ)
σn,u(θ)

)
− Γ

(
an(u, θ) + bn(u, θ)

σn,u(θ)

)∣∣∣∣ ≤ C2

√
n rn.

Since C1, C2 only depend on A′, σ1, m, σ and cW , the proof of (14) is complete. ¤

III A Berry-Esseen bound for an additive functional of geomet-
rically ergodic Markov chains

The main focus of the paper is to apply the general Berry-Esseen result of Theorem 1 to
the case of M−estimators as defined in the introduction when the observations come from
a geometrically ergodic Markov chain. To check Conditions (A4) and (A4’) in Theorem 1,
we need the next probabilistic results based on a recent version of the Berry-Esseen theorem
derived by [HP10] in the geometrically ergodic Markov chain setting.

III.1 The statistical model

Let (E, E) be a measurable space with a countably generated σ-field E and Θ be some general
parameter space. Let {Xn}n≥0 be a Markov chain with state space E, transition kernels
{Qθ(x, ·), x ∈ E}, θ ∈ Θ, and an initial distribution µ which may or may not depend on θ.
Throughout Section III, we assume that µ(V ) := supθ∈Θ µ(V ) < ∞.

Assumption (M). Let V : E→[1, +∞) be an unbounded function (independent of θ). For
each θ ∈ Θ, there exists a Qθ-invariant probability distribution, denoted by πθ, such that

(VG1) b1 := sup
θ∈Θ

πθ(V ) < +∞ .

(VG2) For all γ ∈ (0, 1], there exist real numbers κγ < 1 and Cγ ≥ 0 such that we have, for
any θ ∈ Θ, n ≥ 1 and x ∈ E,

sup
{ |Qn

θ f(x)− πθ(f)| , f : E→C measurable, |f | ≤ V γ
} ≤ Cγ κn

γ V (x)γ .

9



Notice that (VG2) with γ = 1 implies the following property: for any measurable real-
valued function f defined on E such that |f | ≤ DV for some constant D > 0,

∀n ≥ 1, sup
θ∈Θ

|Eθ,µ[f(Xn)]− πθ(f)| ≤ DC1κ
n
1 µ(V ). (15)

Moreover, Conditions (VG1) and (VG2) imply that, for any γ ∈ (0, 1] and θ ∈ Θ, Qθ is V γ-
geometrically ergodic, but it is worth noticing that the constants Cγ and κγ do not depend
on θ. In the following remark, the properties (VG1) and (VG2) are related to the so-called
drift condition w.r.t. the function V for each Qθ.

Remark 2 Assume that for each θ ∈ Θ, Qθ is aperiodic and ψ-irreducible w.r.t. a certain
positive σ-finite measure ψ on E (which may depend on θ).

1. For γ = 1 and any fixed θ, the properties (VG1)-(VG2) follow from the drift condition :
QθV ≤ %V +ς 1S, with % < 1, ς > 0 and S some set2 satisfying the minorization condition
Qθ(x, ·) ≥ c ν(·) 1S(x), where c > 0 and ν is a probability measure concentrated on S
(see [MT93, Th. 16.0.1]). In addition, the constants C1 and κ1 can be bounded by a
quantity involving %, ς, c, the measure ν and the set S (see [MT94]). To obtain the
uniformity in θ, it suffices to check that all these elements do not depend on θ.

2. For any γ ∈ (0, 1], we have πθ(V γ) ≤ πθ(V ) and thus Condition (VG1) implies that
supθ∈Θ πθ(V γ) < ∞. Furthermore, under the drift condition, it follows from Jensen’s
inequality that QθV

γ ≤ %γV + ςγ 1S. Using again [MT94] one obtains (VG2).

III.2 A preliminary uniform Berry-Esseen statement

Let α0 = α0(θ) ∈ A be the parameter of interest for the statistical applications we have in
mind (see Condition (A1) page 4), where θ is the parameter of the Markov chain model and
A is an open interval of the real line.

Let ξ(α, x, y) be a real-valued measurable function defined on A×E2 such that the random
variable ξ(α, Xk−1, Xk) is (integrable and) centered with respect to the stationary distribution
πθ, that is

Eθ,πθ
[ξ(α0, X0, X1)] = 0,

and let

Sn(α) :=
n∑

k=1

ξ(α,Xk−1, Xk).

We investigate the following uniform Berry-Esseen property

sup
θ∈Θ

sup
u∈R

∣∣∣∣Pθ,µ

{
Sn(α0)
σ(θ)

√
n
≤ u

}
− Γ(u)

∣∣∣∣ = O

(
1√
n

)

where σ2(θ) will be defined below as the asymptotic variance associated to the random vari-
ables ξ(α,Xk−1, Xk). When {Xn}n≥0 are i.i.d. and ξ(α, Xk−1, Xk) ≡ ξ(α, Xk), this property
follows from the Berry-Esseen theorem [Fel71], provided that ξ(α, X0) has finite third order
moment, uniformly bounded in α, and a variance greater than some positive constant which
does not depend on α.

2S is the so-called small set.
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In our Markov framework, the following moment (or V−domination) condition is natural
for the functional ξ. In the sequel, this condition will be required for m0 = 1, 2 or 3.

Condition (Dm0). There exist real constants m > m0 ≥ 1 and Cξ > 0 such that

∀α ∈ A, ∀(x, y) ∈ E2,
∣∣ξ(α, x, y)

∣∣m ≤ Cξ

(
V (x) + V (y)

)
. (Dm0)

This domination condition implies that

Eθ,πθ
[ |ξ(α, X0, X1)|m ]=

∫
|ξ(α, x, y)|mQθ(x, dy)dπθ(x) ≤ Cξ (πθ(V )+πθ(QθV )) < ∞, (16)

and since m ≥ 1, observe that Eθ,πθ
[ |ξ(θ, X0, X1)| ] < ∞.

Proposition 3 Suppose that Assumption (M) holds true and that ξ is centered and satisfies
Condition (D1). Then, we have supθ∈Θ supn≥1

∣∣Eθ,µ[Sn(α0)]
∣∣ < ∞. In particular, for each

θ ∈ Θ, limn Eθ,µ [Sn(α0)/n] = 0. If in addition ξ satisfies condition (D2), then for each θ ∈ Θ,
the non-negative real number

σ2(θ) := lim
n

Eθ,µ[Sn(α0)2]
n

is well-defined and does not depend on µ. Furthermore, the function σ2(·) is bounded on Θ,
and there exists a positive constant C, only depending on Cξ and µ(V ), such that

∀θ ∈ Θ, ∀n ≥ 1,

∣∣∣∣σ2(θ)− Eθ,µ[Sn(α0)2]
n

∣∣∣∣ ≤
C

n
.

Now, we are ready to state our uniform Berry-Esseen statement for Sn(α0).

Theorem 2 Let us assume that :

1. Condition (M) holds true;

2. the functional ξ is centered and satisfies Condition (D3);

3. σ2
0 := inf

θ∈Θ
σ2(θ) > 0.

Then, there exists a constant B(ξ) such that

∀n ≥ 1, sup
θ∈Θ

sup
u∈R

∣∣∣∣Pθ,µ

{
Sn(α0)
σ(θ)

√
n
≤ u

}
− Γ(u)

∣∣∣∣ ≤
B(ξ)√

n
.

Furthermore, the constant B(ξ) depends on the functional ξ, but only through σ0 and the
constant Cξ of Condition (D3).

The fact that we look for a Berry-Esseen bound with a constant B(ξ) independent of θ
is natural given our main purpose, that is prove a uniform Berry-Esseen theorem for M -
estimators.

There are several methods for deriving Berry-Esseen bound for the functionals of Markov
chains (e.g. see [Bol82, Jen89]). But to prove Proposition 3 and Theorem 2, we use the weak
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spectral method developed in [HP10].3 This method allows to control the constant B(ξ) as
a function of Cξ for checking Assumption (A4’) of Theorem 1 (see the arguments following
equation (31) in Section IV). This follows from the next key technical result. Although the
proof of the Berry-Esseen theorem only requires Taylor expansions up to the order m0 and
condition (Dm0) with m0 = 3, for the purpose of possible further applications, Lemma 1
below is stated for any m0 ∈ N∗.
Lemma 1 If ξ is centered and satisfies Condition (Dm0) with m0 ∈ N∗, then there exists
β > 0 such that

∀θ ∈ Θ, ∀n ≥ 1, ∀t ∈ [−β, β], Eθ,µ

[
eitSn(α0)

]
= λθ(t)n (1 + Lθ(t)) + rθ,n(t), (17)

where λθ(·), Lθ(·) and rθ,n(·) are some m0 times continuously differentiable functions from
[−β, β] into C satisfying λθ(0) = 1, λ′θ(0) = 0, Lθ(0) = 0 and rθ,n(0) = 0. Furthermore,
there exists ρ ∈ (0, 1) such that we have for ` = 0, . . . , m0:

G` := sup
{
ρ−n |r(`)

θ,n(t)|, |t| ≤ β, θ ∈ Θ, n ≥ 1
}

< ∞.

Finally, the constants β, ρ, G` and the following ones (for ` = 0, . . . , m0)

E` := sup{|λ(`)
θ (t)|, |t| ≤ β, θ ∈ Θ} < ∞, F` := sup{|L(`)

θ (t)|, |t| ≤ β, θ ∈ Θ} < ∞,

depend on ξ, but only through the constant Cξ of Assumption (Dm0).

Lemma 1 is proved in Subsection III.3. The definition of Lθ(t) and rθ,n(t) (see (24) and (25))
shows that the constants F` and G` also depend on µ(V ) (see Remark 3). Now, Lemma 1
allows us to derive Proposition 3 and Theorem 2.
Proof of Proposition 3. Assume that ξ is centered and satisfies (Dm0) with m0 ∈ N∗.
Proceeding as in (16) and using (15), (VG1) and µ(V ) < ∞, we obtain that

sup
θ∈Θ

sup
k≥1

Eθ,µ[ |ξ(α0, Xk−1, Xk)|m ] < ∞ for some m > m0. (18)

Now assume m0 = 1, and let φ(t) := Eθ,µ[eitSn(α0)], t ∈ R. Then φ′(0) = iEθ,µ[Sn(α0)], but
Lemma 1 also gives φ′(0) = L′θ(0) + r′θ,n(0). Hence supθ∈Θ supn≥1 |Eθ,µ[Sn(α0)]| ≤ F1 + G1.
Next, assume m0 = 2. From (18) we have Eθ,µ[ Sn(α0)2 ] < ∞, and thus we can write
φ′′(0) = −Eθ,µ[Sn(α0)2], and φ′′(0) = nλ′′θ(0) + L′′θ(0) + r′′θ,n(0) by Lemma 1. Thus we obtain
|λ′′θ(0)+Eθ,µ[Sn(α0)2]/n| ≤ (|L′′θ(0)|+ |r′′θ,n(0)|)/n ≤ (F2 +G2)/n. Set σ2(θ) := −λ′′θ(0). Then
supθ∈Θ σ2(θ) ≤ E2 (by Lemma 1), and the proof is complete with C := F2 + G2. ¤
Proof of Theorem 2.. Recall that ξ is centered and satisfies Condition (D3). To prove the
result, we use Lemma 1 with m0 = 3 and we adapt the arguments of the i.i.d. case. Recall
that σ2(θ) = −λ′′θ(0). According to the classical Berry-Esseen inequality (e.g., see [Fel71]),
we must prove that for some suitable positive constant c, supθ∈Θ An(θ) = O(n−1/2) where

An(θ) :=
∫ c

√
n

−c
√

n

∣∣∣∣
E[eit

Sn(α0)

σ(θ)
√

n ]− e−
t2

2

t

∣∣∣∣ dt.

3A Berry-Esseen theorem is established in [Her08] for sequences of the form {ξ(Xk)}k≥0 under the conditions
µ(V ) < ∞ and |ξ|3 ≤ C V . However, the case of sequences of the form {ξ(Xk−1, Xk)}k≥0 is not a direct
corollary of this work since the Markov chain {(Xk−1, Xk)}k≥0 may not be geometrically ergodic.
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For the moment, we just assume that 0 < c ≤ βσ0, where β is the real number in Lemma 1.
Notice that |t| ≤ c implies |t/σ(θ)| ≤ β for all θ ∈ Θ. Using Lemma 1, we have

An(θ) ≤
∫ c

√
n

−c
√

n

∣∣∣∣
λθ

(
t

σ(θ)
√

n

)n
− e−

t2

2

t

∣∣∣∣ dt +
∫ c

√
n

−c
√

n

∣∣∣∣λθ

(
t

σ(θ)
√

n

) ∣∣∣∣
n ∣∣∣∣

Lθ

(
t

σ(θ)
√

n

)

t

∣∣∣∣ dt

+
∫ c

√
n

−c
√

n

∣∣∣∣
rθ,n

(
t

σ(θ)
√

n

)

t

∣∣∣∣ dt := In(θ) + Jn(θ) + Kn(θ).

By a Taylor expansion, for all θ ∈ Θ and |v| ≤ c,
∣∣∣∣λθ

(
v

σ(θ)

)
− 1 +

v2

2

∣∣∣∣ ≤
E3

6σ3
0

|v|3

where E3 is defined in Lemma 1. Hereafter, set c := min{βσ0, 3σ3
0/2E3,

√
2}. From the last

inequality, deduce that for any |v| ≤ c
∣∣∣∣λθ

(
v

σ(θ)

) ∣∣∣∣ ≤ 1− v2

2
+

v2

4
≤ e−

v2

4 .

Therefore, for any t ∈ R such that |t| ≤ c
√

n,
∣∣∣∣λθ

(
t

σ(θ)
√

n

) ∣∣∣∣
n

≤ e−
t2

4 . (19)

Let us write

λθ

(
t

σ(θ)
√

n

)n

− e−
t2

2 =
(

λ

(
t

σ(θ)
√

n

)
− e−

t2

2n

) n−1∑

k=0

λθ

(
t

σ(θ)
√

n

)n−k−1

e
−kt2

2n .

Notice that |λθ(t/σ(θ)
√

n) − exp(−t2/2n)| ≤ (
a + E3/6σ3

0

) |t/√n|3 if a := sup|v|≤c |ψ(3)(v)|
with ψ(v) := 6 exp(−v2/2). Moreover,

n−1∑

k=0

∣∣∣∣λθ

(
t

σ(θ)
√

n

) ∣∣∣∣
n−k−1

e−
kt2

2n ≤
n−1∑

k=0

e−
t2(n−k−1)

4n e−
kt2

4n ≤ b n e−
t2

4 ,

where b := sup|v|≤c exp(v2/4). Hence
∣∣∣∣λθ

(
t

σ(θ)
√

n

)n

− e−
t2

2

∣∣∣∣ ≤
(

a +
E3

6σ3
0

)
b n−

1
2 |t|3 e−

t2

4

which yields supθ∈Θ In(θ) ≤ b n−1/2
(
a + E3/6σ3

0

) ∫
R t2 exp(−t2/4)dt. Next, using (19) and

Lθ(0) = 0,

sup
θ∈Θ

Jn(θ) ≤ F1

σ0
√

n

∫

R
e−

t2

4 dt.

Finally, using rθ,n(0) = 0, we have supθ∈Θ |rθ,n(t/σ(θ)
√

n)| ≤ (|t|/σ0
√

n)G1 ρn, so that
supθ∈Θ Kn(θ) ≤ (2cG1/σ0) ρn. Gathering the results we deduce that

sup
θ∈Θ

An ≤ A√
n

+
2cG1

σ0
ρn
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where the constants A, ρ, G1 and c depend on Cξ of Condition (D3). The Berry-Esseen
inequality [Fel71] then yields

sup
u∈R

∣∣∣∣Pθ,µ

{
Sn(θ)

σ(θ)
√

n
≤ u

}
− Γ(u)

∣∣∣∣ ≤
1
π

(
A√
n

+
2cG1

σ0
ρn +

24η

c
√

n

)
,

where η = supu∈R |Γ′(u)|. The proof of Theorem 2 is complete. ¤

III.3 Proof of Lemma 1

For θ ∈ Θ fixed, Lemma 1 follows from [HP10, sect. 10]. Here we must prove that all the
constants in Lemma 1 are uniform in θ and depend on ξ as claimed. For this purpose, the
weak spectral method is outlined below (in the V -geometrical ergodicity context) and we
give the main statements by paying special attention to the constants. For convenience, the
technical proofs are postponed in Appendix B.

• Geometrical ergodicity of Qθ. Let 0 < γ ≤ 1. We denote by Bγ the weighted supremum-
normed space of measurable complex-valued functions f on E such that

‖f‖γ := sup
x∈E

|f(x)|
V (x)γ

< ∞.

(Bγ , ‖ · ‖γ) is a Banach space. The space of bounded operators on Bγ is denoted by L(Bγ),
and the associated operator norm is still denoted by ‖ · ‖γ . We have from (VG1)

sup
θ∈Θ

πθ(V γ) ≤ b1 = sup
θ∈Θ

πθ(V ) < ∞, (20)

so that πθ is a continuous linear form on Bγ . Define the following rank-one projection on Bγ :

∀f ∈ Bγ , Πθf := πθ(f)1E .

Then Condition (VG2) in (M) can be rewritten as follows: Qθ ∈ L(Bγ) and there exist κγ < 1
and Cγ > 0 such that

∀θ ∈ Θ, ∀f ∈ Bγ , ∀n ≥ 1, ‖Qn
θ f −Πθf‖γ ≤ Cγ κn

γ ‖f‖γ . (21)

From (20) and (21), ‖Qn
θ ‖γ = supx∈E(Qn

θ V γ)(x)/V (x)γ is uniformly bounded in n ∈ N∗ and
θ ∈ Θ.
• The Fourier kernels associated with Qθ and ξ. Assume that, for all α ∈ A, ξ(α, ·, ·) is
measurable. The Fourier kernels associated with Qθ and ξ are denoted by {Qθ(t)(x, dy), t ∈ R}
and defined by

∀x ∈ E, Qθ(t)(x, dy) := eitξ(α0,x,y)Qθ(x, dy).

Let us recall that Sn(α0) :=
∑n

k=1 ξ(α0, Xk−1, Xk). The following link between Qθ(t) and the
characteristic function of Sn(α0) is well-known in the spectral method:

∀n ≥ 1, ∀t ∈ R, Eθ,µ[eitSn(α0)] = µ
(
Qθ(t)n1E

)
. (22)

In fact, we have Eθ,µ[eitSn(α0) f(Xn)] = µ(Qθ(t)nf) for any real-valued measurable bounded
function f on E. This can be easily checked by induction using the Markov property and the
following equality

∀n ≥ 2, Eθ,µ[eitSn(α0) f(Xn)] = Eθ,µ

[
eitSn−1(α0) (Qθ(t)f)(Xn−1)

]
.
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• Spectral study of Qθ(t) on Bγ (for t near 0). It can be easily seen that, for all t ∈ R, we
have Qθ(t) ∈ L(Bγ). For κ ∈ (0, 1), we set

Dκ := {z ∈ C : |z| ≥ κ, |z − 1| ≥ (1− κ)/2}.
Lemma 2 Let γ ∈ (0, 1). For all κ ∈ (κγ , 1), there exists βγ,κ > 0 such that, for θ ∈ Θ,
|t| ≤ βγ,κ and z ∈ Dκ, we have

(
z −Qθ(t)

)−1 ∈ L(Bγ) and

Rγ,κ := sup
{∥∥(

z −Qθ(t)
)−1∥∥

γ
: θ ∈ Θ, |t| ≤ βγ,κ, z ∈ Dκ

}
< ∞.

Moreover, the constants βγ,κ and Rγ,κ depend on ξ, but only via the constant Cξ of (Dm0).

For θ fixed, Lemma 2 is established in [HP10, Prop. 10.1] thanks to the theorem of Keller
and Liverani [KL99, Liv04]. Here we only have to prove that the constants βγ,κ and Rγ,κ are
uniform in θ and depend on ξ as stated above. According to [KL99, Rk. p. 145], it is enough
to check that so are the constants involved in the hypotheses of the Keller-Liverani theorem.
This is due to Lemmas B.1-B.2 in Appendix B.

• Proof of Formula (17). Now assume that ξ satisfies Condition (Dm0) for some m0 ∈ N∗.
Let γ0 ∈ (0, 1) be fixed such that γ0 + m0/m < 1. For any κ ∈ (κγ0 , 1), denote by Γ0,κ the
oriented circle centered at z = 0, with radius κ, and by Γ1,κ the oriented circle centered at
z = 1, with radius (1 − κ)/2. Note that both Γ0,κ and Γ1,κ are contained in Dκ. From (21)
and Lemma 2, one can deduce that we have, for all n ≥ 1, θ ∈ Θ, and t ∈ [−βγ0,κ;βγ0,κ], the
following equality in L(Bγ0):

Qθ(t)n = λθ(t)n Πθ(t) + Nθ(t)n, (23)

where λθ(t) is the dominating simple eigenvalue of Qθ(t), Πθ(t) and Nθ(t)n are the elements
of L(Bγ0) defined by the following line integrals:

Πθ(t) :=
1

2iπ

∮

Γ1,κ

(
z −Qθ(t)

)−1
dz and Nθ(t)n :=

∮

Γ0,κ

zn
(
z −Qθ(t)

)−1
dz.

Note that we have λθ(0) = 1 and Πθ(0) = Πθ from (21). Also observe that, from Lemma 2
and the definition of Γ0,κ, we have ‖Nθ(t)n‖γ = O(κn). Since 1E ∈ Bγ0 and µ(V ) < ∞ (µ is
a continuous linear form on Bγ0), the equalities (22) and (23) give:

Eθ,µ[eitSn(α0)] = λθ(t)n µ
(
Πθ(t)1E

)
+ µ

(
Nθ(t)n1E

)
.

Therefore formula (17) holds true with

Lθ(t) := µ
(
Πθ(t)1E

)− 1, rθ,n(t) := µ
(
Nθ(t)n1E

)
(n ∈ N∗).

We have Lθ(0) = µ
(
Πθ1E

) − 1 = 0 and rθ,n(0) = µ
(
Nθ(0)n1E

)
= µ

(
Qn

θ 1E − Πθ1E

)
= 0.

Finally, to make easier the link with Lemma 3 below, let us observe that

1 + Lθ(t) =
1

2iπ

∮

Γ1,κ

µ
(
(z −Qθ(t))−11E

)
dz, (24)

rθ,n(t) =
1

2iπ

∮

Γ0,κ

zn µ
(
(z −Qθ(t))−11E

)
dz. (25)

• Regularity properties of λ(·), Lθ(·), rθ,n(·). Let γ′0 be such that γ0 + m0/m < γ′0 < 1. We
denote by L(Bγ0 ,Bγ′0) the space of the bounded linear operators from Bγ0 to Bγ′0 , and by
‖ · ‖γ0,γ′0 the associated operator norm.

15



Lemma 3 We have the following regularity properties:

(a) The map Qθ(·) is m0-times continuously differentiable from R to L(Bγ0 ,Bγ′0), and we have

Q` := supt∈R, θ∈Θ ‖Q(`)
θ (t)‖γ0,γ′0 < ∞ for ` = 0, . . . , m0.

(b) There exist some real numbers κ ∈ (κγ0 , 1) and 0 < β < βγ0,κ such that, for all θ ∈ Θ
and z ∈ Dκ, the function Rθ,z : t 7→ (

z−Qθ(t)
)−1 is m0-times continuously differentiable

from [−β, β] into L(Bγ0 ,Bγ′0), and we have for ` = 0, . . . ,m0:

sup
{‖R(`)

θ,z(t)‖γ0,γ′0 : |t| ≤ β, z ∈ Dκ, θ ∈ Θ
}

< ∞.

The scalars β, κ and all the bounds in (a) (b) depend on ξ only via the constant Cξ of (Dm0).

For θ fixed, Lemma 3 is established in [HP10, Prop. 10.3]. It can be also derived from
[Gou08] which relaxes the assumptions used in [HH04, GL06] to obtain Taylor expansions4

of the resolvent maps. However, a fine control of the constants is still required. Using either
[Gou08] or [HP10, sect. 10], this control is derived from Lemma 2 and from Lemma B.3 in
Appendix B.

Since 1E ∈ Bγ0 and µ is a continuous linear form on Bγ′0 (use µ(V ) < ∞), Lemma 3 (b)
gives that, for any z ∈ Γ0,κ ∪Γ1,κ, the C-valued function t 7→ µ((z−Qθ(t))−11E) is m0-times
continuously differentiable on [−β, β] and that its m0 first derivatives are uniformly bounded
in θ and z ∈ Γ0,κ∪Γ0,κ. The regularity properties (and the related bounds) for Lθ(·) and rθ,n(·)
then follow from (24) and (25), while those concerning the function λθ(·) follow from both
Lemma 3 (a) and Lemma 3 (b), according to a formula given in [HP10, sect. 7.2]. Finally the
property λ′θ(0) = 0 can be proved as follows. By deriving (17) (applied with µ = πθ) at t = 0
and by using the fact that ξ is centered, we have: 0 = iEθ,πθ

[Sn(α0)] = n λ′θ(0)+L′θ(0)+r′θ,n(0).
Hence λ′θ(0) = 0.

Remark 3 Notice that, according to (24) (25), the constants F` and G` in Lemma 1 also
depend on the supremum in θ of the norm of µ in B′γ′0, namely supθ∈Θ µ(V γ′0).

IV A Berry-Esseen theorem for M-estimators

Consider a Markov chain satisfying the condition (M) of Section III.1. Let us introduce the
statistic

Mn(α) :=
1
n

n∑

k=1

F (α, Xk−1, Xk) (26)

where α is the parameter of interest, F is a real-valued measurable function on A× E2 and
A is an open interval of the real line.

Assume that F satisfies Condition (D1) and let

Mθ(α) := lim
n→∞Eθ,µ[Mn(α)] = Eθ,πθ

[F (α,X0, X1)],

which is well defined by Proposition 3. Assume also that, for each θ ∈ Θ, there exists a
unique α0 = α0(θ) ∈ A, the so-called true value of the parameter of interest, such that

4As observed in [Gou08], the passage to the differentiability properties can be derived from [Cam64].
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Mθ(α) > Mθ(α0), ∀α 6= α0. To estimate α0 = α0(θ) we consider an M−estimator α̂n as
defined in Section II, that is Mn(α̂n) ≤ minα∈AMn(α) + cn, where {cn}n≥1 is a sequence of
non-negative real numbers going to zero.

Let F ′ and F ′′ be real-valued measurable functions defined on A× E2 and let

M ′
n(α) :=

1
n

n∑

k=1

F ′(α, Xk−1, Xk), M ′′
n(α) :=

1
n

n∑

k=1

F ′′(α, Xk−1, Xk). (27)

The functionals F ′ and F ′′ could be the first and second order partial derivatives of F with
respect to α, but this is not necessary to deduce our next result. Consider the following
assumptions on F ′ and F ′′ (and implicitly on cn, see (V3)).

Assumptions.

(V0) F ′ and F ′′ satisfy Condition (D3);

(V1) ∀θ ∈ Θ, Eθ,πθ
[F ′(α0, X0, X1)] = 0 and α0 = α0(θ) is unique with this property;

(V2) m(θ) := Eθ,πθ
[F ′′(α0, X0, X1)] satisfies inf

θ∈Θ
m(θ) > 0;

(V3) M ′
n(α̂n) satisfies Condition (A3), that is ∀n ≥ 1 there exists rn > 0 independent of θ

such that rn = o(1/
√

n) and supθ∈Θ Pθ,µ

{|M ′
n(α̂n)| ≥ rn

}
= O(n−1/2).

Notice that (V0) ensures supθ∈Θ m(θ) < ∞ (see (16)). Now, as a consequence of Propo-
sition 3 applied to F ′ and F ′′, the conditions (V0)-(V2) enable us to define the asymptotic
variances:

σ2
1(θ) := lim

n

1
n
Eθ,µ

[( n∑

k=1

F ′(α0, Xk−1, Xk)
)2

]

σ2
2(θ) := lim

n

1
n
Eθ,µ

[( n∑

k=1

F ′′(α0, Xk−1, Xk)− n m(θ)
)2

]
.

Moreover, Condition (V0) and Proposition 3 ensure that supθ∈Θ σj(θ) < ∞ for j = 1, 2. The
following conditions are also assumed to hold.

(V4) infθ∈Θ σj(θ) > 0 for j = 1, 2.

(V5) There exist η ∈ (0, 1/2) and C > 0 such that

∀(α, α′) ∈ A2, ∀(x, y) ∈ E2,
∣∣F ′′(α, x, y)− F ′′(α′, x, y)

∣∣ ≤ C |α− α′| (V (x) + V (y)
)η

.

(V6) Set d := infθ∈Θ m(θ)/8πθ(V η) with η defined in (V5). There exists γn = o(1) such that

sup
θ∈Θ

Pθ,µ

{ |α̂n − α0| ≥ d
} ≤ γn.

Theorem 3 Assume that the condition (M) holds true, that F satisfies Condition (D1), that
Conditions (V0) to (V6) are fulfilled. Let τ(θ) := σ1(θ)/m(θ). Then there exists a positive
constant C such that

∀n ≥ 1, sup
θ∈Θ

sup
u∈R

∣∣∣∣Pθ,µ

{ √
n

τ(θ)
(α̂n − α0) ≤ u

}
− Γ(u)

∣∣∣∣ ≤ C

(
1√
n

+
√

nrn + γn

)
.
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The statement in the above theorem corresponds to that of the i.i.d. case in [Pfa71] up to few
changes: first the variances of the i.i.d context5 are replaced by the above asymptotic variances
σ2

1(θ) and σ2
2(θ) (this is natural in a general markovian context); second the uniform (in θ)

third-order moment conditions6 on both F ′, F ′′ are replaced by the domination condition
(D3) for F ′, F ′′; third, even when F ′ = ∂F/∂α, here we allow for a positive sequence rn,
n ≥ 1, provided it decreases to zero sufficiently fast. The second point is specific to the
geometrically ergodic Markov chain case. Indeed, in the same statistical model, Dehay and
Yao [DY07] proved a CLT for maximum likelihood estimates under a second-order domination
assumption on the two first derivatives of the functional which corresponds to Inequality (Dm0)
with m0 = 2. Here the previous second-order assumption is replaced by the (almost) optimal
condition (D3) for deriving the Berry-Esseen theorem for M−estimators.
Proof of Theorem 3. It suffices to check the conditions (A1) to (A6) of Theorem 1. The
limit M ′

θ(α) := limn Eθ,µ[M ′
n(α)] is well defined by Proposition 3 and Condition (V0), the

uniqueness of α0 is guaranteed by (V1), hence (A1) holds true. One more application of
Proposition 3 ensures that Eθ,πθ

[F ′′(α0, X0, X1)] = limn Eθ,µ[M ′′
n(α0)], hence (A2) is satisfied.

Condition (V3) is nothing but (A3). The Berry-Esseen properties in (A4) are associated to
the functionals F ′(α0, x, y) and F ′′(α0, x, y) respectively, so that they directly follow from
Theorem 2.

Now, let us check that (A5) holds true with ωn ≡ 0. Define W := V η where η ∈ (0, 1/2)
is the scalar in (V5) and notice that Eθ,πθ

[W (X0)1/η] = πθ(V ). Next, since V ≥ 1 and
η ∈ (0, 1/2), we have 1 ≤ W ≤ W 2 ≤ V so that 1 ≤ πθ(W ) ≤ πθ(W 2) ≤ πθ(V ) ≤ b1

by Property (VG1). Deduce that supθ∈Θ πθ(W ) < ∞, and by Proposition 3 applied to
ξ(θ, x, y) = W (y)

sup
n≥1

sup
θ∈Θ

1
n
Eθ,µ

[( n∑

k=1

W (Xk)− nπθ(W )
)2]

< ∞.

Now, Condition (A5) is guaranteed by the properties (M) and (V5) with ωn ≡ 0, cW :=
supθ∈Θ πθ(W ) and Wn := (1/n)

∑n
k=1(W (Xk−1) + W (Xk)) provided that

sup
θ∈Θ

Pθ,µ

{
8πθ(W ) ≤ Wn

}
= O

(
n−1

)
. (28)

To prove (28), set Sn :=
∑n

k=1 W (Xk). Since Wn ≤ 2Sn/n + (W (X0) + W (Xn)) /n and
πθ(W ) ≥ 1,

Pθ,µ

{
8πθ(W ) ≤ Wn

} ≤ Pθ,µ

{
Sn ≥ 2n πθ(W )

}
+ Pθ,µ

{
W (X0) + W (Xn) ≥ 4nπθ(W )

}

≤ Pθ,µ

{
Sn−nπθ(W ) ≥ n

}
+ Pθ,µ

{
W (X0) + W (Xn) ≥ 4 n

}
.

Equality (28) is then obtained by Markov’s inequality

Pθ,µ

{
8πθ(W )≤Wn

} ≤ 1
n2
Eθ,µ

[
(Sn − nπθ(W ))2

]
+

(
1
4n

)1/η

Eθ,µ[(W (X0) + W (Xn))1/η]

= O
(
n−1

)
,

5Namely, Eθ[F
′(θ, X0)

2] and Eθ[(F
′′(θ, X0)−m(θ))2] for an i.i.d sequence {Xn}n≥0 and a functional F (θ, x).

6Namely, supθ∈Θ Eθ[ |F ′(θ, X0)|3 + |F ′′(θ, X0)|3 ] < ∞.
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since
sup
θ∈Θ

sup
n≥1

Eθ,µ[(W (X0) + W (Xn))1/η] ≤ 21/η−1[ µ(V ) + C1 µ(V ) + b1 ],

using (a + b)1/η ≤ 21/η−1(a1/η + b1/η) for any a, b ≥ 0 and (VG1)-(VG2). Notice also that
now Condition (V6) is identical to Condition (A6).

The difficult part is to check the Berry-Esseen-type property (A4’). For this purpose, let
Ξ := {ξi(·, ·, ·), i ∈ I} denote an arbitrary family of real-valued functionals defined on A×E2.
Suppose that each ξi is centered, i.e. Eθ,πθ

[ξi(α0, X0, X1)] = 0 for all i ∈ I and θ ∈ Θ, and
that Condition (D3) is fulfilled uniformly in i ∈ I, that is

∃m > 3, ∃C ≥ 0, ∀i ∈ I, ∀α ∈ A, ∀(x, y) ∈ E2,
∣∣ξi(α, x, y)

∣∣m ≤ C
(
V (x) + V (y)

)
. (29)

For each i ∈ I, set Sn(α0, i) =
∑n

k=1 ξi(α0, Xk−1, Xk), and using Proposition 3 associate the
corresponding asymptotic variance denoted by σ2

i (θ). Moreover assume that

0 < inf{σi(θ), θ ∈ Θ, i ∈ I} ≤ sup{σi(θ), θ ∈ Θ, i ∈ I} < ∞. (30)

Then, we deduce from Theorem 2 that, under Conditions (M), (29), (30), and µ(V ) < ∞,
there exists a constant B such that

∀n ≥ 1, sup
i∈I

sup
θ∈Θ

sup
u∈R

∣∣∣∣Pθ,µ

{
Sn(α0, i)
σi(θ)

√
n
≤ u

}
− Γ(u)

∣∣∣∣ ≤
B√
n

. (31)

This allows to establish the two conditions in (A4’). Indeed, for (p, v) ∈ N∗ × R with v such
that |v| ≤ 2

√
ln p, let us introduce the functional ξp,v defined by

ξp,v(α0, x, y) := F ′(α0, x, y) +
v√
p

σ1(θ)
m(θ)

(
F ′′(α0, x, y)−m(θ)

)
.

Set Sn(α0, p, v) :=
∑n

k=1 ξp,v(α0, Xk−1, Xk), and

αθ(p, v) :=
v√
p

σ1(θ)
m(θ)

, S′n(θ) :=
n∑

k=1

F ′(α0, Xk−1, Xk), S′′n(θ) :=
n∑

k=1

F ′′(α0, Xk−1, Xk)−nm(θ),

so that Sn(α0, p, v) = S′n(α0) + αθ(p, v) S′′n(α0). Notice that Eθ,πθ
[ξp,v(α0, X0, X1)] = 0 by

(V1)-(V2). We have

Eθ,πθ
[Sn(α0, p, v)2]−Eθ,πθ

[S′n(α0)2] = αθ(p, v)2Eθ,πθ
[S′′n(α0)2 ]+2 αθ(p, v)Eθ,πθ

[S′n(α0)S′′n(α0)].

From (V2) and the fact that σ1(·) is bounded, we have |αθ(p, v)| ≤ A|v|/√p for some A > 0
which does not depend on θ. Besides, as already mentioned in this section, one can define the
asymptotic variances σ2

1(θ) and σ2
2(θ) associated to the functionals F ′ and F ′′ by

σ2
1(θ) := lim

n

1
n
Eθ,πθ

[S
′
n(α0)2 ] σ2

2(θ) := lim
n

1
n
Eθ,πθ

[ S
′′
n(α0)2 ].

Similarly, the asymptotic variance σ2
p,v(θ) associated to ξp,v can be defined by:

σ2
p,v(θ) = lim

n

1
n
Eθ,πθ

[Sn(α0, p, v)2].
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Then, it follows from
∣∣Eθ,πθ

[S′n(α0) S′′n(α0) ]
∣∣ ≤ Eθ,πθ

[ S′n(α0)2 ]1/2 Eθ,πθ
[ S′′n(α0)2 ]1/2 that

∣∣σ2
p,v(θ)− σ2

1(θ)
∣∣ ≤ A2 v2

p
σ2

2(θ) + 2A
|v|√

p
σ1(θ) σ2(θ).

Since σj(·) is bounded (j = 1, 2) and |v| ≤ 2
√

ln p ≤ 2
√

p, the previous inequality shows that
there exists C ′ > 0, independent of θ, such that

∣∣σ2
p,v(θ)− σ2

1(θ)
∣∣ ≤ C ′ |v|√

p
.

Set σ1 := supθ∈Θ σ1(θ) and σ1 := infθ∈Θ σ1(θ) (we have σ1 > 0 from (V4)). Using |v|/√p ≤
2

√
ln p/p and

√
ln p/p = o(1), the above inequality implies that there exists P0 ∈ N such

that we have, for all p ≥ P0 and v such that |v| ≤ 2
√

ln p

∀θ ∈ Θ,
1
2

σ1 ≤ σp,v(θ) ≤ 3
2

σ1.

In particular, under the same condition on (p, v), this gives σp,v(θ) + σ1(θ) ≥ 3σ1/2, hence:
|σp,v(θ)− σ1(θ)| ≤ 2C ′|v|/3σ1

√
p. This proves the first assertion in (A4’).

Now, let us define

I =
{

(p, v) ∈ N∗ × R : p ≥ P0, |v| ≤ 2
√

ln p
}
.

It follows from (V0), (V2) and σ1 < +∞ that the family Ξ := {ξp,v, (p, v) ∈ I} satisfies (29).
Besides, the above bounds of σp,v(θ) give the property (30). Then Equation (31) shows that
there exists B′ > 0 such that we have for all n ≥ 1, (p, v) ∈ I, θ ∈ Θ, and u ∈ R:

∣∣∣∣Pθ,µ

{
Sn(α0, p, v)
σp,v(θ)

√
n
≤ u

}
− Γ(u)

∣∣∣∣ ≤
B′
√

n
.

Finally, let us fix any integer n ≥ P0 and any real number u such that |u| ≤ 2
√

ln n. Then, the
previous Berry-Esseen property, applied with p := n and v := u, exactly provides the second
property of (A4’). Indeed, we obtain from S′n(α0) = nM ′

n(α0) and S′′n(α0) = n (M ′′
n(α0) −

m(θ)) that

Sn(α0, n, u)
σn,u(θ)

√
n

=
1

σn,u(θ)
√

n

(
S′n(α0) +

u√
n

σ1(θ)
m(θ)

S′′n(α0)
)

=
√

n

σn,u(θ)

(
M ′

n(α0) +
uσ1(θ)√
nm(θ)

(
M ′′

n(α0)−m(θ)
))

.

Now the proof of Theorem 3 is complete. ¤

V An example: AR(1) process with ARCH(1) errors

Let us apply our theoretical results to an AR(1) process with ARCH(1) errors that belongs to
the class of ARMA-GARCH models (see [FZ04] and the references therein). The observations
are generated by the process

Xn = ρ0Xn−1 + σ(Xn−1; a0, b0) εn, n = 1, 2, . . . (32)
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where X0 has some probability distribution µ, σ2(x; a, b) := a+bx2 and |ρ0| < 1, a0, b0 > 0 are
the true values of the parameters. {εn}n≥1 is a sequence of i.i.d. random variables with zero
mean and variance equal to 1, with finite pth order moment for some p to be specified below
and (unknown) density fε that is continuous and positive on R. {εn}n≥1 is independent of X0.
For simplicity, hereafter µ is assumed to be the Dirac distribution δ0. The “true” parameter θ in
the associated statistical model is the vector (ρ0, a0, b0) ∈ Θ ⊂ [−ρ, ρ]× [ma,Ma]× [mb,Mb] ⊂
R3, where ρ ∈ (0, 1), 0 < ma < Ma < ∞ and 0 < mb < Mb < 1 are given such that
ρ +

√
Mb < 1. For illustration, we apply our results to estimate ρ0 and b0.

First, let us check that the Markov chain defined by (32) satisfies Assumption (M) of Sec-
tion III.1 with V (x) = (1+|x|)p. To check (VG1)-(VG2) and the existence of the Qθ−invariant
probability measure πθ, by [MT94][Th. 2.3] it suffices to prove that there exist constants
% ∈ (0, 1), c, ς > 0, a Borel subset S of the real line and a probability measure ν concentrated
on S such that the following two conditions hold true (see also Remark 2): for all θ ∈ Θ,

∀x ∈ R, QθV (x) ≤ % V (x) + ς 1S(x) and Qθ(x, ·) ≥ c ν(·) 1S(x). (33)

In our setting the transition probability of {Xn}n≥0 is given by

Qθ(x,B) =
∫

1B(ρ0x + σ(x, a0, b0)y)fε(y)dy

for any Borel set B ⊂ R. As a consequence, for all θ ∈ Θ and x ∈ R,

QθV (x)
V (x)

=
∫

R

V
(
ρ0x + σ(x, a0, b0)y

)

V (x)
fε(y) dy≤

∫

R

(
1 + ρ|x|+ (

√
Ma +

√
Mb|x|)|y|

1 + |x|
)p

fε(y)dy.

By Fatou’s Lemma,

lim sup
|x|→∞

(
sup
θ∈Θ

QθV (x)
V (x)

)
≤ ρ +

√
Mb < 1.

Next, fix % ∈ (ρ +
√

Mb , 1). There exists s > 0 such that for each |x| > s, QθV (x) ≤ % V (x)
for all θ ∈ Θ. Set S := [−s; s]. For all x ∈ S and θ ∈ Θ,

QθV (x) ≤ ς :=
∫

R

(
1 + ρs + (

√
Ma +

√
Mb s)|y|)p

fε(y) dy < ∞,

so that the first condition in (33) is guaranteed. To check the second condition in (33), define

0 < δ(u) := inf
x∈S, θ∈Θ

fε

(
σ−1(x, a0, b0)(u− ρ0x)

)
, u ∈ R.

Then, for any x ∈ S, Borel set B ⊂ R and θ ∈ Θ,

Qθ(x,B)=
∫

R
1B

(
ρ0x + σ(x, a0, b0)y

)
fε(y)dy =

∫

B

fε

(
σ−1(x, a0, b0)(u−ρ0x)

)

σ(x, a0, b0)
du ≥

∫

B

δ(u)
ma

du.

Define the measure m(du) := m−1
a δ(u) du and notice that m(S) > 0. We deduce from above

that all θ ∈ Θ, x ∈ S and Borel set B ⊂ R,

Qθ(x,B) ≥ m(B) ≥ m(B ∩ S) = m(S) ν(B),
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where ν is the probability measure ν(B) = m(B ∩ S)/m(S). Hence the second condition in
(33) is fulfilled and Assumption (M) is satisfied for {Xn}n≥0 defined in (32).

Second, to estimate ρ0, one can use the least squares estimator

ρ̂n :=
∑n

k=1 XkXk−1∑n
k=1 X2

k−1

= arg min
ρ

1
n

n∑

k=1

F (ρ,Xk−1, Xk),

where F (ρ,Xk−1, Xk) := (Xk − ρXk−1)2. We show that the assumptions of Theorem 3 are
satisfied so that we have an uniform Berry-Esseen bound for ρ̂n. Fix some p > 6. More-
over, assume that

∫
R |x|pfε(x)dx < ∞. Take F ′(ρ,Xk−1, Xk) := −2Xk−1(Xk − ρXk−1) and

F ′′(ρ,Xk−1, Xk) := 2X2
k−1. The conditions (V0) and (V1) are obviously fulfilled. Next, define

m(θ) := Eθ,πθ
[F ′′(ρ0, Xk−1, Xk)] and notice that m(θ)/2 = a0 + (b0 + ρ2

0)m(θ)/2. It follows
that m(θ) = 2a0/(1 − ρ2

0 − b0) > 2ma and thus (V2) holds. Condition (V3) is satisfied with
rn ≡ 0. From Proposition 3, we can use the Qθ−invariant probability measure πθ to check
Condition (V4). Notice that limn Eθ,πθ

[X2
n] = m(θ)/2 > ma and recall that {εn}n≥1 is i.i.d.

We deduce that

σ2
1(θ) = lim

n

4
n

n∑

k=1

Eθ,πθ

[
X2

k−1σ
2(Xk−1, a0, b0)ε2

k

] ≥ 4a0 lim
n
Eθ,πθ

[X2
n] ≥ 4m2

a.

To derive a lower bound for σ2
2(θ), let us decompose

Eθ,πθ

[ n∑

k=1

(
F ′′(ρ0, Xk−1, Xk)−m(θ)

) ]2

=
n∑

k=1

vk,k + 2
∑

1≤k<l≤n

vk,l.

where vk,l := Eθ,πθ

[(
F ′′(ρ0, Xk−1, Xk)−m(θ)

)(
F ′′(ρ0, Xl−1, Xl) −m(θ)

)]
, k ≤ l. It is easily

checked that vk,l = (ρ2
0 + b0)vk,l−1 for k < l. In particular, this implies vk,l > 0, k ≤ l. Next,

by elementary inequalities, we can obtain infθ Eθ,πθ

[
(F ′′(ρ0, X0, X1)−m(θ))2

] ≥ K for some
positive constant K depending on the variance of ε2

1. Deduce that σ2
2(θ) ≥ K, hence (V4)

holds true. Condition (V5) is trivially satisfied. To check the consistency condition (V6) we
take advantage of the explicit form of ρ̂n. Indeed, we have

ρ̂n − ρ0 =
n−1

∑n
k=1

(
XkXk−1 − ρ0Eθ,πθ

[X2
1 ]

)− ρ0n
−1

∑n
k=1

(
X2

k−1 − Eθ,πθ
[X2

1 ]
)

n−1
∑n

k=1

(
X2

k−1 − Eθ,πθ
[X2

1 ]
)

+ Eθ,πθ
[X2

1 ]

=:
∆1n − ρ0∆2n

∆2n + Eθ,πθ
[X2

1 ]
.

By Chebyshev’s inequality, for any d > 0, Pθ,δ0{|∆1n| > d} ≤ d−2n−1Eθ,δ0 [n∆2
1n]. Proposi-

tion 3 guarantees that Eθ,δ0 [n∆2
1n] is uniformly bounded (with respect to θ). Similar arguments

apply for ∆2n. Since Eθ,πθ
[X2

1 ] > ma for all θ, we deduce that (V6) holds with γn = O(n−1).
Finally, by Theorem 3, there exists C > 0 such that

∀n ≥ 1, sup
θ∈Θ

sup
u∈R

∣∣∣∣Pθ,δ0

{ √
n

σ1(θ)m(θ)−1
(ρ̂n − ρ0) ≤ u

}
− Γ(u)

∣∣∣∣ ≤
C√
n

. (34)

Third, let us now turn to the estimation of b0. For this purpose, assume that the εn’s have
a moment of order p for some p > 12. Recall that a0 = m(θ)(1− ρ2

0 − b0)/2 and notice that
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τ2
0 := m(θ)/2 is easily estimated by τ̂2

n := n−1
∑n

k=1 X2
k . Next, define

Tn(b; r, v) :=
1
n

n∑

k=1

ηk(b, r, v)2 with ηk(b, r, v) := (Xk − rXk−1)2 − v(1− r2 − b)− bX2
k−1,

with
∂Tn

∂b
(b; r, v) =

2
n

n∑

k=1

(v −X2
k−1)ηk(b, r, v),

∂2Tn

∂b2
(b; r, v) =

2
n

n∑

k=1

(v −X2
k−1)

2.

If ρ0 and a0 were known, one could easily estimate b0 by least squares, more precisely by
minimizing Tn(b; ρ0, τ

2
0 ) with respect to b. With this idea in mind, our feasible estimator of

b0 is defined as follows

b̂n := arg min
b∈[mb,Mb]

Mn(b) with Mn(b) := Tn(b; ρ̂n, τ̂2
n).

Define F ′(b, Xk−1, Xk) := 2(τ2
0 − X2

k−1) ηk(b, ρ0, τ
2
0 ), F ′′(b,Xk−1, Xk) := 2(τ2

0 − X2
k−1)

2 and
M ′

n(b) := ∂Tn/∂b(b; ρ0, τ
2
0 ), M ′′

n(b) := ∂2Tn/∂b2(b; ρ0, τ
2
0 ). Let us point out that in this case

M ′
n(·) and M ′′

n(·) are only approximations of the derivatives of Mn(·). Checking Assumptions
(V0) to (V2) is obvious and therefore we skip the details. To check Condition (V3) for M ′

n(̂bn),
we use the decomposition M ′

n(̂bn) = An + ∆n = An + ∆1n + ∆2n + ∆3n with

An :=
2
n

n∑

k=1

(τ2
0−X2

k−1)ηk (̂bn, ρ̂n, τ̂2
n), ∆n :=

2
n

n∑

k=1

(τ2
0−X2

k−1)
(
ηk (̂bn, ρ0, τ

2
0 )−ηk (̂bn, ρ̂n, τ̂2

n)
)

∆1n :=
4(ρ̂n−ρ0)

n

n∑

k=1

(τ2
0−X2

k−1)(Xk− ρ0Xk−1)Xk−1

∆2n := −2(ρ̂n − ρ0)2

n

n∑

k=1

(τ2
0−X2

k−1)X
2
k−1

∆3n := 2
{
τ̂2
n(1− ρ̂2

n − b̂n)− τ2
0 (1− ρ2

0 − b̂n)
}
(τ2

0 − τ̂2
n + X2

n/n).

We check that each term satisfies Condition (V3) with a suitable rn. First, we can write

0 =
∂Mn

∂b
(̂bn) = An + Bn with Bn :=

2(τ̂2
n − τ2

0 )
n

n∑

k=1

ηk (̂bn, ρ̂n, τ̂2
n).

By elementary algebra Bn = 2(τ̂2
n − τ2

0 )(̂bn + ρ̂2
n)X2

n/n. Using the Berry-Esseen bound for
τ̂2
n (see Theorem 2) and Markov’s inequality for X2+a

n for some small a > 0, we can prove
that Pθ,δ0{|Bn| ≥ n−1} = O(n−1/2) so that Pθ,δ0{|An| ≥ n−1} = O(n−1/2). By the bound in
Equation (34), we have supθ Pθ,δ0{|ρ̂n − ρ0|j ≥ n−j/2 logj/2 n} = O(n−1/2), j = 1, 2. Use this
with j = 1 and our Theorem 2 for the centered functional ξ(Xk, Xk−1) = (τ2

0 −X2
k−1)(Xk −

ρ0Xk−1)Xk−1 to deduce that Pθ,δ0{|∆1n| ≥ n−1 log n} = O(n−1/2). Next, the bound on
|ρ̂n−ρ0|2 and Theorem 2 applied to the centered functional ξ(Xk, Xk−1) = (τ2

0−X2
k−1)X

2
k−1−

τ4
0 + Eθ,πθ

[X4
k−1] allow us to deduce that Pθ,δ0{|∆2n| ≥ n−1 log n} = O(n−1/2). Finally, use

the Berry-Esseen bounds for ρ̂n and τ̂2
n and Markov’s inequality for X2+a

n with some a > 0 to
deduce that Pθ,δ0{|∆3n| ≥ n−1 log n} = O(n−1/2). Combining these facts gives that M ′

n(̂bn)
satisfies Condition (V3) with rn = n−1 log n. Condition (V4) can be checked using similar
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arguments like those used for ρ̂n and therefore the details are omitted. Condition (V5) is
trivially satisfied. Finally, let us notice that

b̂n − b0 =
∑n

k=1(τ̂
2
n −X2

k−1) ηk(b0, ρ̂n, τ̂2
n)∑n

k=1(τ̂2
n −X2

k−1)
2

,

and thus Condition (V6) can be checked by arguments that we already used in this example.
We deduce from Theorem 3 that, for some suitable τ(θ),

∀n ≥ 1, sup
θ∈Θ

sup
u∈R

∣∣∣∣Pθ,δ0

{ √
n

τ(θ)
(̂bn − b0) ≤ u

}
− Γ(u)

∣∣∣∣ = O

(
log n√

n

)
.

The log factor in this Berry-Esseen bound is the price we pay for estimating b0 by a simple
two-step procedure, easy to implement, where we first estimate ρ̂n and τ̂2

n and then we use
the least squares criterion Mn(b) = Tn(b; ρ̂n, τ̂2

n). We feel that the log factor could be removed
by using a direct approach where the three parameters are estimated simultaneously, but the
investigation of this idea with Markov chain data is left for future work.

VI Conclusion

In this paper, we study Berry-Esseen’s theorem for M -estimators (or minimum contrast es-
timators) of some parameter α0 on the real line. The estimators are defined from a criterion
based on a functional F (α, Xn−1, Xn) of the observation process {Xn}n≥0. Our approach
to derive such bounds relies on Pfanzagl’s method originally proposed for i.i.d. observations
[Pfa71]. In a first step, Theorem 1 in [Pfa71] is extended to obtain Berry-Esseen bounds
for M -estimators based on any sequence of observations satisfying suitable conditions. In a
second step, the specific case of V -geometrically ergodic Markov observations is considered.
We show that such Markov framework allows to apply our general result provided that F
and related functionals F ′, F ′′ satisfy suitable domination conditions. This result covers those
reported in [Rao73, MR89] which are proved under much stronger moment conditions. We
argue that the domination conditions used in the present paper gives an almost optimal treat-
ment of Berry-Esseen bounds for V -geometrically ergodic Markov chains. This is possible due
to the operator-type procedure developed in [HP10].

There are several possible extensions of our results. A straightforward one is to follow
the lines of the proof [Pfa71, Th 2] and to consider an estimator of the standard deviation
in the Berry-Esseen bounds when this standard deviation depends on θ only through α0.
The details are omitted. Next, for more effective bounds, we need to carefully evaluate the
constants involved throughout the paper. This is a direction of future work. Finally, there
is no doubt that the operator-type procedure in [HP10] could be further used in statistical
applications with Markov models, in particular with strongly ergodic Markov chains. This is
under investigation.

A Complements for the proof of Theorem 1.

The reader is referred to Proposition 2 and its proof for the notation and the definitions used
throughout this part. The following lemma gives key properties of the random functions g±.
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Lemma A.1 The following properties hold true.

1. If νn,θ :=
√

n(α̂n − α0)/τ(θ), then An ⊂
{
g−(νn,θ) ≤ 0 ≤ g+(νn,θ)

}
.

2. For ω ∈ Dn,θ, g± are increasing on the interval (−2
√

ln n, 2
√

ln n) provided that

√
n ≥ 2cW

m

[
4σ2 m

√
ln n

σ1

+
√

nωn

]
. (35)

Proof. We can write from Assumptions (A5) and (A3)
∣∣nM ′

n(α0) + (α̂n − α0)nM ′′
n(α0)

∣∣ =
∣∣nM ′

n(α̂n)− (α̂n − α0)nRn(α0, α̂n)
∣∣

≤ nrn + n
∣∣α̂n − α0

∣∣∣∣Rn(α0, α̂n)
∣∣

≤ nrn + n
∣∣α̂n − α0

∣∣ [∣∣α̂n − α0

∣∣ + ωn

]
Wn.

If ω ∈ An then
∣∣nM ′

n(α0) + (α̂n − α0)nM ′′
n(α0)

∣∣ ≤ n
∣∣α̂n − α0

∣∣2cW + nωn

∣∣α̂n − α0

∣∣cW + nrn.

This last inequality is rewritten as

n[M ′
n(α0)− rn] + τ(θ)

√
n

[
M ′′

n(α0)− sign(νn,θ)cW ωn

]
νn,θ − τ(θ)2cW ν2

n,θ ≤ 0

and n[M ′
n(α0) + rn] + τ(θ)

√
n

[
M ′′

n(α0) + sign(νn,θ)cW ωn

]
νn,θ + τ(θ)2cW ν2

n,θ ≥ 0,

with νn,θ :=
√

n(α̂n − α0)/τ(θ). Since 0 < τ(θ) ≤ σ, then we obtain that

g−(νn,θ) ≤ 0 and g+(νn,θ) ≥ 0.

The second statement is proved as follows for g+. Notice that a+ > 0 and g+ is continuous.
If we restrict v < 0, the minimum of this quadratic function g+(v) is achieved at

vmin = − b+

2a+
= −τ(θ)

√
n [M ′′

n(α0)− cW ωn]
2σ2 cW

,

or at the origin if vmin ≥ 0. Now, if ω ∈ Dn,θ and n satisfies the condition (35), it is easy to
check that

vmin < −2
√

ln n

and g+ is strictly increasing on (0,∞). Hence, g+ is increasing on (−2
√

ln n, 2
√

ln n). Similar
arguments apply for g−. ¤

Lemma A.2 We have for n large enough and |u| < 2
√

lnn

E−
n,θ,u ∩Bn,θ ⊂ Dn,θ,u ∩Bn,θ ⊂ E+

n,θ,u ∩Bn,θ. (36)

Proof. It is understood below that ω ∈ Bn,θ. Since Bn,θ ⊂ En,θ ∩ Dn,θ and |u| < 2
√

lnn,
the second statement in Lemma A.1 guarantees that for n large enough

√
n(α̂n − α0)/τ(θ) ≤ u =⇒ g+

(√
n(α̂n − α0)/τ(θ)

) ≤ g+(u).

Since Bn,θ ⊂ An, the first assertion in Lemma A.1 yields g+
(√

n(α̂n − α0)/τ(θ)
) ≥ 0 so that

g+(u) ≥ 0 when
√

n(α̂n − α0)/τ(θ) ≤ u. This proves the second inclusion in (36).
Next, assume that g−(u) ≥ 0. Since g− is increasing, we have

√
n(α̂n − α0)/τ(θ) > u =⇒ g−

(√
n(α̂n − α0)/τ(θ)

)
> g−(u) ≥ 0.

Since Bn,θ ⊂ An, we know from Lemma A.1 that g−(
√

n(α̂n − α0)/τ(θ)) ≤ 0 which is in
contradiction with the above inequality. Thus, g−(u) ≥ 0 gives

√
n(α̂n − α0)/τ(θ) ≤ u. ¤
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B Complements for the proof of Lemma 1

A first step to control the constants in Lemma 2 is to study the resolvent map (z −Qθ)−1 of
the transition kernel Qθ acting on Bγ .

Lemma B.1 Let δ, r be such that κγ < r < 1 and 0 < δ < 1− r. Then, for any z ∈ C such
that |z| > r and |z − 1| > δ, the operator z −Qθ is invertible on Bγ, and we have:

Hγ(δ, r) := sup
{‖(z −Qθ)−1‖γ , θ ∈ Θ, |z| > r, |z − 1| > δ

}
< ∞.

Proof. Let g ∈ Bγ , and let us write hθ = g − πθ(g) 1E . Since πθ(hθ) = 0, it follows from
(VG2) that ‖Qn

θ hθ‖γ ≤ Cγ κn
γ ‖hθ‖γ . Now assume |z| > r. Then

∑

k≥0

|z|−(k+1) ‖Qk
θhθ‖γ ≤ Cγ

κγ

∑

k≥0

(κγ

r

)k+1
‖hθ‖γ ≤ Cγ

r − κγ
‖hθ‖γ .

Thus, ψθ :=
∑

k≥0 z−(k+1) Qk
θhθ is absolutely convergent in Bγ , we have (z−Qθ)ψθ = hθ and

‖ψθ‖γ ≤ Cγ ‖hθ‖γ/(r − κγ). Besides, if z 6= 1, then we clearly have

(z −Qθ)
(

πθ(g)
z − 1

1E

)
= πθ(g) 1E .

Now assume |z| > r and |z − 1| > δ. Then the function fθ := (πθ(g)/(z − 1)) 1E + ψθ is
such that (z −Qθ)fθ = g. Thus (z −Qθ)−1g = fθ. From (20), we obtain |πθ(g)| ≤ πθ(|g|) ≤
πθ(V γ) ‖g‖γ ≤ b1 ‖g‖γ and ‖hθ‖γ = ‖g − πθ(g) 1E‖γ ≤ (1 + b1) ‖g‖γ . This gives: ‖fθ‖γ ≤
(b1/δ)‖g‖γ + Cγ(1 + b1)‖g‖γ/(r − κγ), hence Hγ(δ, r) ≤ [b1/δ + Cγ(1 + b1)/(r − κγ)] < +∞.

¤
Second, the constants involved in the Doeblin-Fortet inequality and the weak continuity

condition of the Keller-Liverani theorem are proved to be uniform in θ and to depend on ξ
only via the constant Cξ of (Dm0). We appeal to [KL99, Rk. p. 145] and to the improvements
given in [Liv04]. In the context of strongly ergodic Markov chains, the hypotheses resulting
from [KL99, Liv04] are stated in [HP10, sect. 4] and used here with the auxiliary norm
‖f‖1 := sup |f |/V on Bγ . In the sequel, for 0 < γ < γ′ ≤ 1, we denote by L(Bγ ,Bγ′) the
space of the bounded linear operators from Bγ to Bγ′ , and by ‖ · ‖γ,γ′ the associated operator
norm (with the convention ‖ · ‖γ = ‖ · ‖γ,γ when γ′ = γ).

Lemma B.2 Let γ ∈ (0, 1). We have:

(a) ∀θ ∈ Θ, ∀t ∈ R, ∀n ≥ 1, ∀f ∈ Bγ , ‖Qθ(t)nf‖γ ≤ Cγ κn
γ ‖f‖γ + b1 ‖f‖1;

(b) ∀θ ∈ Θ, ∀t ∈ R, ‖Qθ(t)−Qθ‖γ,1 ≤ 22−γ Cξ
1−γ
m (Eγ + E1) |t|1−γ ‖f‖γ,

where Eγ := supθ∈Θ ‖Qθ‖γ , E1 := supθ∈Θ ‖Qθ‖1 and Cγ, κγ, b1 are defined in (20) (21).

Proof. By using the inequality ‖Qθ(t)nf‖γ ≤ ‖Qn
θ |f | ‖γ , Assertion (a) easily follows from

(21) and (20). To establish (b), let us recall that we have from (Dm0) (use V ≥ 1)

|ξ(θ, x, y)|1−γ ≤ C
(1−γ)/m
ξ (V (x) + V (y))1−γ ≤ 21−γ C

(1−γ)/m
ξ

(
V (x)1−γ + V (y)1−γ

)
.
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Let f ∈ Bγ . From the definition of Qθ(t)f and the inequalities |f | ≤ V γ‖f‖γ , |eia − 1| ≤
2|a|1−γ , we obtain that

∣∣(Qθ(t)f)(x)− (Qθf)(x)
∣∣ ≤ ‖f‖γ

∫

E

∣∣∣eitξ(α0,x,y) − 1
∣∣∣ V (y)γ Qθ(x, dy)

≤ 22−γ Cξ

1−γ
m |t|1−γ ‖f‖γ

[
V (x)1−γ

(
QθV

γ
)
(x) + (QθV )(x)

]
,

from which we deduce (b). ¤
For the next lemma (used to prove Lemma 3), we introduce the following notations. For

any θ ∈ Θ, k ∈ N, t ∈ R, let us denote by Qθ,k(t) the operator associated to the kernel:
Qθ,k(t)(x, dy) = ikξ(α0, x, y)keitξ(α0,x,y) Qθ(x, dy) (x ∈ E).

Lemma B.3 Let 0 < γ < γ′ ≤ 1 and k = 0, . . . , m0:

(a) If γ + k/m < γ′ ≤ 1, then the map t 7→ Qθ,k(t) is continuous from R to L(Bγ ,Bγ′).

(b) If k ≤ m0 − 1 and γ + (k + 1)/m < γ′ ≤ 1, then the map t 7→ Qθ,k(t) is continuously
differentiable from R to L(Bγ ,Bγ′), and for all t ∈ R, (dQθ,k/dt)(t) is the operator in
L(Bγ ,Bγ′) associated to the kernel Qθ,k+1(t).

Finally, we have Qk,γ,γ′ := sup{‖Qθ,k(t)‖γ,γ′ , θ ∈ Θ, t ∈ R} < ∞, and Qk,γ,γ′ depends on ξ
but only via the constant Cξ of (Dm0).

Proof. Set ∆θ,k := Qθ,k(t) − Qθ,k(t0), and let 0 < ε ≤ 1 be such that γ + (k + ε)/m ≤ γ′.
Using |eia − 1| ≤ 2|a|ε and (Dm0), we obtain for f ∈ Bγ :

|∆θ,kf(x)| ≤ 2 |t− t0|ε ‖f‖γ

∫
|ξ(α0, x, y)|k+ε V (y)γQθ(x, dy)

≤ 21+ k+ε
m Cξ

k+ε
m |t− t0|ε ‖f‖γ

(
V

k+ε
m (x)QθV

γ(x) + QθV
γ′(x)

)
.

Since the functions V −γ QθV
γ and V −γ′ QθV

γ′ are bounded on E uniformly in θ ∈ Θ, we
deduce that ‖∆θ,kf‖γ′ ≤ Dξ |t − t0|ε ‖f‖γ , where Dξ is a positive constant depending on Cξ

(but independent of θ). This gives (a). The proof of (b) is similar by using the operators
Qθ,k(t)−Qθ,k(t0)− (t− t0)Qθ,k+1(t0) and the inequality |eia − 1− ia| ≤ 2|a|1+ε. ¤
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