Communities of Minima in Local Optima Networks of Combinatorial Spaces

Abstract : In this work we present a new methodology to study the structure of the configuration spaces of hard combinatorial problems. It consists in building the network that has as nodes the locally optimal configurations and as edges the weighted oriented transitions between their basins of attraction. We apply the approach to the detection of communities in the optima networks produced by two different classes of instances of a hard combinatorial optimization problem: the quadratic assignment problem (QAP). We provide evidence indicating that the two problem instance classes give rise to very different configuration spaces. For the so-called real-like class, the networks possess a clear modular structure, while the optima networks belonging to the class of random uniform instances are less well partitionable into clusters. This is convincingly supported by using several statistical tests. Finally, we shortly discuss the consequences of the findings for heuristically searching the corresponding problem spaces.
Type de document :
Article dans une revue
Physica A: Statistical Mechanics and its Applications, Elsevier, 2011, 390 (9), pp.1684 - 1694
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00563461
Contributeur : Sébastien Verel <>
Soumis le : mercredi 18 juillet 2012 - 15:29:36
Dernière modification le : samedi 16 janvier 2016 - 01:10:23
Document(s) archivé(s) le : mardi 13 décembre 2016 - 17:21:13

Fichiers

QAPcommunities.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00563461, version 1
  • ARXIV : 1207.4445

Citation

Fabio Daolio, Marco Tomassini, Sébastien Verel, Gabriela Ochoa. Communities of Minima in Local Optima Networks of Combinatorial Spaces. Physica A: Statistical Mechanics and its Applications, Elsevier, 2011, 390 (9), pp.1684 - 1694. 〈hal-00563461〉

Partager

Métriques

Consultations de
la notice

375

Téléchargements du document

160