Communities of Minima in Local Optima Networks of Combinatorial Spaces

Abstract : In this work we present a new methodology to study the structure of the configuration spaces of hard combinatorial problems. It consists in building the network that has as nodes the locally optimal configurations and as edges the weighted oriented transitions between their basins of attraction. We apply the approach to the detection of communities in the optima networks produced by two different classes of instances of a hard combinatorial optimization problem: the quadratic assignment problem (QAP). We provide evidence indicating that the two problem instance classes give rise to very different configuration spaces. For the so-called real-like class, the networks possess a clear modular structure, while the optima networks belonging to the class of random uniform instances are less well partitionable into clusters. This is convincingly supported by using several statistical tests. Finally, we shortly discuss the consequences of the findings for heuristically searching the corresponding problem spaces.
Document type :
Journal articles
Liste complète des métadonnées

Cited literature [28 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00563461
Contributor : Sébastien Verel <>
Submitted on : Wednesday, July 18, 2012 - 3:29:36 PM
Last modification on : Thursday, February 21, 2019 - 10:52:49 AM
Document(s) archivé(s) le : Tuesday, December 13, 2016 - 5:21:13 PM

Files

QAPcommunities.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00563461, version 1
  • ARXIV : 1207.4445

Citation

Fabio Daolio, Marco Tomassini, Sébastien Verel, Gabriela Ochoa. Communities of Minima in Local Optima Networks of Combinatorial Spaces. Physica A: Statistical Mechanics and its Applications, Elsevier, 2011, 390 (9), pp.1684 - 1694. ⟨hal-00563461⟩

Share

Metrics

Record views

620

Files downloads

210