
HAL Id: hal-00563410
https://hal.science/hal-00563410

Submitted on 24 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Interactive hydraulic erosion using CUDA
Richard Bézin, Alexandre Peyrat, Benoît Crespin, Olivier Terraz, Xavier

Skapin, Philippe Meseure

To cite this version:
Richard Bézin, Alexandre Peyrat, Benoît Crespin, Olivier Terraz, Xavier Skapin, et al.. Interactive
hydraulic erosion using CUDA. International Conference on Computer Vision and Graphics 2010
(ICCVG), Sep 2010, Varsovie, Poland. pp.225-232, �10.1007/978-3-642-15910-7�. �hal-00563410�

https://hal.science/hal-00563410
https://hal.archives-ouvertes.fr

Interactive hydraulic erosion using CUDA

Richard Bezin1, Alexandre Peyrat1, Benoit Crespin1, Olivier Terraz1, Xavier
Skapin2, and Philippe Meseure2

1 XLIM - UMR 6172 - CNRS, France
University of Limoges

2 University of Poitiers

Abstract. This paper presents a method to simulate hydraulic erosion
and sedimentation on a terrain represented by a triangular mesh in real-
time. Our method achieves interactive performances by dynamically dis-
placing vertices using CUDA following physically-inspired principles; the
mesh is generated in a preprocessing step to avoid degenerated cases in
highly deformed areas.

1 Introduction

Fluvial processes study how landforms are created by rivers and streams through
erosion, sediment transport and deposit over time. In this paper we’re interested
in reproducing the hydraulic erosion process due to water, neglecting chemical
dissolution and other marginal processes. Our goal is to automatically obtain vi-
sually realistic terrains eroded by water flows, for example by deepening a valley
due to stream erosion. Since hydraulic erosion is mainly due to maximal flood
levels rather than normal activity [1], dynamic control of the rate of flow is de-
sirable. The main contribution of our approach is its ability to produce plausible
results at an interactive framerate even for very large scenes, by implementing
our method within the CUDA framework [2]. As a consequence, some choices are
inherent to this implementation, such as using a particle system to represent the
water flow, which performs well with highly parallelized architectures, although
real-time fluid simulations may rely on other discretization models. A snapshot
of our application is shown on Fig. 3.

Another consequence is that some processes may be neglected or simplified in
order to maintain interactive rates, if their visual contribution does not appear
significant in the final result. As stated earlier, chemical dissolution for instance
does not have a significant impact on the visually perceptible details due to
hydraulic erosion [1]. Other processes such as sediments acting erosively on the
surface would be too computationally expensive for any existing method if we
were to represent each rolling and sliding grain in the flow.

This paper is organized as follows. We first describe recent works in the
literature addressing the problem of hydraulic erosion in section 2. Section 3
describes our hydraulic erosion model and its implementation with CUDA; an
adaptive heightfield generation method is also presented to reduce the amount of
triangles in a preprocessing step. Finally, results obtained with our application
are shown in section 4.

2 Previous Work

Recent works focus on terrain modifications by hydraulic processes, by explicitly
representing fluid motion and interactions between the fluid and the initial ter-
rain model. Representations based on voxels [3, 4] divide the terrain into a set of
small 3D cubes. Each voxel stores some information about the amount of mate-
rial it contains, its geological resistance to hydraulic erosion, etc. In [5], visually
plausible concave surfaces are created through erosion using discrete surface cur-
vature obtained from the voxel grid. Navier-Stokes equations can be solved by
different numerical methods. A semi-Lagrangian method is used in [6] to run on
simple scenes in real-time. The capacity C for a particle to transport sediment
depends on its velocity: if C is above a predefined threshold, it can erode the
terrain by sweeping sediment away, otherwise it may deposit sediment. Other
recent approaches take into account the local slope of the terrain and evapo-
ration [7], or different types of material [8]. Smoothed Particle Hydrodynamics
(SPH) are used in [9] to represent fluid motion, with the terrain modelled as a
triangulated heightfield. Interactions between the fluid and the terrain are com-
puted through the use of static particles sampling the triangulated mesh, which
exchange data with SPH particles: erosion is achieved by transferring material
from static particles to SPH particles, whereas sediment deposition is the in-
verse process, and terrain modifications are then obtained by vertical extrusion
of the corresponding triangles. Simulations conducted with this approach run in
interactive time with up to 25K particles thanks to a GPU implementation.

However, even if results obtained with these methods are visually spectac-
ular, their high computation and memory costs make them either prohibitive
for real-time applications or limited to simple scenes. Therefore our goal is to
get the same quality with more approximations. A good example is the fluid
discretization model: SPH is a well-known method for accurately simulating
small-scale details, but other particle-based fluid models may provide better re-
sults to enforce incompressibility [10]. By relying on a similar philosophy, we
aim at approximating erosion and fluid-terrain exchanges in order to generate a
visually realistic but not necessarily precise simulation.

3 Hydraulic Erosion Model

We use a particle-based fluid model, relying on the n-body gravitational simu-
lation provided within CUDA where particle-particle interactions are computed
with a DEM method [2]. We also choose to represent the terrain as a non-regular
triangular mesh; triangles are obviously the best choice for real-time simulations,
but implies some kind of level-of-details process to avoid degenerated triangles
in strongly eroded areas, as presented in section 3.3. The main loop of our sim-
ulation method can be summarized as:

1. Update fluid particles positions
2. Calculate collisions and accumulate erosion on triangles

3. Calculate sediment deposition from fluid particles and accumulate sedimen-
tation on triangles

4. Update vertices’ positions and remove unnecessary particles

We describe in the following how to compute collisions and update vertices based
on erosion and sedimentation processes.

n

v
′

n

v

α

(a) (b) (c) (d)

Fig. 1. (a) Collision handling between a particle and a segment in 2D (b) Uniform
vertical displacement of endpoints (c) Weighted displacement depending on endpoints’
height values (d) 2D representation of the local volume eroded from one vertex (in gray)
and transferred to the nearest fluid particle

3.1 Particle/Triangle Collision

In order to obtain a realistic fluid flow, we need to detect and handle colli-
sions between particles and triangles. Our method inspired by [11] computes
segment/triangle intersections. In our case this segment is given by the succes-
sive positions of a fluid particle pt and pt+1, and we keep the closest triangle to
pt. Velocity v is decomposed in vt and vn, its tangential and normal velocity
relative to the normal vector n respectively; after collision, normal velocity v′

n

is reduced to simulate damping and force particles to slip over the surface as
shown on Fig. 1a. When colliding with the triangle, the particle erodes it by a
certain amount C (as in [7]):

C = Kc · sinα · |v| (1)

where Kc is the erosion rate and α is the triangle’s tilt angle, meaning that
horizontal areas are less eroded. To apply erosion we then need to displace its
vertices downwards: if vertices are uniformly displaced by the same amount C/3,
the slope of the triangle is preserved but unrealistic results may appear (see Fig.
1b). We choose to apply a larger weight to the highest vertex, which produces
more gentle slopes as shown on Fig. 1c. The final displacement applied to a vertex
is the sum of displacements computed from each triangle to which it belongs.

3.2 Erosion and sedimentation

Displacements due to hydraulic erosion are applied to update vertices positions
as described above, which in turn generate sediments that will be transported by
the flow. Actually displacements are not taken into account at each simulation
step, instead we choose to accumulate displacements during n frames before
applying erosion every n steps only. This implies that triangle-particle collisions
are not as accurate as possible, however re-hashing the entire mesh at each step
would be too expensive even on GPU. Another problem when applying erosion
at each step would be that only small-sized sediment particles are generated,
although sediments are usually composed of mineral rocks or sands of various
sizes, depending on the composition of the river bed [1]. Parameter n, as well as
all the other parameters of our model, can be modified during the simulation.

We derive the size of a sediment eroded from the bed at a given vertex from
the approximated volume of the cone that is “lost” due to erosion as shown on
Fig. 1d. This spherical sediment of size s is then transported by the flow, and will
eventually be deposited back to the bed. Implementing this transport/deposition
process is complicated, since it depends on many parameters, including sediment
size and shape, mineral composition and flow velocity. The well-known Hjulström
curve for example [1] rules that, for the same flow velocity, small-sized grains are
transported for a longer period of time. Because computing exact flow velocity
is a time-consuming task, we simplify the problem by considering the expected
transport time ε of a sediment:

ε = dεM (1− sx

sxM
)e (2)

where εM and sM represent the maximal transport time and the maximal size
of a sediment particle respectively, and x = 1/sM .

Newly created sediment grains are advected with the flow by attaching them
to the nearest fluid particle. At each subsequent step of the simulation their
transport time ε is decremented: when it reaches zero the sediment falls from its
fluid particle down to the river bed. Eq. 2 ensures that near-zero size sediments
will be transported during εM steps before being deposited, whereas large sedi-
ments of size sM will only have one step in a flow with the same velocity. If the
fluid particle slows down, the sediment will be transported on a shorter distance,
which is consistent with Hjulström’s rule.

Sedimentation means transferring the volume of the sediment to the nearest
triangle below its attached fluid particle. As with erosion, this volume is dis-
tributed among the three vertices but those are displaced upwards such that the
gained volume is equivalent, using different weights (a similar rule can be found
in [9]). Fig. 3 shows the application of our algorithms with eroded or sedimented
triangles colored in purple. The iterative nature of our model is visible on Fig.
4.

3.3 Implementation with CUDA and Adaptive Heightfield
Generation

Our implementation runs entirely on GPU and can generate particles through
emitters or deactivate particles if they evaporate or flow out of the simulation.
Particles are stored in a hashing grid to accelerate neighborhood queries. An
auxiliary hashing grid storing triangles is used for efficient particle-triangle colli-
sion detection [12], and is updated every n steps when erosion or sedimentation
is applied (ie when vertices are displaced).

The goal with GPU programming is to reduce concurrent access to read
or write data. If we consider that a particle may erode or sediment only one
triangle at each step, our main problem is to efficiently compute which par-
ticles contribute to the displacement applied to each vertex. We give details
about this computation below, vertices and particles displacements described in
sections 3.1 and 3.2 being easier to implement. To handle particle-triangle in-
teractions, we extend the work presented in [13] based on four successive steps
implemented through atomic operations to ensure maximal performances; Ta-
ble 1 describes an example where particles respectively indexed 0 and 2 collide
with triangles defined by vertices (4, 6, 8) and (2, 6, 8). Collisions are stored in
two arrays indexParticle and indexVertex (step a), then these arrays are sorted
regarding indexVertex (step b). Two arrays cellStart and cellEnd are filled us-
ing the first and last index of each vertex stored in indexVertex (step c); for
example, vertex 6 starts at index 2 and stops at index 4 in indexVertex. Finally
particles which contribute to displace each vertex v are obtained by consider-
ing the sorted array indexParticle from cellStart[v] to cellEnd[v]-1 (step d); for
vertex 6 these are particles 0 and 2, stored in indexParticle at indices 2 and 3.

0 1 2 3 4 5 6 7 8 ...

indexParticle 0 0 0 1 1 1 2 2 2 ...

indexVertex 4 6 8 2 6 8 ...

0 1 2 3 4 5 6 7 8 ...

indexVertex 2 4 6 6 8 8 ...

indexParticle 2 0 0 2 0 2 ...

(a) (b)

0 1 2 3 4 5 6 7 8 ...

cellStart 0 1 2 4 ...

cellEnd 1 2 4 6 ...

vertex 0 1 2 3 4 5 6 7 8 ...

particles 2 0 0,2 0,2 ...

(c) (d)
Table 1. Finding particles that contribute to the displacement applied to each vertex

To get realistic results, we need to refine triangles in strongly eroded areas
to avoid visually perceptible artifacts due to initial mesh resolution. This well-
known problem [14] implies recursive subdivisions of neighbouring triangles, but
we can’t refine the mesh on the fly without degrading performances or increasing
memory consumption to store neighbouring relationships. We choose to imple-
ment an offline pre-processing pass to generate more details where the erosion is

likely to occur. Generating larger triangles in areas where less erosion is expected
is also a way to increase performances since there will be less triangles to handle
in the simulation. Fortunately, detecting areas where erosion may be strong is
relatively easy because the fluid always flows downwards; selection criteria for
a triangle to be subdivided are thus its depth and its gradient vector given by
the heightfield using vertices interpolation. Therefore the highest gradient and
depth in a region, the more details we add (see Fig. 2).

Fig. 2. Different levels of mesh subdivision.

4 Results and Conclusion

Fig. 3. Left. Streams falling down and eroding a mountain in real-time. Right. Zoom
on a specific area, showing affected triangles in purple and particles coloration given
by their position in the flow

After the terrain is subdivided by the method above and the user has set
particles emitters, simulation starts and lets the user modify all parameters in
real-time through sliders (time step, erosion rate, sediment capacity constant,
etc.), as shown on Fig. 3 (top-left). The snapshot presented on Fig. 3 shows
our interactive application with multiple fast-flowing streams with 130k parti-
cles running down a mountain terrain with 80k triangles at approx. 20 fps on
a NIVIDIA Quadro FX 3700M. As a comparison, 1.38 seconds per frame are
reported in [9] for the same number of particles, but these timings include a
basic rendering of the fluid’s surface. Another example is shown on Fig. 4 where
the initial mesh presented on Fig. 2 (right) is deepened by a running river, and
rendered offline on a supercomputer with 3x Tesla C1060 processors at approx.
9 seconds per frame for 20k triangles and 130k particles.

Fig. 4. Canyon progressively deepened by a river

Our method can be considered as physically-inspired, since it relies on phys-
ical principles such as gravity and friction but neglects other phenomena which
would be too computationally expensive. Results are visually realistic and ob-
tained in real-time; we are able to increase the number of particles in the simula-
tion significantly compared to previous approaches. Integrating other phenomena
related to erosion in the future should be relatively straightforward, for instance
rain or sediment diffusion into the fluid (as in [9]). Handling dynamic topological
changes occurring with hydraulic erosion (some parts of a cliff falling into a river
is a good example) will require more complex mesh representations such as a 3D
topological model, and an extra amount of work to maintain interactive rates.
Another example is lateral erosion, which has an impact for example for valleys
deepened by rivers. Unlike most existing methods which only consider vertical

erosion, in our approach we can choose to displace vertices along their normal
vector instead of the vertical axis. However lateral erosion has to be limited be-
cause it can involve complex topological problems, such as merging or splitting
material volumes.

References

1. Kevin Hiscock. Hydrogeology: Principles and Practice. Wiley-Blackwell, 2005.
2. Hubert Nguyen, editor. GPU Gems 3. NVIDIA Corporation, 2008.
3. Julie Dorsey, Alan Edelman, Henrik Wann Jensen, Justin Legakis, and Hans K.

Pedersen. Modeling and rendering of weathered stone. In SIGGRAPH, pages
225–234, 1999.

4. N. Ozawa and I. Fujishiro. A morphological approach to volume synthesis of
weathered stone. In Volume Graphics, pages 367–378, 1999.

5. D. Jones Michael, Farley McKay, Butler Joseph, and Beardall Matthew. Directable
weathering of concave rock using curvature estimation. IEEE Transactions on
Visualization and Computer Graphics, pages 81–94, 2009.

6. B. Neidhold, M. Wacker, and O. Deussen. Interactive physically based fluid and
erosion simulation. In Eurographics Workshop on Natural Phenomena, 2005.

7. Xing Mei, Philippe Decaudin, and Bao-Gang Hu. Fast hydraulic erosion simulation
and visualization on gpu. In Pacific Graphics, pages 47–56, 2007.

8. Ondřej Št’ava, Bedřich Beneš, Matthew Brisbin, and Jaroslav Křivánek. Interactive
terrain modeling using hydraulic erosion. In Symposium on Computer Animation,
pages 201–210, 2008.

9. Peter Kristof, Bedřich Beneš, Jaroslav Krivanek, and Stava Ondrej. Hydraulic
erosion using smoothed particle hydrodynamics. In Eurographics, pages 219–228,
2009.

10. Funshing Sin, Adam W. Bargteil, and Jessica K. Hodgins. A point-based method
for animating incompressible flow. In Symposium on Computer Animation, pages
247–255, 2009.

11. Didier Badouel. An efficient ray-polygon intersection, Graphics Gems I, pages
390–393. 1990.

12. Javor Kalojanov and Philipp Slusallek. A parallel algorithm for construction of
uniform grids. In High Performance Graphics, pages 23–28, 2009.

13. Simon Green. Particle-based fluid simulation for games. In Game Developers
Conference, 2008.

14. Brian Von Herzen and Alan H. Barr. Accurate triangulations of deformed, inter-
secting surfaces. In SIGGRAPH, pages 103–110, 1987.

