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Abstract

Random graph and tree are two topologies used to build

overlay networks. These overlay networks may be used by

large scale discovery mechanisms to run search algorithms.

The Distributed Spanning Tree (DST) is another topology

that may be used as overlay. In a DST, every computer is

a leaf. DST’s non-leaf nodes are sets of computers instead

of computers. Thus, it allows the use of tree traversal algo-

rithms while avoiding the usual tree’s bottlenecks. As a re-

sult, the DST allows more efficient executions of search al-

gorithms in term of number of sent messages and in term

of load balancing. In this paper, we describe the results of

several simulations of flooding algorithm executions. These

simulations are run on the three previous topologies and

for different numbers of nodes. These simulations indicate

that the DST structure is more efficient than graph topology

which, in turn, is more efficient than tree topology in term

of traversal speed and in term of supported load for every

simulated scale. We study as well the behaviour of the DST

when nodes are added or deleted to show that the struc-

ture is adapted to dynamic environments.

1. Introduction

Grid middleware allows resources sharing between sev-

eral entities. These resources consist into a wide variety of

hardware, data and software. As the size of Grid deploy-

ments increases, finding the resource that is needed by a

user becomes an issue. To solve this issue, peer-to-peer sys-

tems are an inspiration source for Grid middleware because

they propose several scalable search mechanisms [8]. These

mechanisms could be classified into two categories [9].

The first category is composed by mechanisms based on

a directory. Each resource has to register itself by specify-

ing its name and its location to be visible. Then, clients can

find this resource by giving the corresponding name to the

directory. Distributed Hash Tables are a good example of di-

rectories based peer-to-peer search mechanisms.

The second category is composed by mechanisms based

on flooding algorithms. Information on resources are stored

on each computer participating to the peer-to-peer system.

The computers are connected together to form a communi-

cation graph, also called overlay network. When a peer, a

node of the graph, is looking for some information that it

does not already have, it asks its adjacent nodes for the in-

formation. If they do not own it, these nodes forward the

request to their adjacent nodes, and so on until the informa-

tion is found or until a specified maximum number of hops

is reached (usually called Time To Leave or TTL).

The performances of flooding algorithms depend on

many factors. One of them is the topology of the com-

munication graph. The tree is an interesting topology

because its complexity in number of exchanged mes-

sages is optimum as it directly depends on the num-

ber of nodes. But searches on trees generate bottlenecks

when the load of the system increases. So flooding algo-

rithms are run most of the time on pseudo-random graphs

although their complexity in term of number of mes-

sages is higher.

To improve the performances of flooding algorithms, we

propose a new way to build a tree which does not have the

usual tree’s bottlenecks. This original structure, called Dis-

tributing Spanning Tree (DST), has already been described

from a theoretical point of view in two previous publica-

tions [1, 3]. But no study about how it behaves in practise

has been made public. The purpose of this paper is to share

pertinent results and comments about simulations that were

made to study the performances of flooding algorithms us-

ing a DST structure. These performances are compared with

two others topologies: pseudo-random graphs and trees.

Simulations have been used numerous times to study

performance of flooding algorithms in various contexts. For

example, G. Fletcher and H. Sheth [5] compare search on a

CAN distributed hash table, on a random graph and on a

Pandurangan Graph to evaluate their efficiency . L. Qin et

Al. [10] wrote a comparative study about performances and

supported load of various random-graph topologies and var-

ious resources distribution. Beside simulations, some peo-
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ple, like R. Gaeta et Al. [6], also propose analytical model

for those search algorithms on random graphs.

The article is organised the following way. The DST is

shortly presented in section 2. We study the cost in term of

messages when nodes arrive or leave the DST in section 3.

The performances comparisons are conducted on a simu-

lator described in 4. The simulations results are discussed

in section 5 and exhibit the interest of the DST structure for

search algorithms. Then, we conclude on the use of the DST

structure in several distributed contexts.

2. The DST Structure

The DST structure is designed to correct the drawbacks

of trees and random graphs in large scale overlay networks.

The DST is a virtual tree which covers the whole set

of computers — spanning — and where nodes are dis-

tributed across several computers to avoid bottlenecks. A

DST is similar to a B-Tree [7]: it is composed of several

levels. All leaves belong to the same level, each non-leaf

node has a limit number of sons and the root, if it is not a

leaf, has at least two sons. The level 0 contains the leaves of

the tree. The level 1’s nodes are complete graphs of leaves,
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Figure 1: Level 1’s nodes of a DST

Fig. 1 presents 3 nodes of level 1 and 8 leaves. Upper lev-

els of a DST are structured the following way: any node of

level n+1 is a complete graph of its children which are nodes

of level n. The Fig. 2 is an example of a level 2’s node.
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Figure 2: Level 2’s nodes of a DST

By definition, a DST’s node is distributed through its de-

scendants. Thus, a DST’s node is distributed through the

computers that are leaves of the node’s subtree. To imple-

ment a node of level n with n>2 we connect each computer

of this node to at least one computer of each children of the

node as shown in Fig. 3. Thus, any computer of a node can

send a message to every children of this node via the com-

puters that are inside these children.

Using this construction, each node generates its own

“routing table”. The routing table of one node has as many
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Figure 3: Links that implement a complete graph of graphs.

entries as levels in the DST and each entry contains a link

to a computer that resides inside each brother nodes. On

Fig. 3, if node 2 wants to broadcast a message to its de-

scendant, it will send a message to node 21, node 22 and

node 23. If, the process that initiates the broadcast is lo-

cated in node 213, it will send its message to the process of

node 21 located in node 213, to the process of node 22 lo-

cated in node 221 and to the process of node 23 located in

node 232. Then, node 21, node 22 and node 23 forward the

message to their children using their complete graph.

This quick explanation of the DST’s structure provides

enough information to understand that a DST is a tree where

non-leaf nodes are complete graphs of their children. By re-

cursively creating complete graphs, we are able to distribute

non-leaf nodes between their children and create a spanning

tree per node. As every computer acts as a node of differ-

ent levels, it is possible to share the load of these levels be-

tween several and thus avoid the usual tree’s bottlenecks.

For more information about the DST structure and details

on construction algorithms, a complete description of the

DST structure is available in [3].

3. The DST management

The DST has an incremental structure : we add and we

delete nodes as participants come or leave the DST. To be

a DST member, a node must know another node which is

already in the DST. We study here the cost of adding and

deleting nodes from the DST. We also introduce the notion

of limits with an inferior and superior limit which apply to

the size of a node. If a node is too small (under the inferior

limit) it should be merged, it should be split if it is too big

(above the superior limit).

3.1. Cost of adding nodes

Figures 4 and 5 show the number of messages for a 4

and a 8 levels DST. The abscissa indicates the number of

messages necessary to add a node and the ordered indi-

cates the number of nodes that has generated this number

of messages (two nodes can generate the same number of

messages). In this figure, each peak matches with the split

of a higher level node. If the node is high in the hierarchy

then more nodes will be affected by the splitting which im-

plies an important number of messages. These figures in-

dicate that the number of messages needed to split a node
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Figure 4: Number of messages with 4 levels.
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Figure 5: Number of messages with 8 levels.

grows exponentially with the level of the node. Besides, the

number of splits for a node decrease logarithmically with its

level in the DST.

Thus, we have a lot of splits into first levels, those are

costless in comparison with higher level splits which are far

more seldom. In this simulation we have a relation of ten

between both.

3.2. Cost of deleting a node

We study here the impact of different factors coming

from the departure of a node.

Impact of the area where the node is deleted We test the

DST behaviour when nodes leave in a restricted area. For

those simulations we use a DST with 50 nodes in which

we delete 30 nodes. The inferior and superior limits for the

nodes size are respectively 2 and 4. First we delete node ran-

domly from the DST. This result will be the witness. Then,

we focus on a restricted area. We ran 20 simulations for both

situations and note the total number of messages needed for

all deletes. Both curves are shown on figure 6 (a). The aver-

age cost of random deleting is 1374 messages for 30 leav-

ing nodes. When deleting in a restricted area the cost is 1555

messages for the same number of leaving nodes. The prob-

ability of merging nodes is higher when deleting from the

same area. The merging operation has an important cost,

that explain this result. Thus a good merging algorithm is

paramount. We focus on the reorganisation cost in the next

paragraph.

Reorganisation cost We use a DST with the smallest pos-

sible limits (2 and 4). We create a DST with 90 nodes and

5 levels. We delete 88 nodes so that we can study all the
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Figure 6: Cost study of deleting.

steps of merges. The results are given on figure 6 (b). We ob-

serve peak for series 2 and 3 just before the tenth delete.

This peak corresponds to the merging operation that implies

the delete of the level 5. All peaks are due to reorganisation.

The peaks are very pronounced because after a reorganisa-

tion the DST is well balanced.

Average cost of deleting. During our simulation we observe

a linear increase of the number of messages in function of

the level. Note that, in the studied case we initiate a very

fragile DST with limits of 2 and 4. Thus, by studying the

worst case we have the worst behaviour.

4. Description of the Simulations

The simulations presented in section 5 use two algo-

rithms. The first is a TTL-based flooding algorithm that is

used with the graph and tree topologies [4]. The second use

the DST structure to run a traversal with similar properties.

Fig. 7 illustrates the four steps of the execution of this algo-

rithm on a DST of height 3. The request is initiated by the

gray node on step 1. Then it broadcasts the request in the

subtrees of level 1 on step 2, level 2 on step 3 and level 3 on

step 4. Complete algorithms are given in [2].
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Figure 7: Example of a DST’s traversal
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Our first idea was to simulate and study the DST behav-

ior on the Internet. However, experiences on Internet can-

not be reproduced as the simulation conditions cannot be

two times the same. Thus, we restrict to a model where

all computers have one link, an access to every other com-

puter through a central router and the bandwidth is limited.

This model is not far from a realistic Internet model if we

consider different bandwidth for different links and FIFO

queues that assure that there is no more than one message

in a link at any time. This way, we can mesure the impact

of different factors on the execution performances.

Exact details of the simulations can be found by down-

loading the simulator 1. We perform simulations for popu-

lations of 10, 100, 1 000 and 10 000 peers to study the be-

haviour of the algorithms when the overlay network scales

up.

For all topologies the TTL is set to 10. Hundred dif-

ferent types of resources are available, and each computer

has a probability of 10 % to own a resource for each type.

Each search request stops either when it finds a node with

the requested resource, when the TTL is reached or when

the whole structure is traversed. However, we noticed that

a maximum depth of four is generaly enough to find a re-

source whith this probability to find the resource.

About the overlay topologies characteristics, trees are

bidirectional and their arity is 5. Graphs are also bidirec-

tional, connected and the degree of each node is 5. Finally

the DST is made in a way that each node has 5 children.

These degrees were chosen because they show the best per-

formances in our simulations. More precisely, we ran few

tests at various scales to find these optimal degrees. Then,

we used them for all our simulations by considering that

these degrees are always optimal in our experiments. How-

ever, these values depend on the links throughput and the

probability to find a service. Changing one of these param-

eters implies that the chosen degrees would not longer be

optimal.

5. Discussion about the simulation results

In this section, we discuss the results obtained by the

simulations. For each simulated overlay network, we com-

pare the performances of the three tested topologies. The

two performance criteria that we are interested about in this

article are the average time taken to process a search and its

variation depending on the average load of the system. The

system load is defined by the requests arrival rate or fre-

quency: the number of queries that are initiated per second

for the whole network. In the last section, we explain how

the three topologies scale up.

1 http://lifc.univ-fconte.fr/∼philippe/pub/simulator-12-06.tar.gz

5.1. 10 peers overlay networks

The simulations results for 10 peers overlay networks are

displayed in Fig. 8. The simulations show that the average

time needed to process a request depends on the requests ar-

rival rate. This is an ordinary observation. When the num-

ber of initiated requests grows, the system becomes more

and more loaded and messages spend more time in a wait-

ing queue before being sent.
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Figure 8: Performances for 10 peers networks

When the number of requests that enter the system be-

comes higher than the number of requests that leave it, the

system becomes saturated. This saturation is easily identifi-

able for the DST on Fig. 8: the average time needed to pro-

cess a request grows slowly for frequencies from 1 req.s-1

to a frequency of 150 req.s-1 ; but it grows very quickly for

frequencies greater than 200 req.s-1. On the other hand, the

graph and the tree become very quickly saturated.

For a 10 peers overlay network, the simulations tell us

that graphs and trees have similar performances. This is in-

teresting because we expected to get better performances

with the graph in term of time used to process a request

when the system is not loaded (0.1 req.s-1) as explained in

section 5.2. The more plausible explanation of this result is

that some requests completely traverse the graph as no re-

source is found (we only have 10% of chance to find a re-

source on each peer and we only have 10 peers). So, these

requests need an additional round to check that no other

peers can be contacted. This is the final round where lots of

messages are sent to traverse both ways the latest links, not

marked as flooded, although no untraversed peer remains.

Due to this additional round, the traversal depends on the

number of links rather than on the number of nodes and af-

fects the global average search time.

Studies of individual load of peers also explain why the

tree and the graph become saturated on a similar way: bot-

tlenecks of both topologies have to support similar load.

This can be explained by the fact that the tree has few bot-

tlenecks that send an average of, say x̄ messages. With the

graph traversal every peer also sends an average of x̄ mes-

sages, as the number of messages depends on the number of

links. Because every peer has the same bandwidth, and be-

cause the topologies performances are limited by their bot-
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tlenecks, both topologies become overloaded in a similar

way at this scale. The DST has the best behaviour for these

simulations. Because a DST is based on trees, a search re-

quest only needs 2.n messages to query n peers, which is

less than the graph. But because it distributes the load of

father nodes between its children, it does not suffer from

the tree bottlenecks. Thus, the DST can support much more

load than the other topologies at a scale of 10 peers. Note

that the DST also generates a lower search time than the tree

when the system is not loaded.

5.2. 100 peers overlay networks

Fig. 9 presents the simulations results for 100 peers. Like

before, the three topologies saturate when the query arrival

rate becomes too high. From the simulations, it is clear that

the tree has the worst performances in term of supported

load. 100 req.s-1 is enough to overload trees while graphs

and DST start to overload for a frequency of 700 req.s-1.

Before reaching this point, the average search time grows

slightly with the average load of the system.
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Figure 9: Performances for 100 peers networks

Graphs performances are roughly similar to the DST

ones in term of supported load and average search time. Be-

cause each search needs to query a small part of the graph,

few links are traversed to access already contacted peers.

Thus, few peers are contacted twice by the same request

and the number of exchanged messages is, in a wide ap-

proximation, roughly similar to the tree’s one. It depends

on the number of nodes rather than on the number of links.

For this reason, as graphs inherently distributes their load

between their peers and as a DST is a tree that distributes

the father’s nodes load between its descendants, the perfor-

mances of both graphs and DST are approximately similar

in term of average query time and supported load.

We observed that tree topologies have a higher average

search time than graphs even when the average load is very

low. This is counter-intuitive if we think that the average

query time only depends on the number of exchanged mes-

sages and that the tree based traversal generates an opti-

mal number of messages. In a balanced tree with an ar-

ity of 5, there are lot more leaves than non-leaf nodes.

Because every peer has the same probability to initiate a

search, the majority of searches are initiated by leaf nodes.

These searches are not efficient because the first step of a

search only queries one peer, its father, when the same step

queries 5 peers in a graph or in a DST. At the second step the

tree queries 5 peers when the graph or the DST can query

25 peers. Further, the tree behaves as if it always has one

round late compared to the two other topologies, because

tree leaves have one more hop to cross when they issue a

search request. Being one round behind the other topolo-

gies is translated by a higher latency which explains why

the average search time of the tree is more important than

the two others even when the system is under light load.

Same simulation were made for 1 000 and 10 000 peers

overlay networks. Results shown the same type of curves.

For 1 000 peers, a load of 300 req.s-1 is enough to satu-

rate the tree and it starts to overload around 1 000 req.s-1

for 10 000. Graphs and DST start to overload around

8 000 req.s-1with 1 000 peers and support at least a load

of 40 000 req.s-1with 10 000. Before overloading, the av-

erage search time of DSTs and graphs grows slowly when

the load increases and it linearly depends on the load.

5.3. Scalability of the three topologies

Until now, we have discussed the performances for each

scale separately. Here we present how the number of peers

affects the performances of each topologies. For Fig. 8 and

Fig. 9, we note that adding new peers always allows to in-

crease the performances in term of supported load. But, de-

pending on the topology, the supported load per node may

decrease. For the tree topology, 40 req.s-1 saturate a tree of

10 peers, 100 req.s-1 saturate a tree of 100 peers, 300 req.s-1

saturate a tree of 1 000 peers and 1 000 req.s-1 saturate a

tree of 10 000 peers. This is not very efficient because mul-

tiplying the number of peers by 100 (from 100 peers to

10 000 peers) only multiplies the supported load by a fac-

tor 10 (from 100 req.s-1 to 1 000 req.s-1). We can conclude

that the tree topology does not scale and the reason is clearly

the bottlenecks generated by non-leaf nodes. The DST has

a good scalability. The supported load grows linearly with

the number of peers: 150 req.s-1 for 10 peers, 700 req.s-1

for 100 peers, 8 000 req.s-1 for 1 000 peers and more than

40 000 req.s-1 for 10 000 peers. When the system is not sat-

urated, the performances, in term of average search time,

are stable: it varies from 25 ms to 75 ms whatever the num-

ber of peers is. A performance of 150 req.s-1 on 10 peers

for a DST seems to be inconsistent with the performance of

700 req.s-1 for 100 peers, but this is normal. There is only

10 peers, so two steps searches only contact 10 peers when

the same search contact 25 peers in a 100 peers DST. Less

peers contacted means less messages generated and implies

that the overlay networks supports mode load. The scalabil-

ity of the graph is similar to the DST’s one except for small
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scale where it is worst. This similarity comes from the fact

that both topologies behave in a similar way when the prob-

ability to find a resource on each peer is fixed (10 % in our

simulation) and that the number of peers is high enough. If

the scale is too small, then queries contact several times the

same peers and graphs perform badly.
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Figure 10: Performances for 1 000 peers networks when no

resources are available

However, if the probability to find a resource is low

enough that peers receive a query several time, then graphs’

performances cannot cope with the DSTs’ ones. Fig. 10

presents the performances of graphs and DSTs of 1 000

computers when the probability to find a resource is 0 %.

In this case, the DST’s performances are better than the

graph’s ones because a DST sends fewer messages and dis-

tributes fairly its load between computers. Note that a fre-

quency of 1 request every 5 seconds is enough to satu-

rate a DST of 1 000 computers. This is normal as TTL-

based flooding algorithms, which generate several waves of

search, are not efficient for this kind of applications. A di-

rectory, like a DHT, should be used instead.

Other simulations on influence of service population and

load balancing were run in [2].

6. Conclusion

If the performances of search algorithms only depend on

the number of messages generated by a search request then,

in theory, these algorithms are more efficient on a tree than

on a graph. But, taking into account bottlenecks, graphs are

more resistant than trees.

The Distributed Spanning Tree (DST) is a tree based

structure that connects a set of computers while distributing

the load of parent nodes between their children. This struc-

ture is in theory better suited to run flooding based search al-

gorithms than trees and graphs topologies. It is designed to

send an optimal number of messages like a tree without suf-

fering from topological bottlenecks. The simulations pre-

sented in the paper confirm the interest of this approach and

the DST always has better performances in term of average

search time and supported load. Moreover, we found that,

thanks to the DST structure, the implementation of traver-

sal algorithms is simpler for the DST than for graphs.

As these results are encouraging, we are currently work-

ing on the dynamics of the structure. We already designed

the algorithms to dynamically construct and manage a DST.

Simulations are carried out to observe the evolution and ro-

bustness of the DST in a context of short lived peers. We

will focus on that point for further works.
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