Influence of marine phytoplankton, transition metals and sunlight on the species distribution of chromium in surface seawater
Shun-Xing Li, Feng-Ying Zheng, Hua-Sheng Hong, Nan-Sheng Deng, Lu-Xiu Lin

To cite this version:

HAL Id: hal-00563070
https://hal.archives-ouvertes.fr/hal-00563070
Submitted on 4 Feb 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Influence of marine phytoplankton, transition metals and sunlight on the species distribution of chromium in surface seawater

Shun-Xing Li, Feng-Ying Zheng, Hua-Sheng Hong, Nan-sheng Deng, Lu-Xiu Lin

PII: S0141-1136(09)00024-5
DOI: 10.1016/j.marenvres.2009.02.001
Reference: MERE 3317

To appear in: *Marine Environmental Research*

Received Date: 15 June 2007
Revised Date: 3 January 2009
Accepted Date: 20 February 2009

Please cite this article as: Li, S-X., Zheng, F-Y., Hong, H-S., Deng, N-s., Lin, L-X., Influence of marine phytoplankton, transition metals and sunlight on the species distribution of chromium in surface seawater, *Marine Environmental Research* (2009), doi: 10.1016/j.marenvres.2009.02.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Influence of marine phytoplankton, transition metals and sunlight on the species distribution of chromium in surface seawater

Running head: Photo-induced reduction of Cr(VI) in sunlit seawater

Shun-Xing Li 1*, 2, Feng-Ying Zheng 1,3, Hua-Sheng Hong 2, Nan-sheng Deng 3, Lu-Xiu Lin 1

1 Department of Chemistry & Environmental Science, Zhangzhou Teachers College, Zhangzhou, 363000, China
2 State key Lab for Marine Environmental Science, Xiamen University; Xiamen, 361005, China
3 Department of Environment Science, Wuhan University, Wuhan, 430072, China

Corresponding author:

Prof. Dr. Li Shun-xing
Postal address: Department of Chemistry and Environmental Science, Zhangzhou Teachers College, Zhangzhou, Fujian, 363000, P.R.China
E-mail: lishunxing@fjzs.edu.cn Tel: 0086 596 2523251 Fax: 0086 596 2520035
Abstract

The photo-reduction of Cr(VI) to Cr(III) by marine phytoplankton (diatoms, red and green algae), with or without the presence of transition metals (Fe(III), Cu(II) and Mn(II)) was studied. The direct influence of marine phytoplankton on the photochemical reduction of Cr(VI) was confirmed for the first time, and two kinds of mechanism were suggested to be responsible for the species transformation: (a) Cr(VI) in excited state could be reduced by the electron donor in its ground state via photo produced electrons; and (b) the solvated electrons reduce the CrO$_4^{2-}$ anions in their ground state. The conversion ratio of Cr(VI) to Cr(III) increased with increasing algae concentration and irradiation time. Different species of marine phytoplankton were found to have different photo-reducing abilities. The photochemical redox of transition metals could induce the species transformation of chromium. After photo-reduction by marine phytoplankton and transition metals, the ratio of Cr(VI) to Cr(III) was in the range of 1.45–2.16 for five green algae (*Tetraselmis levis*, *Chlorella autotrophica*, *Dunaliella salina*, *Nannochloropsis* sp., and *Tetraselmis subcordiformis*), and only 0.48 for *Phaeodactylum tricornutum* (diatom) and 0.71 for *Porphyridium purpureum* (red alga). The species distribution of chromium in the sunlit surface seawater was greatly affected by combined effects of marine phytoplankton (main contributor) and transition metals; both synergistic and antagonistic effects were observed. The results provided further insights into the species distribution and the biogeochemical cycle of chromium, and have significant implications for the risk assessment of chromium in the sunlit surface seawater.

Keywords: Chromium, Photoreduction, Marine phytoplankton, Species transformation
1. Introduction

Developing a full understanding of the distribution and biogeochemical behavior of trace elements in seawater has the potential to provide: (a) unique insights into a wide range of oceanic processes and (b) the mechanisms controlling the fate of contaminants added to the ocean by human activities. Both the Joint Global Ocean Flux Study (JGOFS) and the Land-Ocean Interactions in the Coastal Zone Project (LOICZ), the core projects of the International Geosphere-Biosphere Program (IGBP), are focused on the distribution, transport, transform, cycle, end-result, production and consumption of trace metals.

In seawater, chromium exists in two different oxidation states, Cr(VI) and Cr(III). Similar to many other elements, the toxicological and physiological behavior of chromium depends on its oxidation state, binding partners, potential ligands and solubility. Chromium(III) shows a high affinity for particles at neutral pH (7-8), and is a micronutrient for higher mammals (Mertz, 1993). In contrast, Cr(VI) is toxic and mobile, and can be easily absorbed by living organisms (Richard and Bourg, 1991; Standeven and Wetterhahn, 1991).

Chromium(VI) is an important industrial metal that is considered a priority pollutant by many countries including the USA, UK and Canada. Reduction of Cr(VI) to Cr(III) will not only reduce the toxicity of chromium to living organisms, but also help to precipitate chromium out at pH 8.1 (mainly as insoluble Cr(OH)₃ and soluble coordination compounds). The species transformation of chromium would thus greatly affect its toxicity or bioavailability and its biogeochemical cycle in the ocean.

Thermodynamic calculations predict that in oxygenated seawater (pH 8.1 and pE 12.5) the ratio of Cr (VI) to Cr (III) is 10^{21} (Elderfield, 1970), i.e., chromium should exist almost exclusively as Cr(VI), but thermodynamically unstable Cr(III) has also been detected, the ratio of Cr(VI) to Cr(III) was in the range of 1.6–3.1 (Hirata et al., 2000). It is important to provide valid explanations for the distribution of Cr (VI)/Cr (III) in order to understand the species transformation and biogeochemical behavior of chromium, and to assess its toxicity in seawater. The mechanistic investigations on the reduction of chromium have caused much attention...
(Kieber and Helz, 1992; Buerge and Hug, 1997; Hug et al., 1997; Abu-Saba et al., 2000). Until now, the studies
of species transformation of chromium, especially the mechanism of reduction, were focused on single
environmental factor such as marine bacteria (Smillie et al., 1981; Yang et al., 1994), hydrogen peroxide (Pettine
and Millero, 1990; Pettine et al., 1991), iron (Deng et al., 1996; Buerge and Hug, 1997; Hug et al., 1997) and
copper (Abu-Saba et al., 2000), which could not provide conclusive reasons for the species transformation and
the distribution of chromium in the sunlit surface seawater.

The kinetic effects of biological uptake (Roitz et al., 2002; Li et al., 2007), redox and photochemical
reaction from biological activity on the species transformation and biogeochemical cycle of trace elements in
natural waters were very important, in fact may dominate (Costa and Liss, 2000; Powell and Wilson-Finelli,
2003; Rose and Waite, 2003). As the effects on the formation and decay of hydrogen peroxide and hydroxyl
radicals by some green and blue algae in freshwater were detected (Zepp and Schlotzhauer, 1983; Zuo and
Hoigné, 1992; Zuo and Hoigné, 1993; Liu et al., 2004; Wu et al., 2004), the species transformation of trace
elements might be affected by photochemical behavior that is driven by marine phytoplankton. In our previous
study, the photo-oxidation of Sb(III) in seawater was observed for the first time and could be accelerated by
marine phytoplankton (Li et al., 2006a). Dissolved organic matter (DOM) derived from phytoplankton could
facilitate Cr reduction in the presence of light (Sanders and Riedel, 1987). A field experiment implies that Cr(III)
concentrations were greatest during periods of high biological activity, as indicated by strong correlations
between the ratio of Cr(III):Cr(VI) and primary productivity (Connelly et al., 2006). Both the influence of
marine phytoplankton itself (excluding its exudates such as DOM) on the photo-reduction of trace metals and
the information on species specific differences in how different phytoplankton might facilitate this reaction have
not yet been published.

Transition metals in seawater, including iron, manganese and copper, are usually complexed with organic
ligands, forming coordinated complexes (Deng et al., 1997; Powell and Wilson-Finelli, 2003). Since the
electrons in these coordinated metal complexes and their organic ligands are easy to transport, they could readily absorb ultraviolet and visible light and have remarkable photochemical activities. Reaction could affect the redox potential of seawater in the euphotic layer and the speciation of trace elements (Zhang, 2000; Zhang and Yang, 2000). For example, photo-induced reduction of Fe(III)-multi-hydroxyl-acid complex and Fe(III)-hydroxy complexes was the significant source of Fe(II), active oxygen species and hydroxyl radicals (Deng et al., 1997; Zhang et al, 2001; White et al., 2003). In sunlit oxygenated seawater, the dissolved manganese present can be found in the reduced Mn (II) form. (Zhang and Yang, 2000). The photo-reduction of Cr(VI) could be similarly driven by photo-redox from transition metals with light, e.g., the photocatalytic cycle of iron contributed to reduction of Cr(VI) (Kocot et al., 2007). The non-living substances in seawater facilitate the photoreduction of Cr(VI), including inorganic substances such as iron(II) (Buerge and Hug, 1997; Zhang et al., 1995), Cu(I) (Millero, 1989), hydrogen sulfide (Pettine et al., 1994), superoxide (O_2^-) (Abu-Saba et al., 2000), and organic compounds such as oxalate and citrate (Hug et al., 1997). The presence of Mn(II) affects the oxidation of Cr(III) (Zhang, 2000), but the presence of manganese on the influence of photoreduction of Cr(VI) in seawater is still not understood. Furthermore, multifactor mechanisms of photo-induced species transformation of chromium have not been discussed to date.

The key parameters affecting the species transformation of trace elements in sunlit surface seawater should include sunlight, marine phytoplankton due to their bioactivity and photo-reactivity and non-living substances such as transition metals due to photochemical activity. Here we report our study on the photo-induced reduction of Cr(VI) in the presence of marine phytoplankton with light, transition metals with light, and the combination of both. Our objectives were to (a) study the influence of marine phytoplankton itself and Mn(II) on the photochemical reduction of Cr(VI) for the first time; (b) exploit the combined effects from the coexistence of bi- and tri-valent transition metals or the co-presence of marine phytoplankton and transition metals on the photochemical reduction; (c) provide mechanistic explanations for the distribution of Cr(VI) and
Cr(III); (d) offer new insights into chromium biogeochemical behavior; and (e) assist in risk or bioavailability assessment of Cr(VI)/Cr(III) in the sunlit surface seawater.

2. Materials and methods

2.1. Apparatus

A Model GBC 932AA atomic absorption spectrometer (GBC Co., Australia) with a chromium hollow-cathode lamp operated at 6.0 mA was used for all the determinations of chromium. A slit of 1.3 nm was selected in order to isolate 357.9 nm chromium absorption line. A UV-1200 PC spectrophotometer (Pekin Ruili Co., China) was used for the determination of the optical density of algal suspensions. The irradiation experiments were performed with a high-pressure mercury lamp (125 W, its photoemission spectrum was illustrated in Fig. 1) that was covered by glass tube as a filter in order to keep the wavelength of the transmitted light over 300nm. The illuminating intensity was 10000 µmol·photons.m⁻²·s⁻¹, which was detected with a Digit Lux meter (TES 1332, Taiwan, China).

2.2. Reagents

All other chemicals were of analytical grade from Shanghai Experiment Reagent Co., China. Double de-ionized water of 18 M ohms cm⁻¹ specific resistivity, obtained in a Milli-Q plus Millipore system, was used to prepare all the solutions and to rinse the previously cleaned laboratory material. Standard stock solutions of Cr(III) and Cr(VI) were prepared, respectively, by dissolving an appropriate amount of CrCl₃ and K₂Cr₂O₇ (Merk Co.) in 0.5 mol L⁻¹ HCl solution. All stock solutions were stored in the dark at 4 °C. Working standard solutions of lower concentrations were prepared daily by appropriate dilution. In order to avoid the adsorption of chromium and contamination, Teflon vessels and 0.45 µm Nuclepore membrane filter (Teflon) were used, which were precleaned in concentrated hydrochloric acid for 24 h. All solutions were sterilized in an autoclave for 20 min at 121 °C and 2 bar, and prepared in a dark chamber.
2.3. Marine phytoplankton cultures

Seven species of marine phytoplankton, including the diatom *Phaeodactylum tricornutum* (A), red alga *Porphyridium purpureum* (B), and the green algae *Tetraselmis levi* (C), *Chlorella autotrophic* (D), *Dunaliella salina* (E), *Nannochloropsis sp.* (F), and *Tetraselmis subcordiformis* (G), were obtained from the Microbial Culture Laboratory, Ocean University of Qingdao, China. Marine phytoplankton were cultivated in f/2 media prepared with sterile-filtered (Whatman GF/F glass fiber filter) artificial seawater prepared with the formula of Keller (pH 8.1), with a cultivation temperature of 18±0.5°C, and at a photon flux density of 140 µmol·photons·m⁻²·s⁻¹ with a day-night cycle of 12:12 h.

2.4. Determination of the biomass

The size of different microalgal genera was different. If the cells were from the same algal specie and cultivated at the same time, the dry weight of the cells was linearly correlated with the optical density of the alga suspension (Schmitt et al., 2001; Wang et al., 1997). The dry weight of the biomass was determined gravimetrically at several optical densities of 500 ml alga suspension after being dried at 105°C for 24 h. The optical density was determined with a UV-Vis spectrophotometer at specific wavelengths for A (750 nm), B (750 nm), C (545 nm), D (486 nm), E (545 nm), F (475 nm), G (443 nm). Calibration of the dry weight of the biomass against the optical density was carried out respectively. With the help of these calibrations, a fast determination of marine phytoplankton concentration was feasible.

2.5. Verification of the bioactivity

Because the chromium concentration in ocean water is in a range of 0.2 to 50 µg L⁻¹ (U.S.EPA, 2006) and the content of total chromium in coastal seawater was found to be 4 µg L⁻¹ (Nicolai et al., 1999), the initial concentration of chromium in artificial seawater was 5µg L⁻¹ in the irradiation experiments and dark controls throughout this study. Tests were carried out to ensure that marine phytoplankton could survive and keep normal
bioactivity under the experimental conditions. Marine phytoplankton with concentrations ranging from 5 to 20 ng ml\(^{-1}\) were transferred to artificial seawater containing 5 µg L\(^{-1}\) Cr(VI) or Cr(III) and kept 24 h under irradiation. The cells from the filters were resuspended into fresh medium under normal growth conditions. The specific growth rates over the next 5 days and the cell shapes were recorded in triplicate cultures, and compared with the normal growth rates and cell shapes. Abnormal phenomena were not observed, so it could be concluded that 5 µg L\(^{-1}\) of Cr(VI) and Cr(III) were not toxic to the marine phytoplankton, i.e. living algal cells were used in our photochemical experiments.

2.6. Determination of Cr(VI) and Cr(III)

Speciation analysis of chromium was performed following the procedures of Zhu and Li (2001). The detection limit (3 \(\sigma\), n = 11) was 0.03 µg L\(^{-1}\) for Cr(VI) and 0.01 µg L\(^{-1}\) for Cr(III), respectively, at the level of 0.1 µg L\(^{-1}\), the precision (relative standard deviation) was 3.3% for Cr(VI) and 2.8% for Cr(III), respectively. For samples spiked with both Cr(III) and Cr(VI), the recovery varied from 97 to 102% for Cr(III) and from 96 to 103% for Cr(VI).

To study the accuracy of this method, a synthetic artificial seawater sample with 0.1 µg L\(^{-1}\) Cr(VI), 0.1 µg L\(^{-1}\) Cr(III), and interfering substances (55 ng L\(^{-1}\) Fe(III), 250 ng L\(^{-1}\) Cu(II), 14 ng L\(^{-1}\) Mn(II), the exudates of 20 ng ml\(^{-1}\) marine phytoplankton), was analyzed. The concentration measured in synthetic water sample was 0.10±0.01 µg L\(^{-1}\) for Cr(III), 0.10±0.01 µg L\(^{-1}\) for Cr(VI). The results demonstrated that: (a) the concentrations of Cr(III) and Cr(VI) in synthetic artificial seawater sample agreed well with the added concentrations; (b) this method avoided the reduction of Cr(VI) during the preliminary concentration and analysis process; (c) no interference from the components of photochemical experimental system was observed.

Precautions were also taken to minimize the adsorption of Cr(III) and Cr(VI) during the experiments. These included: (a) Teflon flasks were employed as the reactors for their good transparence and weak adsorptive
property; (b) the solutions or algal suspensions were stirred at 100 rpm during the irradiation experiments and
dark controls to simulate the current of seawater; (c) marine phytoplankton which have reached adsorption
equilibrium with 5 µg L\(^{-1}\) Cr(VI) in artificial seawater were used to reduce the adsorption from marine
phytoplankton in photochemical experiments; our preliminary study showed that the adsorption behaviors of
Cr(VI) and Cr(III) by marine phytoplankton were similar; (d) A relatively larger volume (500 ml) solution or
marine phytoplankton suspension was used to enhance the absolute mass of Cr(VI) in it, to weaken the relative
effects from the adsorptions.

Accumulation of anionic Cr(VI) (as chromate) in marine phytoplankton is generally slow (Wang, et al.,
2001). The preliminary study showed that the total concentration of chromium in solution or filtrate of marine
phytoplankton suspension could be kept at 5±0.06 µg L\(^{-1}\). In other words, the interferences of adsorption, the
deviation of adsorptive property between Cr(VI) and Cr(III), and the algae exudates on the determination could
be avoided through above-mentioned methods, and the influence from bio-absorption and biological
transformation on the distribution of chromium could be ignored.

2.7. Photochemical experiments

The cultures in the log phase were chosen to start photochemical experiments. Prior to the illumination
experiment, the procedure described by Tovar-Sanchez et al.(2003) was used to remove trace metals that might
have adsorbed on the algae cells, and it was harmless to live alga cells, and used in experiments. This procedure
involved washing the cells by gentle agitation with trace metal clean reagent (Tovar-Sanchez et al., 2003) for 5
min, filtering with 0.45 µm membrane filter. The filters were rinsed three times with 5 ml of artificial seawater.

Photo-induced reduction of 5 µg L\(^{-1}\) Cr(VI) in 500 ml artificial seawater (pH 8.1, 18±0.5 °C) in the
presence of marine phytoplankton, transition metals, and the combination of both was studied. The vessel
temperature was controlled as 18±0.5°C. Because phytoplankton densities in subsurface water and at 20 m
depth were 870.9 × 10\(^3\) L\(^{-1}\) and 327.8 × 10\(^3\) L\(^{-1}\), respectively (Tengku-Rozaina and Ibrahim, 2001), the
concentration of marine phytoplankton was 5, 8, 10, 15, 20 ng ml\(^{-1}\) for marine phytoplankton-light system and
10 ng ml\(^{-1}\) for marine phytoplankton–transition metals–light system respectively. The concentration of transition
metals was 55 ng L\(^{-1}\) for Fe(III), 250 ng L\(^{-1}\) for Cu(II), and 14 ng L\(^{-1}\) for Mn(II), i.e., the average concentration
of trace elements in actual seawater (Feng et al., 1999). The suspension or solution was agitated in an orbital
shaker at 100 rpm. The suspension or solution was sampled 50 ml after irradiation for 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7,
and 8 h.

These samples were filtered with 0.45 µm membrane filter and the concentration of Cr(VI) and Cr(III) in
the filtrates was determined respectively by FI-HG-AAS. The suspension or solution was covered with
aluminum foil and kept in the dark before and after irradiation. Dark controls were carried out in parallel. The
conversion percent was the concentration ratio between Cr(III) and total chromium at steady state.

3. Results and discussion

3.1. Effect of marine phytoplankton on the reduction of Cr(VI)

Light irradiation of 5 µg L\(^{-1}\) Cr(VI) in artificial seawater with marine phytoplankton resulted in the formation of
Cr(III), but Cr(III) could not be detected in the dark control experiments. Its conversion ratio under different
species and concentrations of marine phytoplankton and different irradiation times was shown in Fig. 2. The
redox equilibrium between Cr (VI) and Cr (III) was also observed from Fig. 2.

Light irradiation was essential to drive the reduction of Cr(VI) by marine phytoplankton, because Cr(VI) is
thermodynamically stable in the presence of oxygen, its reduction in aerobic environment is an endergonic
process, requiring investment of energy from an external source. To our knowledge, this was the first time that
marine phytoplankton itself could achieve the photoreduction of Cr(VI) was confirmed, because that: (a)
although DOM derived from phytoplankton has been proved to facilitate Cr reduction in the presence of light,
DOM is just the exudate from marine phytoplankton, not marine phytoplankton itself; (b) prior to our
photochemical experiments, the marine phytoplankton were rinsed three times with 5 ml of artificial seawater to
remove exudates such as DOM; and (c) after light irradiation 30 min, Cr(III) could be detected, at the same time,
the concentration of total organic carbon in seawater at this time is less than the detection limit of 4 µg L\(^{-1}\)
detected with to use a TOC-Vcph (Shimadzu Co.) analyzer.

In alkaline oxygenated solutions such as sunlit surface seawater, the CrO\(_4^{2-}\) anions are predominant
(Mytych et al., 2004). Two kinds of mechanism were suggested to be responsible for the transformation of
Cr(VI) to Cr(III): (a) Cr(VI) in excited state could be reduced by the electron donor in its ground state via
photoinduced electron transfer; and (b) solvated electrons reduce the CrO\(_4^{2-}\) anions in their ground state by
means of thermal reduction. The above mechanisms were based on: (a) the photoreduction of CrO\(_4^{2-}\) mediated
by the electron donor (e.g. phenol and 2,3-butanediol) can proceed in alkaline oxygenated solutions (Mytych et
al., 2003; Cieśla et al., 2004); (b) Cr(VI) could be thermal reduced by hydrated electrons photogenerated by
phenol (Mytych et al., 2004); (c) the hydrated electron can be produced by the photolysis of the aromatic
carboxyl acids (Calza and Pelizzetti, 2004); and (d) the surface acid groups such as phenolic hydroxyl and
carboxylic acids are on the surface of marine phytoplankton cells (Garden-Torresdey et al., 1990; Wang et al.,
1997; Li et al., 2006b). The possible mechanism of the influence of marine phytoplankton itself on the
photochemical reduction of Cr(VI) was proposed as follows:

\[
\begin{align*}
\text{Cr(VI)} + \text{ROH} + \text{OH}^{-} + h\nu & \rightarrow \text{Cr(V)} + \text{RO}^{-} + \text{H}_2\text{O} \\
\text{ROH} + \text{OH}^{-} + h\nu & \rightarrow \text{RO}^{-} + \text{e}_{\text{solv}}^{-} + \text{H}_2\text{O} \quad \text{or} \quad \text{RCOOH} + \text{OH}^{-} + h\nu \rightarrow \text{RCOO}^{-} + \text{e}_{\text{solv}}^{-} + \text{H}_2\text{O} \\
\text{Cr(VI)} + \text{e}_{\text{solv}}^{-} & \rightarrow \text{Cr(V)} \\
3\text{Cr(V)} & \rightarrow 2\text{Cr(VI)} + \text{Cr(III)}
\end{align*}
\]

and/or

\[
\text{Cr(V)} + \text{ROH} \rightarrow \text{Cr(III)} + \text{aldehyde/ketone}
\]

The concentration of the coloured dissolved organic matter (CDOM) derived from phytoplankton
increased with increasing the light irradiation time from 0.5 h to 8 h. The hydrated electron could be produced by the photolysis of CDOM, then could facilitate Cr(VI) reduction (Thomas-Smith and Blough, 2001). The photo-production of hydroxyl radical in seawater with marine phytoplankton under high-pressure mercury lamp was observed by us (Li et al., 2008). The photo-production of hydroxyl radical enhances the concentration of Fe(II), Cu(I) and Mn(II) in the sunlit surface seawater, induced the Cr(VI) reduction. At the same time, marine phytoplankton could adsorb and complex chromium by their surface acid groups, which could change the redox potential of chromium.

Fig. 2. indicated that the conversion ratio of Cr(VI) of Cr(III) was greatly affected by the species of marine phytoplankton, its concentrations and the irradiation time. The conversion ratio increased and the oxidation-reduction equilibrium time shortened with increasing algae concentration. As the influence factors of marine phytoplankton on the photochemical reduction of Cr(VI), the surface acid amount on the surface of marine phytoplankton cells (Wang et al., 1997), the components and contents of CDOM, and the interaction between marine phytoplankton (or CDOM) and trace metals (chromium, iron, copper and manganese), were different for different species of marine phytoplankton.

3.2. Effect of transition metals on the reduction of Cr(VI)

Our experiments proved remarkable but different photochemical activity on the species transformation of chromium from transition metals (Fe(III), Cu(II), and Mn(II)). Cr(III) could not be detected in the dark control experiments, so irradiation must also be essential for photochemical activity for transition metals. In seawater, Fe(III), Cu(II), and Mn(II) could be chelated by organic substances such as citrate and gluconate (Zhang and Yang, 2000), and electronic transition from such coordinated transition metals complexes could be induced easily by light.

Through photo-induction, Fe(III) and Cu(II) were reduced into Fe(II) and Cu(I), and Mn(II) was oxidized into Mn(III) and Mn(IV) oxide (MnOx); at the same time, Fe(II) and Cu(I) were oxidized by oxidants such as
hydroxyl and superoxide radicals, H$_2$O$_2$, and MnO$_x$ was reduced to Mn(II) by photo-activation (Zuo and Hoigné, 1992; Zuo and Hoigné, 1993; Zhang et al., 1995; Voelker and Sedlak, 1995; Zuo and Jones, 1997; Zhang and Yang, 2000; Voelker et al., 2000; Thomas-Smith and Blough, 2001; Deng et al., 2006). Photolysis of the monohydroxyl complex of Fe(OH)$_2^{+}$ and oxidation reaction between transition metals (Fe(II),Cu(I),Mn(II)) and oxidants (O$_2$, H$_2$O$_2$) have been proposed as major sources of ·OH and ·O$_2^-$ in sunlit surface waters (Zuo and Hoigné, 1992; Zuo and Hoigné, 1993; Zuo and Jones, 1997; Wang and Yang, 2004). Superoxide and its conjugate acid, hydroperoxyl radical (HO$_2^-$, Zafiriou, 1990), are produced in sunlit natural waters through photochemical reactions. The bimolecular dismutation of superoxide has been postulated as the main source of hydrogen peroxide in the open ocean (Petasne and Zika, 1987). Hydrogen peroxide is produced by photochemical reactions in surface waters and occurs at concentration levels between 10^{-6} and 10^{-8} mol L$^{-1}$ (Sulzberger et al., 1997). The redox reaction of transition metals could induce the species transformation of chromium. For example, Fe(II) has been shown to act as the electron donor in Cr(VI) reduction (Gaberell et al., 2003) and the excited Fe(III) complexes, e.g. [Fe(edta)OH]$^{2-}$ behave as even stronger electron donors towards Cr(VI) (Cieśla et al., 2007; Kocot et al., 2007).

The electronic shell distribution and organic ligands of iron, copper and manganese are different. The value of E^0, i.e., the ability of coordinated complex to accept or donate electron is different, so the effect of different transition metals on the photo-reduction of Cr(VI) is quite different. The conversion ratio and redox equilibration time were listed in Table 1.

In the single transition metal experiments, copper showed the strongest photochemical activity and manganese the weakest. In the presence of two transition metals, the photo-oxidation activity was higher than the respective single metal. When all the three transition metals were present, the conversion ratio of chromium was higher than that of each of the single metal and two metal pair. Though all of the transition metals, including iron, copper and manganese, have photochemical activity, the co-existence of bi- or tri-valent
elements could increase the yield of radicals. At the same time, collisional deactivation of radicals could also occur. Therefore, the co-existence of transition metals did not simply show additive property or synergistic effect on the photo-oxidation activity.

3.3. Combined effect of marine phytoplankton and transition metals on the reduction of Cr(VI)

The photo-reduction of Cr(VI) was facilitated not only by marine phytoplankton, but also by transition metals; the combination effects of both were shown in Fig.3. It could be seen from Fig.3 that the reduction behavior of Cr(VI), including conversion ratio, conversion rate and redox equilibration time varied with the constituents of the photochemical system that was made up of same transition metals and different species of marine phytoplankton or same species of marine phytoplankton and different transition metals. The difference of the combined effect of marine phytoplankton and transition metals on the reduction of Cr(VI) was due to two reasons: (a) if the species of marine phytoplankton is different, the influence factors of marine phytoplankton on the photochemical reduction of Cr(VI) as mentioned above were all different; and (b) if the transition metal is different; the complexing reaction with marine phytoplankton is different, too.

Chromium(VI) could be reduced to Cr(III) by the marine phytoplankton-light, transition metals-light, and marine phytoplankton-transition metals-light systems. The photochemical activity for the reduction of Cr(VI) was analyzed and compared in Table 2. The photochemical behaviors of marine phytoplankton-transition metals-light systems (S_3) on the conversion ratio of Cr(VI) were the combination effects from the photoreduction activity of marine phytoplankton (S_1), as the main contributor, and the photoreduction activity of transition metals (S_2).

The photoreduction activity of the marine phytoplankton-transition metals-light system was higher than that in the transition metals-light system, i.e., the value of (S_3-S_2) in Table 2, for three reasons: (a) marine phytoplankton on its own has photoreduction activity, especially for photo-production of hydrated electrons and releasing of the electron donors; (b) marine phytoplankton could adsorb, concentrate and coordinate transition
metals and chromium and thus change the redox potentials of transition metals and chromium; and (c) the content of the potential Cr(VI) reductants, including Fe(II), Cu(I), Mn(II) and O$_2$ by transition metals might be enhanced by their organic ligands. For example, organic Fe(III) complexes (Fe$^{3+}$-org) are the main species of Fe(III) in the solution of Fe$^{3+}$ with algae (Zuo and Hoigné, 1992; Zuo and Hoigné, 1993; Zuo and Jones, 1997; Liu et al., 2004). The effects of Fe$^{3+}$ are described below.

Fe$^{3+}$-org $\overset{hv}{\rightarrow}$ Fe$^{2+}$+ org radical

org radical + O$_2$ \rightarrow O$_2^\cdot$+ oxidized org

The presence of transition metals increases the Cr(VI) reduction for 3 of the algae (A, C and G), has no impact for the algae B, but inhibits the reduction for 3 of the algae (D, E and F), according to the values of (S$_3$-S$_1$) in Table 2. The species and concentration of Cr(VI) on the surface of algae or transition metal complexes might be affected by the coexistence of the algae and transition metal. A different mechanism is probably responsible for the Cr(VI) reduction by absorbing surfaces such as algae, transition metal complexes.

In marine phytoplankton-transition metals-light systems which are very close to the sunlit surface seawater, Cr(VI) was transformed into Cr(III) by photo-reduction. The ratio of Cr(VI) to Cr(III) was 0.48 for *Phaeodactylum tricornutum* (diatom), 0.71 for *Porphyridium purpureum* (red alga), and ranged from 1.45 to 2.16 for five green algae (*Tetraselmis levis, Chlorella autotrophica, Dunaliella salina, Nannochloropsis sp.* and *Tetraselmis subcordiformis*). The most effective at reducing Cr (VI) was a diatom that are known to produce high concentrations of organic matter in the form of transparent exopolymer particles (Passow et al. 1994), dissolved organic matter mediated control of Cr reduction might be possible. The results were listed in Table 3, providing explanation for the distribution of Cr(VI) and Cr(III), obtaining useful information to understand the biogeochemical cycle of chromium. This study is beneficial to deal with assessment of the risk/bioavailability of Cr(VI)/Cr(III) in sunlit surface seawater.

4. Summary
The influence of marine phytoplankton itself (excluding its exudates such as DOM) on the photo-reduction of trace metals was confirmed for the first time. The conversion ratio of Cr(VI) to Cr(III) increased with increasing algae concentration and irradiation time. Different species of marine phytoplankton were found to have different photo-reducing abilities. In addition to the photo-production of hydrated electrons, marine phytoplankton could adsorb, concentrate and coordinate transition metals and chromium, change their redox potentials, and affected their photochemical activities. The effect of the marine phytoplankton-transition metal-light system on the chromium species transformation, especially the addition of marine phytoplankton, was most important. We tried to interpret the observed relationships between Cr(VI) and Cr(III), and provided further information for the understanding of the biogeochemical cycle of chromium, as well as for the risk assessment of chromium in the sunlit surface seawater.

Acknowledgements

This research was supported by grants from National natural Science Foundation of China (No. 40506020) and Science & Technology Committee of Fujian Province, China (No. K02093 and No.2003J035). Authors gratefully acknowledge the reviewers of this article.

References

Nicolai M., Rosin C., Tousset N., Nicolai Y. 1999. Trace metals analysis in estuarine and seawater by ICP-MS.
using on line preconcentration and matrix elimination with chelating resin. Talanta 50:433-444.

Zafiriou O.C. 1990. Chemistry of superoxide ion-radical (O$_2^-$) in seawater. I. pK_{sw} (HOO) and uncatalyzed dismutation kinetics studied by pulse radiolysis. Mar. Chem. 30:31-43.

Table 1

Photoreduction of Cr(VI) by transition metals

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion percent (%)</td>
<td>8.1</td>
<td>10.8</td>
<td>6.8</td>
<td>12.5</td>
<td>10.0</td>
<td>11.2</td>
<td>13.3</td>
</tr>
<tr>
<td>Redox equilibration time (hour)</td>
<td>3 h</td>
<td>5 h</td>
<td>6 h</td>
<td>5 h</td>
<td>6 h</td>
<td>6 h</td>
<td>6 h</td>
</tr>
</tbody>
</table>

Table 2

Photoreduction of Cr (VI) by marine phytoplankton, transition metals, marine phytoplankton and transition metals

<table>
<thead>
<tr>
<th>Photoreduction System</th>
<th>Conversion percent (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phaeodactylum tricornutum</td>
<td>46.9</td>
</tr>
<tr>
<td>Porphyridium purpureum</td>
<td>56.7</td>
</tr>
<tr>
<td>Tetraselmis levi</td>
<td>32.9</td>
</tr>
<tr>
<td>Chlorella autotrophic</td>
<td>47.1</td>
</tr>
<tr>
<td>Dunaliella salina</td>
<td>52.9</td>
</tr>
<tr>
<td>Nannochloropsis sp.</td>
<td>44.3</td>
</tr>
<tr>
<td>T. subcordiformis</td>
<td>26.4</td>
</tr>
</tbody>
</table>

The content of marine phytoplankton was 10 ng/mL. The concentration of Fe(III), Cu(II) and Mn(II) was 55, 250 and 14 ng/L, respectively.

Table 3

Ratio of Cr (VI) to Cr(III) after photoreduction by marine phytoplankton-transition metals-light system

<table>
<thead>
<tr>
<th>Alga</th>
<th>Phaeodactylum tricornutum</th>
<th>Porphyridium purpureum</th>
<th>Tetraselmis levi</th>
<th>Chlorella autotrophic</th>
<th>Dunaliella salina</th>
<th>Nannochloropsis sp.</th>
<th>Tetraselmis subcordiformis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio of Cr(VI) to Cr(III)</td>
<td>0.5</td>
<td>0.7</td>
<td>1.4</td>
<td>2.2</td>
<td>1.8</td>
<td>2.0</td>
<td>2.1</td>
</tr>
</tbody>
</table>

The content of marine phytoplankton was 10 ng/mL. The concentration of Fe(III), Cu(II) and Mn(II) was 55, 250 and 14 ng/L, respectively.
Fig. 1. Emission spectrum of the high-pressure mercury lamp
Fig. 2. Photoreduction of 5 µg L\(^{-1}\) Cr(VI) in the presence of marine phytoplankton at concentrations of a) 5, b) 8, c) 10, d) 15 and e) 20 ng ml\(^{-1}\)
Fig. 3. Photoreduction of Cr(VI) (5 µg L⁻¹) in the presence of marine phytoplankton and transition metals. The content of marine phytoplankton was 10 ng ml⁻¹. The concentration of Fe(III), Cu(II) and Mn(II) is 55, 250 and 14 ng L⁻¹, respectively. a: Fe(III) b: Cu(II) c: Mn(II) d: Fe(III) and Cu(II) e: Fe(III) and Mn(II) f: Cu(II) and Mn(II) g: Fe(III), Cu(II) and Mn(II)