L. P. Rowland and N. A. Shneider, Amyotrophic Lateral Sclerosis, New England Journal of Medicine, vol.344, issue.22, pp.1688-1700, 2001.
DOI : 10.1056/NEJM200105313442207

S. Sathasivam, P. G. Ince, and P. J. Shaw, Apoptosis in amyotrophic lateral sclerosis: a review of the evidence, Neuropathology and Applied Neurobiology, vol.90, issue.405, pp.257-274, 2001.
DOI : 10.1038/32681

B. Stephens, R. J. Guiloff, R. Navarrete, P. Newman, N. Nikhar et al., Widespread loss of neuronal populations in the spinal ventral horn in sporadic motor neuron disease. A morphometric study, Journal of the Neurological Sciences, vol.244, issue.1-2, pp.244-285, 2006.
DOI : 10.1016/j.jns.2005.12.003

S. Maekawa, S. Al-sarraj, M. Kibble, S. Landau, J. Parnavelas et al., Cortical selective vulnerability in motor neuron disease: a morphometric study, Brain, vol.127, issue.6, pp.1237-1251, 2004.
DOI : 10.1093/brain/awh132

M. Cozzolino, A. Ferri, and M. T. Carri, Amyotrophic lateral sclerosis: from current developments in the laboratory to clinical implications, Antiox. Redox Sig, pp.405-443, 2008.

G. A. Dupre and . Rouleau, TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis, Nat. Genet, vol.40, pp.572-574, 2008.

L. J. Martin, Mitochondriopathy in Parkinson Disease and Amyotrophic Lateral Sclerosis, Journal of Neuropathology and Experimental Neurology, vol.65, issue.12, pp.1103-1110, 2006.
DOI : 10.1097/01.jnen.0000248541.05552.c4

J. C. Schymick, K. Talbot, and G. J. Traynor, Genetics of sporadic amyotrophic lateral sclerosis, Human Molecular Genetics, vol.16, issue.R2, pp.233-242, 2007.
DOI : 10.1093/hmg/ddm215

S. T. Hou and J. P. Macmanus, Molecular mechanisms of cerebral ischemia-induced neuronal death, Internatl. Rev. Cytology, vol.211, pp.93-148, 2002.
DOI : 10.1016/S0074-7696(02)21011-6

D. B. Zorov, N. K. Isave, E. Yu, L. D. Plotnikov, E. V. Zorova et al., The mitochondrion as, Janus Bifrons Biochemistry (Moscow), pp.72-1115, 2007.

D. G. Nicholls, Mitochondrial function and dysfunction in the cell: its relevance to aging and aging-related disease, The International Journal of Biochemistry & Cell Biology, vol.34, issue.11, pp.1372-1381, 2002.
DOI : 10.1016/S1357-2725(02)00077-8

L. J. Martin, N. A. Abdulla, A. M. Brambrink, J. R. Kirsch, F. E. Sieber et al., Neurodegeneration in Excitotoxicity, Global Cerebral Ischemia, and Target Deprivation: A Perspective on the Contributions of Apoptosis and Necrosis, Brain Research Bulletin, vol.46, issue.4, pp.46-281, 1998.
DOI : 10.1016/S0361-9230(98)00024-0

F. J. Northington, E. M. Graham, and L. J. Martin, Apoptosis in perinatal hypoxic???ischemic brain injury: How important is it and should it be inhibited?, Brain Research Reviews, vol.50, issue.2, pp.50-244, 2005.
DOI : 10.1016/j.brainresrev.2005.07.003

F. J. Northington, M. E. Zelaya, D. P. O-'riordan, K. Blomgren, D. L. Flock et al., Failure to complete apoptosis following neonatal hypoxia???ischemia manifests as ???continuum??? phenotype of cell death and occurs with multiple manifestations of mitochondrial dysfunction in rodent forebrain, Neuroscience, vol.149, issue.4, pp.822-833, 2007.
DOI : 10.1016/j.neuroscience.2007.06.060

S. Sasaki and M. Iwata, Ultrastructural change of synapses of Betz cells in patients with amyotrophic lateral sclerosis, Neuroscience Letters, vol.268, issue.1, pp.29-32, 1999.
DOI : 10.1016/S0304-3940(99)00374-2

F. M. Menzies, P. G. Ince, and P. J. Shaw, Mitochondrial involvement in amyotrophic lateral sclerosis, Neurochemistry International, vol.40, issue.6, pp.543-551, 2002.
DOI : 10.1016/S0197-0186(01)00125-5

G. P. Comi, A. Bordoni, and S. Salani, Cytochrome c oxidase subunit I microdeletion in a paitent with motor neuron disease, Ann. Neurol, pp.43110-116, 1998.

G. M. Borthwick, R. W. Taylo, and T. J. Walls, Motor neuron disease in a patient with a mitochondrial tRNAIle mutation, Ann. Neurol, pp.59-570, 2006.

N. W. Soong, D. R. Hinton, G. Cortopassi, and N. Arnheim, Mosaicism for a specific somatic mitochondrial DNA mutation in adult human brain, Nature Genetics, vol.290, issue.4, pp.318-323, 1992.
DOI : 10.1016/0197-4580(87)90127-8

M. Corral-debrinski, T. Horton, and M. T. Lott, Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age, Nature Genetics, vol.640, issue.4, pp.324-329, 1992.
DOI : 10.1001/jama.262.18.2551

C. Mawrin, E. Kirches, and G. Krause, Single-cell analysis of mtDNA deletion levels in sporadic amyotrophic lateral sclerosis, NeuroReport, vol.15, issue.6, pp.939-943, 2004.
DOI : 10.1097/00001756-200404290-00002

S. Corti, C. Donadonu, D. Ronchi, A. Bordoni, F. Fortunato et al., Amyotrophic lateral sclerosis linked to a novel SOD1 mutation with muscle mitochondrial dysfunction, Journal of the Neurological Sciences, vol.276, issue.1-2, pp.276-170, 2009.
DOI : 10.1016/j.jns.2008.09.030

D. Babcock and B. Hille, Mitochondrial oversight of cellular Ca2+ signaling, Current Opinion in Neurobiology, vol.8, issue.3, pp.398-404, 1998.
DOI : 10.1016/S0959-4388(98)80067-6

L. Siklos, J. Engelhardt, and Y. Harat, Ultrastructural evidence for altered calcium in motor nerve terminals in amyotrophc lateral sclerosis, Annals of Neurology, vol.148, issue.2, pp.203-216, 1996.
DOI : 10.1002/ana.410390210

M. Zoratti and I. Szabo, The mitochondrial permeability transition, Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, vol.1241, issue.2, pp.139-176, 1995.
DOI : 10.1016/0304-4157(95)00003-A

J. W. Olney, Brain Lesions, Obesity, and Other Disturbances in Mice Treated with Monosodium Glutamate, Science, vol.164, issue.3880, pp.366-368, 1969.
DOI : 10.1126/science.164.3880.719

D. W. Choi, Neurodegeneration: Cellular defences destroyed, Nature, vol.15, issue.7027, pp.696-698, 2005.
DOI : 10.1038/sj.cdd.4401042

M. R. Brown, P. G. Sullivan, and J. W. Geddes, Synaptic mitochondria are more susceptible to Ca 2+ overload than nonsynaptic mitochondria, J. Biol. Chem, pp.281-11658, 2006.

J. D. Rothstein, L. J. Martin, and R. W. , Decreased Glutamate Transport by the Brain and Spinal Cord in Amyotrophic Lateral Sclerosis, New England Journal of Medicine, vol.326, issue.22, pp.1464-1468, 1992.
DOI : 10.1056/NEJM199205283262204

J. D. Rothstein, M. Van-kammen, A. I. Levey, L. J. Martin, and R. W. , Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis, Annals of Neurology, vol.20, issue.1, pp.38-73, 1995.
DOI : 10.1002/ana.410380114

P. R. Heath, J. Tomkins, P. G. Ince, and P. J. Shaw, Quantitative assessment of AMPA receptor mRNA in human spinal motor neurons isolated by laser capture microdissection, NeuroReport, vol.13, issue.14, pp.1753-1757, 2002.
DOI : 10.1097/00001756-200210070-00012

S. Kwak and Y. Kawahara, Deficient RNA editing of GluR2 and neuronal death in amyotropic lateral sclerosis, Journal of Molecular Medicine, vol.14, issue.2, pp.110-120, 2005.
DOI : 10.1007/s00109-004-0599-z

D. T. Chang and I. J. Reynolds, Mitochondrial trafficking and motphology in healthy and injured neurons, Prog, Brain Res, vol.80, pp.241-268, 2006.

M. J. Hansson, R. Mansson, S. Morota, H. Uchino, T. Kallur et al., Calcium-induced generation of reactive oxygen species in brain mitochondria is mediated by permeability transition, Free Radic, Biol. Med, pp.45-284, 2008.

F. Bergmann and B. U. Keller, levels in brainstem motoneurones from mouse, The Journal of Physiology, vol.80, issue.1, pp.45-59, 2004.
DOI : 10.1113/jphysiol.2003.053900

D. C. Wallace, A Mitochondrial Paradigm of Metabolic and Degenerative Diseases, Aging, and Cancer: A Dawn for Evolutionary Medicine, Annual Review of Genetics, vol.39, issue.1, pp.39-359, 2005.
DOI : 10.1146/annurev.genet.39.110304.095751

I. Fridovich, Superoxide Radical and Superoxide Dismutases, Annual Review of Biochemistry, vol.64, issue.1, pp.97-112, 1995.
DOI : 10.1146/annurev.bi.64.070195.000525

L. J. Martin and Z. Liu, DNA damage profiling in motor neurons: a single-cell analysis by comet assay, Neurochem. Res, vol.27, pp.1089-1100, 2002.

C. Giulini, Characterization and function of mitochondrial nitric-oxide synthase, Free Radic, Biol. Med, vol.34, pp.397-408, 2003.

G. C. Brown and V. Borutaite, and mitochondria, Biochemical Society Symposium, vol.66, pp.17-25, 1999.
DOI : 10.1042/bss0660017

M. F. Beal, Oxidatively modified protein in aging and disease. Free Radic, Biol. Med, vol.32, pp.797-803, 2002.

R. J. Ferrante, S. E. Browne, L. A. Shinobu, A. C. Bowling, M. J. Baik et al., Evidence of Increased Oxidative Damage in Both Sporadic and Familial Amyotrophic Lateral Sclerosis, Journal of Neurochemistry, vol.69, issue.5, pp.69-2064, 1997.
DOI : 10.1046/j.1471-4159.1997.69052064.x

K. Abe, L. Pan, M. Watanabe, T. Kato, and Y. Itoyama, Induction of nitrotyrosine-like immunoreactivity in the lower motor neuron of amyotrophic lateral sclerosis, Neuroscience Letters, vol.199, issue.2, pp.199-152, 1995.
DOI : 10.1016/0304-3940(95)12039-7

M. F. Beal, R. J. Ferrante, S. E. Browne, R. T. Matthews, N. W. Kowall et al., Increased 3-nitrotyrosine in both sporadic and familial amyotrophic lateral sclerosis, Annals of Neurology, vol.22, issue.4, pp.42-644, 1997.
DOI : 10.1002/ana.410420416

S. Sasaki, N. Shibata, T. Komori, and M. , iNOS and nitrotyrosine immunoreactivity in amyotrophic lateral sclerosis, Neuroscience Letters, vol.291, issue.1, pp.44-48, 2000.
DOI : 10.1016/S0304-3940(00)01370-7

S. E. Browne, A. C. Bowling, and M. J. Baik, Metabolic Dysfunction in Familial, but Not Sporadic, Amyotrophic Lateral Sclerosis, Journal of Neurochemistry, vol.71, issue.1, pp.71-281, 1998.
DOI : 10.1046/j.1471-4159.1998.71010281.x

G. M. Borthwick, M. A. Johnson, P. G. Ince, P. J. Shaw, and D. M. , Mitochondrial enzyme activity in amyotrophic lateral sclerosis: Implications for the role of mitochondria in neuronal cell death, Annals of Neurology, vol.277, issue.5, pp.46-787, 1999.
DOI : 10.1002/1531-8249(199911)46:5<787::AID-ANA17>3.0.CO;2-8

S. Vielhaber, D. Kunz, and K. Winkler, Mitochondrial DNA abnormalities in skeletal muscle of patients with sporadic amyotrophic lateral sclerosis, Brain, vol.123, issue.7, pp.1339-1348, 2000.
DOI : 10.1093/brain/123.7.1339

G. Soraru, L. Vergani, L. Fedrizzi, C. D. Ascenzo, A. Polo et al., Activities of mitochondrial complexes correlate with nNOS amount in muscle from ALS patients, Neuropathology and Applied Neurobiology, vol.14, issue.2, pp.33-204, 2007.
DOI : 10.1006/bbrc.1995.1824

A. Echaniz-laguna, J. Zoll, E. Ponsot, B. C. N-'guessan, J. Tranchant et al., Muscular mitochondrial function in amyotrophic lateral sclerosis is progressively altered as the desiese develops; a temporal study in man, Exp. Neurol. Exp. Neurol, pp.198-223, 2006.

S. Vielhaber, K. Winklwer, E. Kirches, D. Kunz, M. Buchner et al., Visualization of defective mitochondrial function in skeletal muscle fibers of patients with sporadic amyotrophic lateral sclerosis, Journal of the Neurological Sciences, vol.169, issue.1-2, pp.169-133
DOI : 10.1016/S0022-510X(99)00236-1

J. C. Ameisen, On the origin, evolution, and nature of programmed cell death: a timeline of four billion years, Cell Death and Differentiation, vol.9, issue.4, pp.367-393, 2002.
DOI : 10.1038/sj.cdd.4400950

D. E. Merry and S. J. Korsmeyer, BCL-2 GENE FAMILY IN THE NERVOUS SYSTEM, Annual Review of Neuroscience, vol.20, issue.1, pp.245-267, 1997.
DOI : 10.1146/annurev.neuro.20.1.245

S. Cory and J. M. Adams, The bcl2 family: regulators of the cellular life-or-death switch, Nature Reviews Cancer, vol.2, issue.9, pp.647-656, 2002.
DOI : 10.1038/nrc883

H. K. Lorenzo and S. A. Susin, Mitochondrial effectors in caspase-independent cell death, FEBS Letters, vol.270, issue.1-3, pp.14-20, 2004.
DOI : 10.1016/S0014-5793(03)01464-9

URL : https://hal.archives-ouvertes.fr/pasteur-00193650

H. Y. Cohen, S. Lavu, K. J. Bitterman, B. Hekking, T. A. Omahiyerobo et al., Acetylation of the C Terminus of Ku70 by CBP and PCAF Controls Bax-Mediated Apoptosis, Molecular Cell, vol.13, issue.5, pp.627-638, 2004.
DOI : 10.1016/S1097-2765(04)00094-2

L. J. Martin, Neuronal Death in Amyotrophic Lateral Sclerosis Is Apoptosis, Journal of Neuropathology and Experimental Neurology, vol.58, issue.5, pp.459-471, 1999.
DOI : 10.1097/00005072-199905000-00005

L. J. Martin and Z. Liu, Opportunities for neuroprotection in ALS using cell dealth mechanism rationales, Drug Discov. Today, vol.1, pp.135-143, 2004.

L. J. Martin, Neuronal cell death in nervous system development, disease, and injury, Intl, J. Mol. Med, vol.4, pp.455-478, 2001.

S. D. Ginsberg, S. E. Hemby, E. J. Mufson, and L. J. Martin, Cell and tissue microdissection in combination with genomic and proteomic profiling, Neuroanatomical Tract-Tracing 3. Molecules, Neurons, and Systems, pp.109-141, 2006.

L. J. Martin, Z. Liu, J. Pipino, B. Chestnut, and M. A. Landek, Molecular Regulation of DNA Damage-Induced Apoptosis in Neurons of Cerebral Cortex, Cerebral Cortex, vol.19, issue.6, pp.1273-1293, 2009.
DOI : 10.1093/cercor/bhn167

J. E. Chipuk, T. Kuwana, and L. Bouchier-hayes, Direct Activation of Bax by p53 Mediates Mitochondrial Membrane Permeabilization and Apoptosis, Science, vol.303, issue.5660, pp.1010-1014, 2004.
DOI : 10.1126/science.1092734

L. J. Martin, p53 Is Abnormally Elevated and Active in the CNS of Patients with Amyotrophic Lateral Sclerosis, Neurobiology of Disease, vol.7, issue.6, pp.613-622, 2000.
DOI : 10.1006/nbdi.2000.0314

L. J. Martin and Z. Liu, Injury-induced spinal motor neuron apoptosis is preceded by DNA singlestrand breaks and is p53-and Bax-dependent, J. Neurobiol, pp.50-181, 2002.

C. Bendotti and M. T. Carrì, Lessons from models of SOD1-linked familial ALS, Trends in Molecular Medicine, vol.10, issue.8, pp.393-400, 2004.
DOI : 10.1016/j.molmed.2004.06.009

B. J. Turner and K. Talbot, Transgenics, toxicity and therapeutics in rodent models of mutant SOD1-mediated familial ALS, Progress in Neurobiology, vol.85, issue.1, pp.94-134, 2008.
DOI : 10.1016/j.pneurobio.2008.01.001

J. M. Mccord and I. Fridovich, Superoxide dismutase, an enzymic function for erythrocuprein (hemocuprein), J. Biol. Chem, vol.244, pp.6049-6055, 1969.

R. Rakhit, J. P. Crow, J. R. Lepock, L. H. Kondejewski, N. R. Cashman et al., Monomeric Cu,Zn-superoxide Dismutase Is a Common Misfolding Intermediate in the Oxidation Models of Sporadic and Familial Amyotrophic Lateral Sclerosis, Journal of Biological Chemistry, vol.279, issue.15, pp.279-15499, 2004.
DOI : 10.1074/jbc.M313295200

A. Ferri, M. Cozzolino, C. Crosio, M. Nencini, A. Casciati et al., Familial ALS-superoxide dismutases associate with mitochondria and shift their redox potentials, Proc. Natl. Sci. USA 103, pp.13860-13865, 2006.
DOI : 10.1073/pnas.0605814103

A. G. Estévez, J. P. Crow, J. B. Sampson, C. Reiter, Y. Zhuang et al., Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase, Science, vol.286, pp.2498-2500, 1999.

S. W. Flanagan, R. D. Anderson, M. A. Ross, and L. W. Oberley, Overexpression of manganese superoxide dismutase attenuates neuronal death in human cells expressing mutant (G37R) Cu/Zn-superoxide dismutase, Journal of Neurochemistry, vol.81, issue.1, pp.81-170, 2002.
DOI : 10.1046/j.1471-4159.2002.00812.x

M. Rizzardini, A. Mangolini, M. Lupi, P. Ubezio, C. Bendotti et al., Low levels of ALSlinked Cu/Zn superoxide dismutase increase the production of reactive oxygen species and cause mitochondrial damage and death in motor neuron-like cells, J. Neurol. Sci, issue.205, pp.323-95

L. G. Bilsland, N. Nirmalananthan, J. Yip, L. Greensmith, and M. R. Duhcen, in astrocytes induces functional deficits in motoneuron mitochondria, Journal of Neurochemistry, vol.14, issue.Suppl., pp.1271-1283, 2008.
DOI : 10.1111/j.1471-4159.2008.05699.x

M. E. Gurney, H. Pu, A. Y. Chiu, M. C. Dal-canto, C. Y. Polchow et al., Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation, Science, vol.264, issue.5166, pp.1772-1775, 1994.
DOI : 10.1126/science.8209258

M. C. Dal-canto and M. E. Gurney, Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis, Am. J. Pathol, pp.145-1271, 1994.

L. J. Martin, B. Gertz, Y. Pan, A. C. Price, J. D. Molkentin et al., The mitochondrial permeability transition pore in motor neurons: Involvement in the pathobiology of ALS mice, Experimental Neurology, vol.218, issue.2, 2009.
DOI : 10.1016/j.expneurol.2009.02.015

L. Martin, Z. Liu, K. Chen, A. C. Price, Y. Pan et al., Motor neuron degeneration in amyotrophoc lateral sclerosis mutant superoxide dismutase-1 transgenic mice: mechanisms of mitochondriopathy and cell death, J. Comp. Neurol, pp.500-520, 2007.

Q. Chang and L. J. Martin, Glycinergic Innervation of Motoneurons Is Deficient in Amyotrophic Lateral Sclerosis Mice, The American Journal of Pathology, vol.174, issue.2, pp.574-585, 2009.
DOI : 10.2353/ajpath.2009.080557

C. Bendotti, N. Calvaresi, L. Chiveri, A. Prelle, M. Moggio et al., Early vacuolization and mitochondrial damage in motor neurons of FALS mice are not associated with apoptosis or with changes in cytochrome oxidase histochemical reactivity, Journal of the Neurological Sciences, vol.191, issue.1-2, pp.191-216, 2001.
DOI : 10.1016/S0022-510X(01)00627-X

P. C. Wong, C. A. Pardo, D. R. Borchelt, M. K. Lee, N. G. Copeland et al., An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria, Neuron, vol.14, issue.6, pp.1105-1116, 1995.
DOI : 10.1016/0896-6273(95)90259-7

J. Kong and Z. Xu, Massive mitochondrial degeneration in motor neurons triggers the onset of amyotrophic lateral sclerosis in mice expressing a mutant SOD1, J. Neurosci, vol.18, pp.3241-50, 1998.

D. Jaarsma, F. Rognoni, W. Van-duijn, H. W. Verspaget, E. D. Haasdijk et al., CuZn superoxide dismutase (SOD1) accumulates in vacuolated mitochondria in transgenic mice expressing amyotrophic lateral sclerosis-linked SOD1 mutations, Acta Neuropathol, vol.102, pp.293-305, 2001.

C. M. Higgins, C. Jung, H. Ding, Z. Xu, and M. Cu, Zn Superoxide dismutase that causes motoneuron degeneration is present in mitochondria in the CNS, J. Neurosci, vol.22, pp.1-6, 2002.

C. M. Higgins, C. Jung, and Z. Xu, ALS-associated mutant SOD1G93A causes mitochondrial vacuolation by expansion of the intermembrane space and by involvement of SOD1 aggregation and peroxisomes, BMC Neuroscience, vol.4, issue.1, p.16, 2003.
DOI : 10.1186/1471-2202-4-16

D. Jaarsma, Swelling and vacuolation or mitochondria in transgenic SOD1-ALS mice: a consequence of supranormal SOD1 expression? Mitochondrion, pp.48-49, 2006.

S. Sasaki, H. Warita, T. Murakami, K. Abe, and M. Iwata, Ultrastructural study of mitochondria in the spinal cord of transgenic mice with a G93A mutant SOD1 gene, Acta Neuropathologica, vol.107, issue.5, pp.461-474, 2004.
DOI : 10.1007/s00401-004-0837-z

H. Deng, A. Hentati, J. A. Tainer, Z. Iqbal, A. Cayabyab et al., Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase, Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase, pp.1047-1051, 1993.
DOI : 10.1126/science.8351519

D. R. Borchelt, M. K. Lee, H. H. Slunt, M. Guarnieri, Z. Xu et al., Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity., Proc. Natl. Acad. Sci. USA 91, pp.8292-8296, 1994.
DOI : 10.1073/pnas.91.17.8292

M. B. Yim, J. Kang, H. Yim, H. Kwak, P. B. Chock et al., A gain-offunction of an amyotrophic lateral sclerosis-associated Cu,Zn-superoxide dismutase mutant: an enhancement of free radical formation due to a decrease in K m for hydrogen peroxide, Proc. Natl. Acad. Sci. USA 93, pp.5709-5714, 1996.

E. Kabashi, P. N. Valdmanis, P. Dion, and G. A. Rouleau, Oxidized/misfolded superoxide dismutase-1: the cause of all amyotrophic lateral sclerosis?, Annals of Neurology, vol.280, issue.6, pp.62-553, 2007.
DOI : 10.1002/ana.21319

S. A. Ezzi, M. Urushitani, and J. Julien, Wild-type superoxide dismutase acquires binding and toxic properties of ALS-linked mutant forms through oxidation, Journal of Neurochemistry, vol.56, issue.1, pp.170-178, 2007.
DOI : 10.1073/pnas.87.13.5006

S. I. Liochev and I. Fridovich, Mutant Cu,Zn superoxide dismutases and familial amyotrophic lateral sclerosis: evaluation of oxidative hypotheses, Free Radical Biology and Medicine, vol.34, issue.11, pp.1383-1389, 2003.
DOI : 10.1016/S0891-5849(03)00153-9

P. Pacher, J. S. Beckman, and L. Liaudet, Nitric Oxide and Peroxynitrite in Health and Disease, Physiological Reviews, vol.87, issue.1, pp.315-424, 2007.
DOI : 10.1152/physrev.00029.2006

P. K. Andrus, T. J. Fleck, M. E. Gurney, and E. D. Hall, Protein oxidative damage in a transgenic mouse medel of familial amyotrophic lateral sclerosis, J. Neurochem, pp.71-2041, 1998.

H. F. Poon, K. Hensley, V. Thongboonkerd, M. L. Merchant, B. C. Lynn et al., Redox proteomics analysis of oxidatively modified proteins in G93A-SOD1 transgenic mice-a model of familial amyotrophic lateral sclerosis. Free Radic, Biol. Med, pp.39-435, 2005.

A. Okado-matsumoto and I. Fridovich, Subcellular Distribution of Superoxide Dismutases (SOD) in Rat Liver: Cu,Zn-SOD IN MITOCHONDRIA, Journal of Biological Chemistry, vol.276, issue.42, pp.38388-38393, 2001.
DOI : 10.1074/jbc.M105395200

J. Liu, C. Lillo, A. Jonsson, C. Vande-velde, C. W. Ward et al., Toxicity of Familial ALS-Linked SOD1 Mutants from Selective Recruitment to Spinal Mitochondria, Neuron, vol.43, issue.1, pp.5-15, 2004.
DOI : 10.1016/j.neuron.2004.06.016

P. Pasinelli, M. E. Belford, N. Lennon, B. J. Bacskai, B. T. Hyman et al., Amyotrophic Lateral Sclerosis-Associated SOD1 Mutant Proteins Bind and Aggregate with Bcl-2 in Spinal Cord Mitochondria, Neuron, vol.43, issue.1, pp.19-30, 2004.
DOI : 10.1016/j.neuron.2004.06.021

C. Vande-velde, T. M. Miller, N. R. Cashman, and D. W. Cleveland, Selective association of misfolded ALS-linked mutant SOD1 with the cytoplasmic face of mitochondria, Proc. Natl. Acad. Sci. USA 105, pp.4022-4027, 2008.
DOI : 10.1073/pnas.0712209105

G. Goldsteins, V. Keksa-goldsteine, T. Ahtiniemi, M. Jaronen, E. Arens et al., Deleterious Role of Superoxide Dismutase in the Mitochondrial Intermembrane Space, Journal of Biological Chemistry, vol.283, issue.13, pp.283-8446, 2008.
DOI : 10.1074/jbc.M706111200

C. Vijayverguya, M. F. Beal, J. Buck, and G. Manfredi, Mutant Superoxide Dismutase 1 Forms Aggregates in the Brain Mitochondrial Matrix of Amyotrophic Lateral Sclerosis Mice, Journal of Neuroscience, vol.25, issue.10, pp.25-2463, 2005.
DOI : 10.1523/JNEUROSCI.4385-04.2005

M. Mattiazzi, M. D. Aurelio, C. D. Gajewski, K. Martushova, M. Kiaei et al., Mutated Human SOD1 Causes Dysfunction of Oxidative Phosphorylation in Mitochondria of Transgenic Mice, Journal of Biological Chemistry, vol.277, issue.33, pp.277-29626, 2002.
DOI : 10.1074/jbc.M203065200

K. J. De-vos, A. L. Chapman, M. E. Tennant, C. Manser, E. L. Tudor et al., Familial amyotrophic lateral sclerosis-linked SOD1 mutants perturb fast axonal transport to reduce axonal mitochondria content, Human Molecular Genetics, vol.16, issue.22, pp.2720-2728, 2007.
DOI : 10.1093/hmg/ddm226

L. J. Martin, K. Chen, and Z. Liu, Adult Motor Neuron Apoptosis Is Mediated by Nitric Oxide and Fas Death Receptor Linked by DNA Damage and p53 Activation, Journal of Neuroscience, vol.25, issue.27, pp.25-6449, 2005.
DOI : 10.1523/JNEUROSCI.0911-05.2005

L. Siklos, J. I. Engelhardt, M. E. Alexianu, M. E. Gurney, T. Siddique et al., Intracellular Calcium Parallels Motoneuron Degeneration in SOD-1 Mutant Mice, Journal of Neuropathology & Experimental Neurology, vol.57, issue.6, pp.571-587, 1998.
DOI : 10.1097/00005072-199806000-00005

M. K. Jaiswal and B. U. Keller, Cu/Zn superoxide dismutase typical for familial amyotrophic lateral sclerosis increases the vulnerability of mitochondria and perturbs Ca 2+ homeostasis in SOD1 G93A mice, Mol. Pharmacol, pp.75-478, 2009.

M. Damiano, A. A. Starkov, S. Petri, K. Kipiani, M. Kiaei et al., Neural mitochondrial Ca 2+ capacity impairment precedes the onset of motor symptoms in G93A Cu/Zn-superoxide dismutase mutant mice, J. Neurochem, pp.961349-1361, 2006.

K. T. Nguyen, L. E. Garcia-chacon, J. N. Barrett, E. F. Barrett, and G. David, The ? m depolarization that accompanies mitochondrial Ca 2+ uptake is greater in mutant SOD1 than in wild-type mouse motor terminals, Proc. Natl. Acad. Sci. USA, 2007.

S. Sasaki, H. Warita, K. Abe, and M. Iwata, Inducible nitric oxide synthase (iNOS) and nitrotyrosine immunoreactivity in the spinal cords of transgenic mice with mutant SOD1 gene, J. Neuropathol. Exp. Neurol, pp.60-839, 2001.

W. S. Kunz, Different Metabolic Properties of Mitochondrial Oxidative Phosphorylation in Different Cell Types - Important Implications for Mitochondrial Cytopathies, Experimental Physiology, vol.88, issue.1, pp.149-154, 2003.
DOI : 10.1113/eph8802512

D. R. Hunter, R. A. Haworth, and J. H. Southard, Relationship between configuration, function, and permeability in calcium-treated mitochondria, J. Biol. Chem, pp.251-5069, 1976.

M. Crompton, The mitochondrial permeability transition pore and its role in cell death, Biochemical Journal, vol.341, issue.2, pp.233-249, 1999.
DOI : 10.1042/bj3410233

M. Van-gurp, N. Festjens, and G. Van-loo, Mitochondrial intermembrane proteins in cell death, Biochemical and Biophysical Research Communications, vol.304, issue.3, pp.487-497, 2003.
DOI : 10.1016/S0006-291X(03)00621-1

P. Bernardi, A. Krauskopf, E. Basso, V. Petronilli, E. Blalchy-dyson et al., The mitochondrial permeability transition from in vitro artifact to disease target, FEBS Journal, vol.14, issue.10, pp.2077-2099, 2006.
DOI : 10.1093/hmg/7.13.2135

A. W. Leung and A. P. Halestrap, Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1777, issue.7-8, pp.946-952, 2008.
DOI : 10.1016/j.bbabio.2008.03.009

V. Shoshan-barmatz, A. Israelson, D. Brdiczka, and S. S. Sheu, The Voltage-Dependent Anion Channel (VDAC): Function in Intracellular Signalling, Cell Life and Cell Death, Current Pharmaceutical Design, vol.12, issue.18, pp.12-2249, 2006.
DOI : 10.2174/138161206777585111

T. K. Rostovtseva, W. Tan, and M. Colombini, On the Role of VDAC in Apoptosis: Fact and Fiction, Journal of Bioenergetics and Biomembranes, vol.1706, issue.3, pp.129-142, 2005.
DOI : 10.1007/s10863-005-6566-8

D. J. Granville and R. A. Gottlieb, The Mitochondrial Voltage-dependent Anion Channel (VDAC) as a Therapeutic Target for Initiating Cell Death, Current Medicinal Chemistry, vol.10, issue.16, pp.1527-1533, 2003.
DOI : 10.2174/0929867033457214

M. Huizing, W. Ruitenbeek, L. P. Van-den-heuvel, V. Dolce, V. Iacobazzi et al., Human mitochondrial transmembrane metabolite carriers: tissue distribution and its implication for mitochondrial disorders, J. Bioenerg. Biomembr, pp.30-277, 1998.

S. Wu, M. J. Sampson, W. K. Decker, and W. J. Craigen, Each mammalian mitochondrial outer membrane porin protein is dispensable: effects on cellular respiration, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1452, issue.1, pp.1452-68, 1999.
DOI : 10.1016/S0167-4889(99)00120-2

K. Anflous, D. D. Armstrong, and W. J. Craigen, Altered Mitochondrial Sensitivity for ADP and Maintenance of Creatine-stimulated Respiration in Oxidative Striated Muscles from VDAC1-deficient Mice, Journal of Biological Chemistry, vol.276, issue.3, p.276, 1954.
DOI : 10.1074/jbc.M006587200

M. J. Sampson, W. K. Decker, A. L. Beaudet, W. Ruitenbeek, D. Armstrong et al., Immotile Sperm and Infertility in Mice Lacking Mitochondrial Voltage-dependent Anion Channel Type 3, Journal of Biological Chemistry, vol.276, issue.42, pp.276-39206, 2001.
DOI : 10.1074/jbc.M104724200

E. H. Cheng, T. V. Sheiko, J. K. Fisher, W. J. Craigen, and S. J. Korsemeyer, VDAC2 Inhibits BAK Activation and Mitochondrial Apoptosis, Science, vol.301, issue.5632, pp.513-517, 2003.
DOI : 10.1126/science.1083995

D. Chandra, G. Choy, P. T. Daniel, and D. G. Tang, Bax-dependent Regulation of Bak by Voltage-dependent Anion Channel 2, Journal of Biological Chemistry, vol.280, issue.19, pp.19051-19061, 2005.
DOI : 10.1074/jbc.M501391200

C. P. Baines, R. A. Kaiser, T. Sheiko, W. J. Craigen, and J. D. Molkentin, Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death, Nature Cell Biology, vol.336, issue.5, pp.550-555, 2007.
DOI : 10.1074/jbc.M313717200

A. P. Helestrap and C. Brenner, The Adenine Nucleotide Translocase: A Central Component of the Mitochondrial Permeability Transition Pore and Key Player in Cell Death, Current Medicinal Chemistry, vol.10, issue.16, pp.1507-1525, 2003.
DOI : 10.2174/0929867033457278

B. H. Graham, K. G. Waymire, B. Cottrell, I. A. Trounce, G. R. Macgregor et al., A mouse model for mitochondrial myopathy and cardiomyopathy resulting from a deficiency in the heart/muscle isoform of the adenine nucleotide translocator, Nature Genetics, vol.25, issue.3, pp.16-226, 1997.
DOI : 10.1016/S0076-6879(96)64044-0

G. Stepien, A. Torroni, A. , B. Chung, J. A. Hodge et al., Differential expression of adenine nucleotide transloactor isoforms in mammalian tissues and during muscle cell differentiation, J. Bio. Chem, vol.267, pp.14592-14597, 1992.

M. Y. Vyssokikh, A. Katz, A. Rueck, C. Wuensch, A. Dorner et al., Adenine nucleotide translocator isoforms 1 and 2 are differently distrubited in the mitochondrial inner membrane and have distinct affinities to cyclophilin D, Biochem. J, pp.358-349, 2001.

J. E. Kikoszka, K. G. Waymire, S. E. Levy, J. E. Sligh, J. Cai et al., The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore, Nature, vol.427, issue.6973, pp.461-465, 2004.
DOI : 10.1038/nature02229

K. Machida, Y. Hayashi, and H. Osada, A novel adenine nucleotide translocase inhibitor, MT-21, induces cytochrome c release through a mitochondrial permeability transition-independent mechanisms, J. Biol. Chem, pp.277-31243, 2002.

C. P. Baines, R. A. Kaiser, N. H. Purcell, H. S. Blair, H. Osinska et al., Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death, Nature, vol.65, issue.7033, pp.658-662, 2005.
DOI : 10.1038/sj.gt.3301048

M. Crompton, Mitochondria and aging: a role for the permeability transition?, Aging Cell, vol.22, issue.1, pp.3-6, 2004.
DOI : 10.1016/0925-4439(95)00021-U

P. C. Waldmeier, K. Zimmermann, T. Qian, M. Tintelnot-blomley, and J. J. Lemasters, Cyclophilin D as a Drug Target, Current Medicinal Chemistry, vol.10, issue.16, pp.1485-1506, 2003.
DOI : 10.2174/0929867033457160

K. Woodfield, A. Rück, D. Brdiczka, and A. P. Halestrap, Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition, Biochemical Journal, vol.336, issue.2, pp.336-287, 1998.
DOI : 10.1042/bj3360287

N. Johnson, A. Khan, S. Virji, J. M. Ward, and M. Crompton, Import and processing of heart mitochondrial cyclophilin D, European Journal of Biochemistry, vol.33, issue.2, pp.353-359, 1999.
DOI : 10.1126/science.281.5385.2027

M. W. Mcenery, T. M. Dawson, A. Verma, D. Gurley, M. Colombini et al., Mitochondrial voltage-dependent anion channel, J. Biol. Chem, pp.268-23289, 1993.

V. Shoshan-barmatz, R. Zalk, D. Gincel, and N. Vardi, Subcellular localization of VDAC in mitochondria and ER in the cerebellum, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1657, issue.2-3, pp.105-114, 2004.
DOI : 10.1016/j.bbabio.2004.02.009

N. Akanda, R. Tofight, J. Brask, C. Tamm, F. Elinder et al., Voltage-dependent anion channels (VDAC) in the plasma membrane play a critical role in apoptosis in differentiated hippocampal neurons but not in neural stem cells, Cell Cycle, vol.7, issue.20, pp.3225-3234, 2008.
DOI : 10.4161/cc.7.20.6831

W. H. Yu, W. Wolfgang, and M. Forte, Subcellular Localization of Human Voltage-dependent Anion Channel Isoforms, Journal of Biological Chemistry, vol.270, issue.23, pp.13998-14006, 1995.
DOI : 10.1074/jbc.270.23.13998

C. R. Buck, M. J. Jurynec, D. E. Upta, A. K. Law, J. Bilger et al., Increased adenine nucleotide translocator 1 in reactive astrocytes facilitates glutamate transport, Experimental Neurology, vol.181, issue.2, pp.181149-158, 2003.
DOI : 10.1016/S0014-4886(03)00043-8

J. L. Hazelton, M. Petrasheuskaya, G. Fiskum, and T. Kristian, Cyclophilin D is expressed predominantly in mitochondria of ??-aminobutyric acidergic interneurons, Journal of Neuroscience Research, vol.7, issue.5, pp.1250-1259, 2009.
DOI : 10.1002/jnr.21921

K. K. Naga, P. G. Sullivan, and J. W. Geddes, High Cyclophilin D Content of Synaptic Mitochondria Results in Increased Vulnerability to Permeability Transition, Journal of Neuroscience, vol.27, issue.28, pp.27-7469, 2007.
DOI : 10.1523/JNEUROSCI.0646-07.2007

S. Bose and R. B. Freedman, -isomerase activity associated with the lumen of the endoplasmic reticulum, Biochemical Journal, vol.300, issue.3, pp.865-870, 1994.
DOI : 10.1042/bj3000865

URL : https://hal.archives-ouvertes.fr/jpa-00209871

P. G. Sullivan, A. G. Rabchevsky, J. N. Keller, M. Lovell, A. Sodhi et al., Intrinsic differences in brain and spinal cord mitochondria: Implication for therapeutic interventions, The Journal of Comparative Neurology, vol.22, issue.4, pp.474-524, 2004.
DOI : 10.1002/cne.20130

S. Morota, M. J. Hansson, N. Ishii, Y. Kudo, E. Elmer et al., Spinal cord mitochondria display lower calcium retention capacity compared with brain mitochondria without inherent differences in sensitivity to cyclophilin D inhibition, Journal of Neurochemistry, vol.5, issue.5, pp.2066-2076, 2007.
DOI : 10.1016/0304-4157(95)00003-A

T. J. Collins and M. D. Bootman, Mitochondria are morphologically heterogeneous within cells, Journal of Experimental Biology, vol.206, issue.12, 1993.
DOI : 10.1242/jeb.00244

R. E. Jensen, Control of mitochondrial shape, Current Opinion in Cell Biology, vol.17, issue.4, pp.384-388, 2005.
DOI : 10.1016/j.ceb.2005.06.011

A. Hamberger, C. Blomstrand, and A. L. Lehninger, COMPARATIVE STUDIES ON MITOCHONDRIA ISOLATED FROM NEURON-ENRICHED AND GLIA-ENRICHED FRACTIONS OF RABBIT AND BEEF BRAIN, The Journal of Cell Biology, vol.45, issue.2, pp.221-234, 1970.
DOI : 10.1083/jcb.45.2.221

M. Keep, E. Elmér, K. S. Fong, and K. Csiszar, Intrathecal cyclosporin prolongs survival of latestage ALS mice, Brain Res, vol.894, pp.27-331, 2001.

J. Karlsson, K. S. Fong, M. J. Hansson, K. Elmer, M. F. Csiszar et al., Life span extension and reduced neuronal death after weekly intraventricular cyclosporin injections in the G93A transgenic mouse model of amyotrophic lateral sclerosis, Journal of Neurosurgery, vol.101, issue.1, pp.128-137, 2004.
DOI : 10.3171/jns.2004.101.1.0128

I. G. Kirkinezos, D. Hernandez, W. G. Bradley, and C. T. , Moraes, An ALS mouse model with a permeable blood-brain barrier benefits from systemic cyclosporine A treatment, J. Neurochem, pp.88-821, 2004.

T. Bordet, B. Buisson, M. Michaud, C. Drouot, P. Galea et al., Pruss, identification and characterization of Cholest- 4-en-3-one, oxime (TRO19622), a novel drug candidate for amyotrophic lateral sclerosis, J. Pharmacol. Exp. Ther, pp.322-709, 2007.

C. Mills, M. Makwana, A. Wallace, S. Benn, H. Schmidt et al., promotes neonatal motor neuron survival and nerve regeneration in adult rats, Eur. J. Neurosci, pp.5-4864, 2008.

L. Yan and R. S. Sohal, Mitochondrial adenine nucleotide translocase is modified oxidatively during aging, Proc. Natl. Acad. Sci. USA 95, pp.12896-12901, 1998.
DOI : 10.1073/pnas.95.22.12896

L. Prokai, L. Yan, J. L. Vera-serrano, S. M. Stevens-jr, and M. J. Forster, Mass spectrometry-based survey of age-associated protein carboylation in rat brain mitochondria, J. Mass Spectrom, pp.42-1583, 2007.

H. L. Vieira, A. Belzacq, D. Haouzu, F. Bernassola, I. Cohen et al., The adenine nucleotide translocator: a target of nitric oxide, peroxynitrite, and 4-hydroxynonenal, Oncogene, vol.20, issue.32, pp.4305-4316, 2001.
DOI : 10.1038/sj.onc.1204575

G. P. Mcstay, S. J. Clarke, and A. P. Halestrap, Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore, Biochemical Journal, vol.367, issue.2, pp.367-541, 2002.
DOI : 10.1042/bj20011672

P. Costantini, R. Colonna, and P. Bernardi, Induction of the mitochondrial permeability transition by N-ethylmaleimide depends on secondary oxidation of critical thiol groups. Potentiation by copper-ortho-phenthroline without dimerization of the adenine nucleotide translocase, Biochim. Biophys. Acta, pp.1365-385, 1998.

P. Costantini, A. Belzacq, H. L. Vieira, N. Larochette, M. A. De-pablo et al., Oxidation of a critical thiol residue of the adenine nucleotide translocator enforces Bcl-2-independent permeability transition pore opening and apoptosis, Oncogene, vol.19, issue.2, pp.307-314, 2000.
DOI : 10.1038/sj.onc.1203299

N. García, E. Martínez-abundis, N. Pavón, F. Correa, and E. Chávez, Copper induces permeability transition through its interaction with the adenine nucleotide translocase, Cell Biology International, vol.31, issue.9, pp.31-893, 2007.
DOI : 10.1016/j.cellbi.2007.02.003

S. Grimm and D. Brdiczka, The permeability transition pore in cell death, Apoptosis, vol.29, issue.257, pp.841-855, 2007.
DOI : 10.1007/s10495-007-0747-3

H. Du, L. Guo, F. Fang, D. Chen, A. A. Sosunov et al., Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease, Nature Medicine, vol.72, issue.10, pp.141097-1105, 2008.
DOI : 10.1038/nm.1868

M. Forte, B. G. Gold, G. Marracci, P. Chaudhary, E. Basso et al., Cyclophilin D inactivation protects axons in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, Proc. Natl. Acad. Sci. USA, pp.7558-7563, 2007.
DOI : 10.1073/pnas.0702228104

A. C. Schinzel, O. Takeuchi, Z. Huang, J. K. Fisher, Z. Zhou et al., Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia, Proc. Natl. Acad. Sci. USA, pp.12005-12010, 2005.
DOI : 10.1073/pnas.0505294102