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Abstract

Paients with inflanmatory or neuropathic pain experience hypersengtivity to
mechanicd, thema and/or chemicd <imuli. Given the diverse eiologies and molecular
mechanisms of these pain syndromes, an approach to developing successful therapies
may be to target ion channels that contribute to the detection of thermal, mechanicd and
chemicad gimuli and promote the sendtization and activation of nociceptors. Trangent
Receptor Potential (TRP) channds have emerged as a family of evolutionarily conserved
ligand-gated ion channels tha contribute to the detection of physica simuli. Sx TRPs
(TRPV1, TRPV2, TRPV3, TRPV4, TRPM8 and TRPAl) have been shown to be
expressed in primary afferent nociceptors, pan sensng neurons, where they act as
transducers for thermal, chemicd and mechanical stimuli. This short review focuses on
ther contribution to pain hypersengtivity associated with peripherd inflammatory and

neuropathic pain gates.



I ntroduction

Pan is normaly a trandtory unpleasant sensation subsequent to a noxious
or potentidly injurious simulus generated in somatic or viscerd tissues. Unlike acute
pain, inflanmatory and neuropathic pan ae often pesdent, chronic dates.
Inflammatory pain is caused by irritation, injury or infection of somdic or viscerd
tissues. Its role is to prevent further injury while neuropathic pain is caused by a primary
leson or dysfunction in the peripherd nervous system. The management of chronic pan
is a mgor unmet medica need in our aging society. The associated rise in the occurrence
of many diseases (eg., athritis, diabetes, vird infections and sde effects of the treatment
of cancer and AIDS) and the redive inadequacy of currently available pain therapies
(e.g., NSAIDS, opioids, anti-epileptics and tricyclic antidepressants) to produce sustained
relief in patients with chronic pan, have generated a growing interest in pursuing nove
pharmacologica approaches.

Paients suffering from chronic pan often experience hypersengtivity to
mechanicd, themd and/or chemicd dimulaion in the form of hyperdgesa (aggravated
pan response to normdly panful simuli) and/or dlodynia (pain response to normaly
innocuous gimuli). Given the diverse etiologies (eg., physcd trauma, neurotoxins,
chemotherapy, infections, heredity, immune and metabolic diseases) and the variety of
molecular mechanisms underlying pain hypersengtivity (eg., different second messenger
pathways and mitochondrid functions), the gpproach of targeting ion channds in primary
afferent nociceptive neurons that can contribute to the detection of physcd simuli, may
be an effective gpproach for developing more successful therapies for clinica pain

syndromes. In the present review, we will focus on the role of mammdian Trangent



Receptor Potentiad  (TRP) channels and their function in dorsd root ganglion (DRG)
NOCi ceptive Sensory Neurons.

Hyperdgesa for cold, heat or mechanicd simuli, well documented symptoms of
inflanmatory and neuropathic pain, is mediaed by sendtization of transduction
processes in smdl-diameter unmydinated C-fibers and medium-diameter myeinated Ad-
fibers. These nociceptive neurons ether respond to one type of physcd simulus
(unimodal nociceptors), or more commonly integrate and generate a response to
potentidly damaging themd, mechanicd andlor chemicd dimuli  (polymoda
nociceptors). Inflanmation and peripherd nerve dysfunction have been associated with
increased excitability of nociceptors as a result of changes in their ionic conductance
properties leading to the speculation that nociceptive endings detect physica stimuli by
means of ion channes respondve to therma, chemicd and/or mechanica gimuli. The
search for such molecules was supported by the key finding that both heat and capsaicin,
the pungent ingredient in hot pepper, induced influx of cations in nociceptors [1-4].
Because capsaicin induces a burning pain sensation it was hypothesized that capsacin
and heat may evoke painful responses through a common transducer. In 1997, Caterina
and colleegues cloned the vanilloid receptor 1, subsequently renamed TRPV1, a
capsaicin and heat-sendtive cation channd. TRPV1 is a mammdian rddive of the
Drosophila transent receptor potentid (TRP) channe, which adong with its homologue
TRPL is respongble for phototransduction [5, 6]. TRPV1 is a polymoda receptor, its
invertebrate relatives ae essentid to  sensory  transduction  (phototransduction,
thermosensation, mechanosensation, osmosensation [7]) and in mammads its activaion

by hest and protons results in an influx of cations which can depolarize the cdl and



generate action potentias. Such halmarks initiated an intense interest in the potentid role

of TRP channdsin pain.

TRP family overview

The TRP channd family is one of the largest families of ion channds with
representative members across the phylogenetic tree, from yeast to humans. Based on
amino acd seguence homology, the mammaian members of this family have been
classfied into 6 subfamilies TRPC (Canonicd), TRPV (Vanilloid), TRPM (M dadtétin),
TRPP (Polycydin), TRPML (M ucdlipin) and TRPA (Ankyrin) [8-11]. Mammdian TRP
channels are permegble to cations and their generd membrane topology is Smilar to the
superfamily of voltage gated channds. They have 6 tranamembrane domains flanked by
intracdlular N- and C-temind regions of variable length with a pore loop between
transmembrane domain 5 and 6 [7, 8]. Four subunits need to assemble as homo- and/or
heterotetramers to form a functiona channd [12, 13]. Although severd TRPs may be
weekly voltage-dependent [14] they lack the hdlmark of voltage-gated channels, the
voltage sensor [15-17]. Beyond their generd membrane topology and permesbility to
cdions, TRP channds ae drikingly diverse. Unlike other families of ion channes, the
sequence homology of mammadian TRP channds is low and they have a wide variety of
modes of activation (temperature, chemicad compounds, osmolarity, mechanicd
dimulation, lipids, light, oxidative dress, acid, pheromones), regulaion (transcription,
dternative  splicing,  glycosylation, phosphorylaion), ion Sdectivity, broad tissue
digribution (virtudly dl cdls teted express a least one member of the family) and

physologicd functions.



Today, ten years after the publication of the cloning of TRPV1, severd other
TRPs have been described in dorsa root ganglia;, TRPV2, TRPV3, TRPV4, TRPA1 and
TRPMS8. These channds are emerging as sensory transducers that may participate in the
generation of pan sensdions evoked by chemicd, thema and mechanica gimuli.
TRPV1, TRPV2, TRPV3 and TRPM8 are commonly referred to as thermoreceptors and
TRPV4 and TRPA1l as mechanoreceptors. However, the hdlmark of TRP channds is
their polymodality and TRPV1, TRPV3, TRPM8 and TRPA1l ae adso recognized as
chemoreceptors, respectively responsive to capsaicin and endocannabinoids, camphor
[18], menthol [19, 20], mustard and cinnamon oil [21, 22], and TRPV4 and TRPAL as
thermoreceptors [23-25]. Recent studies in mice deficient in TRP channds indicates thet
TRP channds may play a crucid role in the hypersengtivity to thermd, chemicd and
mechanica simuli that is associated with periphera inflanmation and neuropathies. The
purpose of this review is to give an overview of the emerging role of TRP channds in the
peripherd  mechanisms  of pan hypersengtivity associated with  inflammatory  and

neuropathic states.

TRPV1

TRPV1, origindly named vanilloid receptor 1 (VR1) and commonly referred as
the capsaicin receptor, was first described as a polymodal receptor activated by three
pan-producing simuli; vanilloild compounds (cgpsacin, resniferatoxin), moderate heeat
(=43 °C) and low pH (<5.9) [26, 27]. Since then, TRPV1 has been reported to be aso
activated by camphor [28], dlian [29, 30], nitric oxide [31], spider toxins [32],
potentiated by ethanol [33] and modulated by extracdlular cations [34]. TRPV1 was

initidly described in a subpopulation of smdl- to medium-diameter neurons in dorsa



root, trigeminad and nodose ganglia [26, 27]. While TRPV1 has since been described in
many other neurona and non neurond cels [35-44], its highest expression leve is in
sensory neurons [43]. The initid expectation was that TRPV1 was the heat transducer in
sensory  neurons because its thermd  activation threshold was comparable to: 1) the
threshold for the perception of pain in human skin, 2) the threshold recorded in vivo for
C-fiber nociceptors, and 3) the threshold for endogenous heat-evoked cationic current
recorded in smadl-diameter dissociated DRG (For review, [45]). Mice lacking a
funciond TRPV1 gene were generated and the initid prospect of TRPV1 as the heat
pain transducer in sensory neurons was tested. Sensory neurons from mice lacking
TRPV1 did not respond to capsaicin, resiniferatoxin, protons or temperature (<50°C) in
vitro and behaviorad response to capsaicin were absent and responses to acute thermd
gimuli were diminished [46, 47]. In contrast, mice lacking functiond TRPV1 showed
norma physological and behaviord responses to noxious mechanica stimuli. However,
the most driking fegture of these mice was the virtud absence of thermd hypersengtivity
in the sdting of inflammation; while wild-type mice had decreased threshold or latencies
of withdravd from mechanicd and themd dimuli, respectively, following mudard ail,
complete Freund's adjuvant, carrageenan or inflammatory mediators (i.e, bradykinin,
nerve growth factor, adenosine triphosphate), mice lacking functiond TRPV1 only
digolayed hypersengtivity to mechanicd dimuli [46-49]. Condgtent with this finding,
several gudies have now demondrated, in vitro and in vivo, thet inflammatory mediators
(bradykinin, progtaglandin E,, extracdlular ATP, glutamae and nerve growth factor)
indirectly sendgtize TRPV1 [50-52]; following exposure of sensory neurons to

inflammatory mediators, responses to cgpsaicin or heat are dramatically enhanced to the



extent that body temperature can be aufficient to activate nociceptors [27, 53].
Inflammatory mediaiors sendtize TRPV1 function by various mechaniamns, they may
increese TRPV1 expresson leves in the membrane [54, 55], induce TRPV1
phosphorylation by protein kinases [48, 56, 57] or reease the inhibition of TRPV1 by
phosphatidylinositol  4,5-bisphosphate, which render the channd more responsve to
agonig gimulation [48, 58]. In addition, these inflammatory mediators act on receptors
that are coupled to G proteins or tyrosine kinase pathways thus activating phospholipase
C and/or phospholipase A2 which, in turn, induce the release of arachidonic acid
metabolites. Severd amide derivatiives of aachidonic acid (anandamide) and
lipoxygenase products of arachidonic acid, such as 12-(S)-HPETE, are agonists of
TRPV1 and therefore are candidates for endogenous capsaicin like substances [59, 60]. In
addition to inflanmatory mediators, proteases released during inflammation or nerve
injury, such as trypsins and mast cdl tryptase, can dso senstize TRPV1; these proteases
cleave the protease-activated receptor 2 to sendtize TRPV1 to induce thermd
hyperdgesa through PKA and PKCe second messenger pathways [61, 62]. These
findings demondrate that TRPV1 not only participates in pain evoked by chemicd and
moderate heat but that TRPV1 contributes to periphera sendtization, acting as the find
ubdrate for multiple inflammatory mediators that operate via diginct intracdlular
sgnding pathways.

This important redization initiated pre-clinica invedigations of a potentid role of
TRPV1 in modds of acute and chronic pain including: 1) monitoring of the development
of acute or chronic hyperdgesa ether in mice lacking functiond TRPV1 gene or in ras

recaving intrathecal injection of antisense oligodeoxynuclectides or Slencer  RNA



(resulting in a specific and reversble knock-down of TRPV1 protein) to further unrave
TRPV1 function, and 2) massve chemicd efforts to identify nove TRPV1 antagonists
with the hope that these molecules would have andgesic properties.

Recent sudies have reported that TRPV1 plays a pronociceptive role in some
models of acute inflammatory pain. Mice lacking a functiond TRPV1 gene (TRPV1™)
did not display nocifensve behavior following intrgplantar injection of phorbol 12-
myristate 13-acetate (activator of protein kinase C) suggesting that PMA-induced
nociceptive behavior was exclusvely dependent on TRPV1 [63]. Of note, PKC plays a
prominent role in hypersengtivity to thema simuli after inflanmation [64]. In a modd
of mild heat injury, TRPV1" mice had markedly reduced therma and mechanicd
hyperdgesa [63], this finding has dinicd reevance because cutaneous thermd injury
induces heat and mechanicd hyperdgesa in human skin [65, 66]. In contragt, formdin-
induced nocifensve behavior, which is composed of two phases, the first supposedly due
to the chemonociceptive effect of formdin and the second manly mediated by
inflammatory mediators, was dmilar in both TRPV1 genotypes. While carrageenan
induced heat hyperagesa is mediaed by TRPV1 [47], the dinicdly important
mechanical hyperdgesia that is dso induced was smilar in TRPV1” and wild-type mice
[63]. Smilaly, Caterina and colleagues (2000) reported that mechanical hyperdgesia in
TRPV1’ mice, one day after the injection of complete Freund's adjuvant (CFA, mode of
inflammation) into the hind paw, was dmilar to that in wild-type mice while chemica
and thermd hyperdgesa were markedly reduced [47]. However, Szabo and colleagues
(2005) reported that 16 days after subcutaneous injection of CFA in rat hind paw and tall

(model of chronic arthritis), mechanicd hyperdgesia is atenuated in TRPV1” mice



These reaults suggest a complex role of TRPV1 in inflammatory hyperdgesia induced by
CFA; TRPV1 paticipaes in the deveopment of chemicd and thema hyperdgesa in
the acute phase, possbly from the action of low pH, heat (calor) and inflammatory
mediators [67], but can dso paticipae in the mechanicd hyperdgesa associated with
the chronic phase of adjuvant arthritis possbly from the activation/senstization of
TRPV1 receptors by bradykinin, prostaglandins and lipoxygenases products that are
rdeased in arthritic joints [68]. Taken together, these findings suggest that the role of
TRPV1 may vay within the different dages of inflammation and therefore between
different inflammatory diseases.

TRPV1 function has dso been invedigated in modes of neuropathic pain.
TRPV1 plays an importat role in chemicd and themd hyperdgesa in a modd of
diabetic neuropathy [69, 70], its role may be associated with dtered cdl-gpecific
expresson (decrease of TRPV1 protein expresson in C-fibers pardleed by an increase
in A-fibers) cowpled to an increase in its function (oligomerization, redlocation of
channels to cdl surface plasma membrane and/or increase of TRPV1 phosphorylation
coupled to impaired desengtization). However, in contrast to its pronociceptive role in
theemd and chemicd hyperdgesa in diabetic mice, TRPV1 may have a protective role in
the devdopment of mechanicd hyperdgesa, which is grester and dats ealier in
TRPV1” compared to wild-type mice [63]. Smilaly, mechanicd hyperdgesa
associated  with cisplatin-induced toxic neuropathy  (chemotherapy-induced neuropathy)
starts 4 weeks earlier in TRPV1” mice but once it has started, there is no difference

between the TRPV 1 genotypes [63].
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The contribution of TRPV1 has dso been tested in models of neuropathic pan
asociaed with nerve leson; after traumatic mononeuropathy caused by ligation of
sciatic nerve, the induced cold dlodynia can be markedly reduced after treatment with
dlencer RNA for TRPV1 [71] while both the induced mechanicd and heat hyperagesa
is comparable in TRPV1” and TRPV1'* mice [46, 63]. In contrast, TRPV1 antisense
oligodeoxynuclectides reduce the mechanicad hyperdgesa associated with spind nerve
ligaion [72]. Findly, supporting a role of TRPV1 in neuropathic pain, an increase in
TRPV1 expresson leve has been reported in uninjured DRG following peripherd nerve
inury [73, 74] and molecular phenotype of norrinjured C-fiber aferents is functiondly
important in the maintenance of neuropathic pain induced by partid nerveinjury [75, 76].

Thee sudies suggest that TRPV1 may play a role in the development and
maintenance of chronic pain. Its contribution goes beyond its role as a thermoreceptor
and while it plays an essentid role in the transduction of thermd hyperadgesa it dso
contributes to mechanicd hyperdgesa.  Surprisngly, TRPV1 may not only be
pronociceptive but may dso play a protective role in mechanicd hyperagesa. While not
dl the dudies have been peformed under comparable conditions or used smilar
behaviora tests, one common concluson emerges, TRPV1 is an important contributor to
pan dthough its role is obvioudy more complex than first reported. The vdidation of the
contribution of TRPV1 in inflanmaory and neuropathic pain has generated a mgor
interest in the development of specific vanlloid antagonists. These molecules have been
reported to act as andgesics in different models of chronic pain [77-87]. However, the
development of TRPV1 antagonists as analgesic drugs raises the issues of specificity and

dde effects, 1) TRPV1 tissue expresson clearly indicates that the role of TRPV1 is not
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redricted to inflammatory and neuropathic pan and antagonids may wel affect
physologicd and peahologica functions of TRPV1, and 2) TRPV1 may play both a
pronociceptive and protective role in a modd of chronic pain (i.e, diabetic neuropathy).
Current dinicd trids with TRPV1 receptor antagonists and future <udies on the
contribution of TRPV1 in rodent modds of acute and chronic pain will hopefully soon
provide a more definitive answver as to the role of TRPV1 in inflanmatory and

neuropathic pain syndromes

TRPV2

TRPV2, origindly named vanilloid receptor-like proten 1 (VR-L1), was
discovered as a dructural homologue of TRPV1 with 50% amino acid identity [88]. It is
insengdtive to capsaicin or protons but is activated by high temperature (~52°C), swelling
and 2-aminoethoxydiphenylborate (2-APB) [88-90]. While regulatory mechanisms of
TRPV2 gating are 4ill poorly understood, reports suggest that growth factor (insulin-like
growth factor-1) and PI3-kinase dgnding pathways enhance TRPV2 activity [91, 92].
TRPV2 is widedy expressed in neurond and non neurond cdls [93-96] and intense
TRPV2 immunolabding is detected in medium-diameter DRG neurons that are
associated with myelinated Ad-fibers and in a smal percentage of Gfibers [88, 97]. The
threshold for therma activation of TRPV2 in a heterologous expresson sysem (~52°C)
is smilar to that of a subset of Ad-fibers recorded in vivo [98] and in vitro [46, 99].
Therefore, TRPV2 has been suggested to act as a high-threshold temperature sensor in
Ad nociceptors [100, 101]. TRPV2 can heteromultimerize with TRPV1 in vitro and in

vivo [102, 103], but the co-locdization of these two channds in the same cdl only
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represents a very smdl percentage of DRG neurons both in control or inflammatory
states [102, 104] and nociceptors lacking both TRPV1 and TRPV2 have normd hest
responses [105], bringing into question the relevance of TRPVLITRPV2 heteromers as a
nociceptive heat sensor in DRG neurons. The role of TRPV2 in sensory neurons is not
clear but a recent study by Shimosato and colleague (2005) reports the upregulation of
TRPV2 proten levd in medium-szed DRG neurons after intrgplantar injection of CFA,
leading these authors to suggest a role for TRPV2 in periphera sengtization during
inflammation, possbly in the transduction of pan hypersenstivity to high noxious
temperature. Probably because of its very high heat threshold as wdl as its differentid
digtribution compared to TRPV1, there have been fewer studies related to pain that focus
on TRPV2. However its predominant didribution in the neurotrophin-3 dependent
subpopulation of DRG  neurons [106], its protein leve upregulaion following
inflammation, its potentid to heteromultimerize and its properties to be ectivated by 2-
APB may be clues to its contribution to pain associated with inflammation or neuropethy.
The generation of mice lacking functiond TRPV2 gene would be very ussful to further

invedigate its role in inflammatory and neuropathic pain.

TRPV3

TRPV3, which shares 40-50% homology with TRPV1, is activated by warm
temperature (= 34°C), with increased responses to higher noxious therma stimuli and
enhanced current following repetitive heat gimulation [20, 107, 108]. TRPV3 is ds0
drongly activated and sendtized by camphor, irritants extracted from thyme, oregano,

savory and cloves [109] and 2-APB [90]. Strong activation by either 2APB or themd
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dimuli leads to the agppearance of a secondary current; the initid graduadly sendtizing
current is followed by a current of larger amplitude with dtered biophysica properties
(loss of outward rectification, dtered permesbility and dtered temperature and voltage-
dependence) [110]. TRPV3 activity is strongly potentiated by G protein-coupled receptor
dimulation linked to phospholipase C [109], arachidonic acid and other unsaturated faity
acids directly potentiate TRPV3 responses to 2APB in heterologous expresson systems
[111] and nitric oxide activates TRPV 3 by cysteine S-nitrosylation [31].

Adding to the complexity of understanding the role of TRPV3 in pain, its tissue
expression varies depending on the species consdered; while it is specific to skin in mice
[20], in humans it is expressed in trigemind ganglia, spinad cord, brain, keratinocytes,
tongue and DRG neurons [108]. Because of its redtricted digtribution in mice, studies on
TRPV3 have focused on its role in keratinocytes where this protein plays a mgor role in
detecting innocuous as wel as noxious heat simuli [18]. TRPV3 is a candidate
transducer contributing to pain hypersengtivity associated with inflanmatory dates 1)
colocdizing with TRPV1 in human DRG whee it could presumably form
heteromultimeric  channds exhibiting vaying sengtivities to noxious simuli [107, 112],
2) activated and potentiated by phospholipase C as well as the PKC second messenger
pathway, which are both important events downstream from receptor activation by
inflammatory mediators in sensory neurons, 3) being directly activated by nitric oxide,
which when produced within sensory neurons acts as a second messenger mediating
nociceptors sendtization [113] and 4) arachidonic acid and other fatty acids, which are
produced during inflammation, potentiste TRPV3 function [111]. Of note, TRPV3 can

dso form heteromeric channds with TRPV2 in vitro [13]; whether these heteromeric
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channds have any functiond relevance in vivo remains to be demonstrated. The low or
none detection of TRPV3 protein in DRG of rodents has limited the sudy of its role in
nociceptor function, however its didtribution in DRG nociceptors in human and its gating

properties sustain an interest in apossible role in periphera pain mechanisms.

TRPV4

Initidly doned as a mammdian osmo-transducer activated by a decrease in
osmolarity of as little as 30 mOsm [114, 115], TRPV4 is a polymodal receptor not only
activated by hypotonicity and shear stress [116-119] but aso by innocuous heat with a
threshold >27°C [23, 24, 119], the phorbol ester 4 a phorbol 12,13-didecanoate (4aPDD)
[120, 121], low pH and citrate [122], endocannabinoids and arachidonic acid metabolites
[123, 124], the active compound of Andrographis paniculata, bisandrographolide A, a
Chinee herba plant [125] and by nitric oxide [31]. Interestingly, unlike TRPV1, TRPV2
and TRPV 3, TRPV4 isnot activated by 2-APB [90].

While TRPV4 is widdy expressed [114, 115, 126, 127], its didribution in
cochlear har cdls, vibrissd Merkd cdls sensory ganglia [23, 114, 117, 122, 128] as
well as in free nerve endings and cutaneous A and C-fibers terminds [129] suggested a
role in mechano-transduction, beyond osmosensation. This idea was dso supported by
the finding that while the mutation of the osmosensng TRPV gene, Osm9, in C. elegans
resulted in the absence of response to osmotic and mechanica simuli in these worms,
tranggenic expresson of mammdian TRPV4 in ASH nociceptive neurons of Osm-9
mutant worms restored both osmotic and mechanicd avoidance [130]. This important

discovery suggested an  evolutionarily conserved  role  for  both  osmo- and
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mechanotransduction for TRPV4. The same year, mice lacking functiond TRPV4 gene
became avalable and these mice showed impared sendtivity to acid, an increese in
mechanical nociceptive threshold and dtered therma sdlection behavior [122, 131, 132].
In contrast, mice lacking functiond TRPV4 have norma response to noxious heat and
low-threshold mechanicd simuli [122, 131]. Findly, it was demondrated that agonists of
TRPV4 promote the release of the neuropeptides substance P and CGRP from the centrd
projections of primary afferents in the spind cord [128]. These studies suggest a role of
TRPV4 in nociception.

The contribution of TRPV4 in the detection of wam temperatures and
chemicdly-induced therma hyperdgesa has dso been investigated [133]; inflammeatory
and themd hyperdgesa induced by capsacin or carageenan injection was markedly
reduced in TRPV4™ mice, the number and activity level of neurons in response to warm
simuli was aso decreased in TRPV4” mice, which displayed a longer latency to escape
from a hot-plate simulus st a 35-45°C. Of note, TRPV4, as TRPV3, is highly expressed
in skin keratinocytes and thermosensation may not be redricted to sensory neurons,
activation of TRPV4 and TRPV3 channes in keratinocytes may dgnd to sensory neuron
terminds deeply embedded in the epidermis to contribute to temperature sengtivity [23,
45, 132, 134, 135]. Further dudies are needed to determine the relative contribution of
TRPV4 function in sensory neurons and/or keratinocytes to temperature sensation.

We reported usng two modds (i.e, mice lacking functiond TRPV4 and transent
down-regulation of the leve of TRPV4 protein in the rat), tha in the presence of
prosgaglandin E; TRPV4 mediates nocifensve behaviors to smal increases or decreases

in osmolarity [117, 136]. This finding is rdevant for a role of TRPV4 in pathologica
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pan dates because smdl changes in osmolarity have been described in various diseases
(digbetes, acohalism, aguadynia and athma) and increase in osmolarity jointly with pH
decreases are believed to contribute to inflammatory pain [137, 138]. TRPV4 dso plays a
cucid role in mechanicad hypedgesa following the exposure to inflammatory
mediators [139]; in this sudy we demondrated that: 1) concerted action of inflammatory
mediators was necessary to reach the threshold levd of CAMP necessary to engage
TRPV4 in mechanicd hyperdgesa, and 2) TRPV4 is engaged in hyperdgesa to
mechanical and osmotic simuli by two key intracellular second-messenger pathways of
inflammatory hyperalgesia, protein kinase A (PKA) and protein kinase Ce (PKCe). In
addition to inflanmatory mediators such as PGE, or serotonin, protease-activated
receptor 2 agonists were adso demondrated to sendgtize TRPV4 [128]. Proteases
generated during inflanmation and injury cleave protease-activated receptor 2 on primary
afferent neurons to activate second messenger pathways (PLCb, PKA, PKC and maybe
PKD) which, in turn, sendgtize TRPV4. The authors demondrate that the protesse-
activated receptor 2 sengtizes both TRPV4-mediated release of substance P and CGRP in
the spoind cord and TRPV4-induced mechanicad hyperagesa [128]. These findings
demondrate the important role of TRPV4 in the development of acute inflammatory
hyperdgesa.

The contribution of TRPV4 in chronic pain has been investigated in a rat modd of
panful  amdl-fiber periphera neuropathy, Taxol chemothergpy-induced neuropathy
[140]. Taxol treatment enhanced nociceptive behavioral responses to mechanicd and
hypotonic ~ simulation of rat hind paw. Trestment with TRPV4 antisense

oligodeoxynucleotides reversed the Taxol-induced mechanicad hyperdgesa and
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markedly reduced the hyperdgesa to hypotonic simuli. The integrin  antagonist
hexapeptide GRGDTP and the Src gpecific inhibitor, PP;, inhibited Taxol-induced
hyperdgesa to the same extent as TRPV4 anitisense suggesting that Taxol-induced
TRPV4-mediated hyperdgesa depends on an integrin'Src tyrosine kinase dgnding
pathway. Specific integrins play a role in the mantenance of neuropathic and
inflammatory  hyperdgesa [141, 142]. Taxol-induced mechanical hyperdgesa dso
depends on both PKCe and PKA second-messenger Sgnding [143]. Of note, mechanica
hyperagesa induced by direct activation of PKCe and PKA is decreased by TRPV4
antisense and is absent in mice lacking functiond TRPV4 [139]. Moreover, Src tyrosine
kinase can directly interact with both cAMP/PKA and PKCe pathways [144-147]. Taken
together these data suggest that TRPV4 may be engaged in neuropathic pain via a second
messenger pathway involving integri'Src tyrosne kinasePKA/PKCe sgnding pathway.
The use of mice lacking functiond TRPV4 and/or rats trested with TRPV4 antisense has
demondrated the role of this channd in the deveopment of themd and mechanicd
hyperdgesa associated with inflammation and neuropathy. Thus, current knowledge on
TRPV4 function suggests that it may play a role complementary to that of TRPV1 in
producing peripherd sendtization, aso acting as a find subdrate for multiple

inflammatory mediators that operate via distinct intracdlular sgnding pathways.

TRPMS8
Although firg identified in prostate gland as an androgen-responsve channd
[148] TRPM8 has since been described as a cold and menthol-activated channd with

prominent voltage dependent gating properties [19, 149-151]. Cold and menthol both
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induce membrane depolarization and firing of action potentids in a subpopulation of
nociceptors [152-155].

When expressed in heterologous cells, the temperature threshold and biophysica
properties of the TRPM8 current are smilar to those recorded in sensory neurons [19,
151]. In addition, TRPM8 is expressed in ~ 15% of smdl-diameter DRG neurons, which
is consgent with the percentage of cultured sensory neurons responsve to cold and
menthol [149, 151, 153]. TRPMS8 is adso activated by numerous other cooling compounds
such as eucdyptol, spearmint, WS-3 and icilin; this activation is dependent on different
factors such as intra and extracellular Ca?* concentration and pH [22, 156, 157]. The
activity of TRPM8 is down-regulated by the activation of PKC [158] and inhibited by
ethanol in a PIP2-dependent manner [159]. TRPMS8 is expressed in prostate and in smal-
diameter trigemind [160] and dorsd root ganglion neurons, suggesting its specific
expresson in C- and possbly Ad- fibers [19, 161, 162]. The expresson of TRPMS8 in
nociceptive neurons has been controversd, thought to be a culturing artifact due to the
addition of NGF [25] but there is now evidence for an expression in both nociceptive and
non-nociceptive neurons [152, 163, 164]. The contribution of TRPM8 channds to
innocuous cold transduction has recently been reported in primary sensory neurons [165]
but its role in nociception remains to be demondrated (for reviews on TRPMS, [166-
168]). However, the range of temperature over which it responds including both
innocuous and noxious temperaures, the regulatory role of intracdlular acidity [169] and
its property of adaptation to prolonged stimuli [19] suggest that TRPMS8 is a candidate as
a sensory transducer contributing to pain  hypersensibility associated with inflammation

or neuropathy. However, two recent studies investigated a potentid role of TRPMS8 in
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pan hypersendtivity; Katsura and colleagues (2006) reported that cold hyperdgesa
induced by L5 spind nerve ligation is not affected by TRPM8 antisense, and Proudfoot
and colleagues (2006) reported that activation of TRPM8 by iclin in sensory neurons
eicited analgesia in three different models of pain; a modd of chronic neuropathic pan
(chronic condriction injury of the sciatic nerve, CCl), a modd of inflammatory pan
(CFA) and a modd of peripherd demydination (focd application of lysolecithin to the
sciatic nerve). They found that the level of expresson of TRPMS8 is upregulated in DRG
and soinad cord following CCl nerve injury and thet tretment with TRPM8 antisense
oligodeoxynucleotides prevents icilin-induced andgesia. The authors show evidence for a
centrdly-mediated activation of TRPM8 that relies on metabotropic glutamate receptors
and suggest that these glutamate receptors woud respond to glutamate released from
afferents expressng TRPMS8, to inhibit the nociceptive inputs [162]. Mice lacking a
functiond TRPM8 gene have yet to be reported; while current knowledge on TRPM8
digribution and function suggest a potentid protective role in neuropathic pain, further

Sudies are needed to confirm that finding.

TRPAL

TRPAL was fird identified as a protein overexpressed in a liposarcoma cdl line
(ANKTM1, [170]) but was later recognized as a member of a new TRP subfamily
characterized by the presence of a large number of ankyrin repeat motifs located on the
cytosolic amino termind domain (TRPANKyrin). TRPAL is expressed in the inner ear and
in trigemind and DRG neurons [25, 171]. Expressed in heterologous systems it is

activated by pungent ingredients of mustard oil, garlic, wintergreen oil, clove ail, ginger
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and cinnamon ail [21, 22, 29, 172] dl of which induce acute panful burning or pricking
sensation. Conggent with a role in nociception TRPA1 is highly co-expressed with
TRPV1 in gndl-diameter peptidergic nociceptors while it is rardy co-expressed with
TRPM8 [25, 161, 172], and TRPALl is locdized a free nerve endings in mouse
nociceptors. Behaviora studies in mice lacking TRPAL (TRPA1”) confirmed its role in
nociception to irritants such as mustard oil, acrolein and garlic [173, 174]. TRPAL has
adso been suggested to be a sensor of noxious cold simuli, but this property is ill
controversa; temperature below 18°C activates recombinant TRPAL [22, 25], treatment
with TRPAL1 antisense oligodeoxynuclectides reduced behaviord hypersengtivity to cold
after CFA-induced inflammation or scidic nerve injury [175]; trestment with TRPAL
antisense dso dleviated cold hyperdgesa induced by L5 spind nerve ligation, probably
resulting from an increase in TRPAL protein leve in the nearby uninjured L4 DRG [176],
and one group demonstrated that TRPA1” mice have impaired behavioral responses to a
cold plate maintained a 0°C [173]; however, 2 other groups faled to demondrate a
response of TRPAL to noxious cold[174, 177]. The disparity between the sudies might
result from: 1) the different conditions of in vitro recording (i.e, DRG from newborn
mice compared with DRG from adult mice), 2) difference in the specific behaviora test
used (i.e, latency before the firs paw lift in response to a cold plae simulus versus
number of paw lifts during the fird 5 min after mice were placed on the cold plate), and
3) sexuad dimorphism; Kwan and colleagues (2006) observed the highest difference in
cold sengtivity in femae mice while Jordt and colleagues (2004) only used maes. Our
laboratory has demondraied that sexuad dimorphism is an essentid factor in the

modulation of pain pathways in nociceptors [178-180] and gender differences in pan
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senghility is wdl documented, therefore the sex of the experimentd animas should be
carefully considered.

TRPA1 has dso been suggested to be a sensor for mechanical stimuli for severd
reasons. 1) its Drosophila homologue, painless, participates in mechanica nociception
and an evolutionarily consarved role has been shown within the TRP family [171, 181],
2) its functional properties suggest that it is one component of the mechanosensory
channd in hair cdls [171, 173, 182-184], and 3) some of its biophysical properties may
maich that of a high-threshold mechanoreceptor. However, its role in mechanica
nociception ill remains controversad. Kwan and colleagues (2006) reported that
TRPA1” mice showed a deficiency in sensng noxious punctate cutaneous mechanical
gimuli; these mice had higher mechanical thresholds and reduced response to a series of
suprathreshold stimuli when compared to TRPAL1 wild-type mice, suggesting a potentia
role in the transduction of high-threshold mechanica stimuli. On the other hand, Bautista
and colleagues (2006) reported no difference in mechanica thresholds between TRPA1™
and wild-type mice. Again, this discrepancy could arise from the difference in the two
behaviord measurements, one group measuring vaues of mechanicd threshold, the other
the percentage of withdrawas in response to increesng mechanicd stimuli. However, in
contrast to the probable participation of TRPAL in the hypersengtivity to cold following
stiatic nerve injury [175], TRPA1 does not appear to participate in the associated
mechanicd hypersenstivity [173].

Banddl and colleagues (2004) demondrated that in addition to pungent
compounds, TRPA1 is dso activated by the inflanmatory mediator bradykinin. They

demonstrated in vitro the coupling of TRPA1 with the G-protein-coupled bradykinin
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receptor 2 and the role of phospholipase C on TRPAL activity. This finding suggests that
TRPA1 could function as a receptor that depolarizes nociceptors in response to
inflammatory agents that activate PLC [21, 22]. Conggtent with this finding, Kwan and
colleagues (2006) reported that TRPA1”" mice have impared responses to injection of
bradykinin as wel as a markedly reduced bradykinin-induced mechanica hyperdgesa
Bautista and colleagues (2006) aso reported that TRPA1” mice have impaired cellular
and behaviora response to bradykinin and while the exigence and contribution of
TRPVUTRPAL heteromeric channels cannot be diminated, they suggested a modd of
functional interaction between bradykinin, bradykinin receptor 2 and TRPV1; bradykinin
binding to G-protein coupled receptors activates PLC/PKC signaing pathway, resulting
in the rdesse of Ca&* from intracdlular stores, therefore sensitizing TRPV1 leading to
Ca’* entry which jointly with C&* redease from intracellular stores opens TRPAL. A
possible “cooperation” between TRPA1 and TRPV1 channels has aso been reported in
another recent in vitro dudy in which the cannabinoid agonis WIN 55212-2
dephosphorylates, therefore desendtizing, TRPV1 in trigemind sensory neurons via the
activation of TRPA1, WIN 55,212-2 directly activates TRPA1 which leads to entry of
Ca’*, activation of calcineurin and subsequent dephosphorylation of TRPV1[185, 186].

If many questions remain on the exact moddities of TRPA1l activation its
contribution to nociception is farly established. Moreover, its co-expresson and putetive
functiond interaction with TRPV1 suggest that it adso contributes to inflammeatory pain.

Further studies are needed to ducidate its role in chronic pain.

TRP channels. complex sensory integrators participating in pain hypersensitivity
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The avalable data provide a compdling argument for a contribution of TRP
channds to pan hypersengtivity associated with inflammation and  neuropethy.
However, reports of multiple, and sometimes, contradictory functions for a TRP channd,
depending on the inflammatory mediator or the mode of neuropathic pan used, ae
problematic (Table 1). Diversty in experimentd conditions and specific behaviora tests
used can explan some of the differences but these dissmilarities might dso reflect the
complexity of the functiona properties of TRP channels.

One recurrent strategy has been to correlate a chemical or physica dimulus thet
activates functionaly diginct subsets of DRG neurons in vitro with the in vivo expresson
pattern of certain TRP channels (i.e, neurons responding to capsaicin or menthol are,
respectively, corrdated to the expresson of TRPV1 or TRPM8 channds). However
recent sudies suggest that there might be more overlgp in the moddities to which TRP
channds respond than initidly gppreciated. While  menthol, camphor and
cinnamadehyde were specificdly associated with TRPM8, TRPV3 and TRPAL
respectively, a recent study performed in vitro reported that menthol activates TRPM8
(30 uM) and TRPV3 (20 mM) while it inhibits TRPAL (68 uM); camphor activates both
TRPV3 (40 mM) and TRPV1 (45 mM) while it inhibits TRPA1 (68 puM) and
cinnamadehyde activatles TRPA1 (95 pM) and inhibits TRPM8 (1.5 mM) [30].
Smilaly, the 6 TRP channds expressed in DRG neurons are activated by thermd
gimuli, encompassng the whole spectrum of temperaiure from noxious cold to noxious
heat with each member activated a a digtinct thermd threshold (TRPA1= 18°C, TRPM 8~
23-28°C, TRPV4= 27°C, TRPV3 ~ 31-39°C, TRPV1= 43 °C and TRPV2= 52 °C).

However, these thresholds are known to vary with cdlular context, which most likey
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will result in some overlgp in vivo (i.e, TRPV1's themd threshold lowers to body
temperature following sengtization through a phospholipase C-dependent pathway and
both TRPV3 and TRPV4 are adso active a that temperature). In addition, TRPs are
polymodd channels, they bind multiple ligands and the binding of one ligand can
influence the binding of another (i.e, pH, levels of C&* and temperature have been
shown to modulate TRPV4 response to hypotonic stimulaion). Therefore, in vivo, the
reqoonse of each TRP channd to therma, chemicd and mechanica simuli may be less
unique than what has been described. In addition, TRP channdls can be co-expressed in
the same DRG neuron, for example both TRPA1 and TRPV3 have been shown to co-
locdize with TRPV1, and TRPV4 is expressed in amdl-diameter capsaicin sendtive
DRG [25, 107, 112, 117, 161, 172]. Co-locdization of these TRP channels nay lead to
the formation of heteromeric channels with unique or unexpected sengtivities to physica
dimuli. Bautista and colleagues (2006) adso suggested that, depending on the cdlular
context, some TRP channds may not function mainly as ligand-gated channels but rather
medigte increases in neurond  exdtability for various stimuli through activation of
intracdlular sgnding pathways. They reported a functiond interaction between G-
protein coupled receptors, PLC/PKC signading pathway, TRPV1 and TRPALl [174]. If
this modd is correct then multiple G-protein coupled receptors, coupled to PLC, may
induce a smilar effect. This is important snce TRP channels expressed in DRG neurons
are dl modulated by the PLC/PKC ggnding pathway (Figure 1). In agreement with this
idea of “teamwork” between TRP channds is the finding that the cannabinoid WIN

55,212-2 regulates TRPV 1 phosphorylation through TRPA1 [185].
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This propety of TRP chands may patly explain the discrepancy between
dudies on the contribution of TRP channds to pain hypersensbility. The complex role of
TRPV1 in CFA-induced hyperdgesa [47, 68], for example, may reflect a switch in
TRPV1 function. TRPV1 paticipaion in the chemicd and thema hyperdgesa
associated with the acute phase of CFA-induced inflammation may be as a ligand-gated
ion channd activated by low pH and heat [67], while its contribution to the mechanicd
hyperdgesa associated with the chronic phase of adjuvant arthritis may be as a
“teammate”, increesng neurond exdtability through activation of intracdlular sgnding
pathways by bradykinin, prostaglandins and lipoxygenase products that are released a
the dte of inflammation, in athritic joints Supporting this idea of cooperaion, TRP
channds have been reported to function in dgnding microdomains, TRP channds ae
cugered in spdidly organized membrane microdomains where interactions between
ggnding molecules and receptors lead to gpecific cdlular response [187-189).
Depending on the patners in the dgnding complex, the cdlular context, intrindc
regulation (glycosylation, dternative splicing, transcription), the activation and the
contribution of a specific TRP channd may vary not only in different subpopulations of

nociceptors but also under different inflammeatory or neuropathic sates.

Concluding remarks:

Current knowledge of TRP channels expressed in primary afferent nociceptors
uggest tha these channels dl have functiona properties compatible with a role in
nociception. However, compelling data for a contribution to pain and more specificaly to

pathological pain associated with inflammatory and neuropathic states has only  been
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reported for TRPV1, TRPV4 and TRPAL Many questions reman such as, how is the
activity of these channels tuned to integrate and respond accuratdy to mutiple simuli,
how do these channds interact not only with each other but aso with other receptors
contributing to pain transduction in nociceptors, what is the role of TRPV2 in
nociceptors, why is TRPV3 expressed in human DRG neurons, and is TRPMS8
responsble for the analgesic effect of cooling component? Future studies are needed to
ducidate the role of these multifunctiond ligand-gaied channds in primary afferent
nociceptors. Furthermore, while primary heat, chemicd and mechanicd hyperdgesa is
the result of sengdtization of previoudy responsve C- and Ad-fibers it is established that
newly recruited previoudy “dslent” C nociceptors dso play a role [190-192]. The
molecular mechanisms underlying the participation of these “dlent” nociceptors are ill
unknown; do TRP channels contribute to their sudden “chattiness’ in pathologica
conditions? Will better knowledge of TRP channds help us crack the code of chronic

pan? TRP channds certainly are promising Targets for the Relief of Pain.
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Figurelegend

Figure k Inflammatory mediator regulation of TRP channes by phosphorylation in
sensory neurons. Inflammatory mediators (bradykinin, ATP, NGF, PGE,, serotonin)
bind to ether G-protein-coupled receptors (GPCR) or tyrosine-kinase-coupled receptors
(TRK) to activate phospholipase C (PLC), protein kinases A (PKA) and C (PKC), C&*-
cadmodulin-dependent kinase 1l (CAMKII) and PI3 kinase (PI3K) which, in turn,
activate/sendtize (+) or desendtize (-) TRP channes to physca <imuli, and increase
Ca®* reease from the endoplasmic reticulum (ER). Incresse in the concentration of
intracellular  Ce?* activates PKC, CAMKIlI and TRPA1l. GPCRs can dso activate
phospholipase A2 (PLA;) inducing the relesse of arachidonic acid metabolites such as
HPETE or 5,6-EET which, in turn, act as TRP channd agonists. Nociceptor sendtization
to themd, chemicd and mechanicd gimuli by a specific inflammatory mediator varies
depending on which TRP channd is expressed in a DRG neuron. This scheme illustrates
how TRP channds may not only act as ligand-gated ion channels but may aso increase
neuron excitability through the activation of intrecdlular Sgnding pathways Putative
heteromeric channds (?) may adso increase the complexity. Red lines represent processes
engaging TRPV1, green lines, processes engaging TRPV4; blue lines, processes

engaging TRPA1 and purple lines, processes regulating TRPMS.

Table 1: Function of TRP channdsin DRG neurons
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