Lowest order methods for diffusive problems on general meshes: A unified approach to definition and implementation

Abstract : In this work we propose an original point of view on lowest order methods for diffusive problems which aims at laying the pillars of a C++ multi-physics, FreeFEM-like platform. The key idea is to regard lowest order methods as (Petrov)-Galerkin methods based on possibly incomplete, broken polynomial spaces defined from a gradient reconstruction. After presenting some examples of methods entering the framework, we show how implementation strategies common in the finite element context can be extended relying on the above definition. Several examples are provided throughout the presentation, and programming details are often concealed to help the reader unfamiliar with advanced C++ programming techniques.
Type de document :
Chapitre d'ouvrage
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00562500
Contributeur : Daniele Antonio Di Pietro <>
Soumis le : jeudi 3 février 2011 - 14:42:28
Dernière modification le : jeudi 7 février 2019 - 15:09:17
Document(s) archivé(s) le : mardi 6 novembre 2012 - 13:25:16

Fichier

lowest-order-dsel.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Daniele Antonio Di Pietro, Jean-Marc Gratien. Lowest order methods for diffusive problems on general meshes: A unified approach to definition and implementation. Finite Volumes for Complex Applications VI Problems & Perspectives, Springer, pp.803-819, 2011, ⟨10.1007/978-3-642-20671-9_84⟩. ⟨hal-00562500⟩

Partager

Métriques

Consultations de la notice

231

Téléchargements de fichiers

233