
HAL Id: hal-00562500
https://hal.science/hal-00562500

Submitted on 3 Feb 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lowest order methods for diffusive problems on general
meshes: A unified approach to definition and

implementation
Daniele Antonio Di Pietro, Jean-Marc Gratien

To cite this version:
Daniele Antonio Di Pietro, Jean-Marc Gratien. Lowest order methods for diffusive problems on gen-
eral meshes: A unified approach to definition and implementation. Finite Volumes for Complex Ap-
plications VI Problems & Perspectives, Springer, pp.803-819, 2011, �10.1007/978-3-642-20671-9_84�.
�hal-00562500�

https://hal.science/hal-00562500
https://hal.archives-ouvertes.fr

Lowest order methods for diffusive problems on

general meshes: A unified approach to definition

and implementation

Daniele A. Di Pietro and Jean-Marc Gratien

Abstract In this work we propose an original point of view on lowest order meth-

ods for diffusive problems which aims at laying the pillars of a C++ multi-physics,

FreeFEM-like platform. The key idea is to regard lowest order methods as (Petrov)-

Galerkin methods based on possibly incomplete, broken polynomial spaces defined

from a gradient reconstruction. After presenting some examples of methods entering

the framework, we show how implementation strategies common in the finite ele-

ment context can be extended relying on the above definition. Several examples are

provided throughout the presentation, and programming details are often concealed

to help the reader unfamiliar with advanced C++ programming techniques.

1 Introduction

An increasing amount of attention has recently been given to the discretization of

diffusive problems on general meshes. Lowest order methods possibly featuring

conservation of physical quantities are traditionally employed in industrial applica-

tions where computational cost is a crucial issue. In this context, the main interest

of handling general meshes is to reduce the number of elements required to rep-

resent complicate domains. In sedimentary basin modeling, non-standard elements

may also appear due to the erosion of geological layers. Different ways to adapt

finite volume and finite element methods to general, possibly non-conforming poly-

hedral meshes have been proposed. In the context of cell centered finite volume

methods, we recall, in particular, the classical works of Aavatsmark, Barkve, Bøe

and Mannseth [1] and Edwards and Rogers [15] on multipoint fluxes. More recently,

Daniele A. Di Pietro
IFP Energies nouvelles, e-mail: dipietrd@ifpenergiesnouvelles.fr

Jean-Marc Gratien
IFP Energies nouvelles, e-mail: j-marc.gratien@ifpenergiesnouvelles.fr

1

dipietrd@ifpenergiesnouvelles.fr
j-marc.gratien@ifpenergiesnouvelles.fr

2 Daniele A. Di Pietro and Jean-Marc Gratien

two ways of extending the mixed finite element philosophy to general meshes have

been proposed independently by Brezzi, Lipnikov, Shashkov and Simoncini [6, 5]

(mimetic finite difference methods) and by Droniou and Eymard [13] (mixed/hybrid

finite volume methods). Yet another perspective is considered by Eymard, Gallouët

and Herbin [17], who show, in particular, that face unknowns can be selectively

used as Lagrange multipliers for the flux continuity constraint or be eliminated us-

ing a consistent interpolator (SUSHI scheme). The strong link between the strate-

gies above has been highlighted by Droniou, Eymard, Gallouët and Herbin [14].

A slightly different approach based on the analogy between lowest order methods

in variational formulation and discontinuous Galerkin methods has been proposed

by the author in [8, 10, 9] (cell centered Galerkin methods). The key advantage of

this approach is that it largely benefits from the well-established theory for discon-

tinuous Galerkin methods applied to diffusive problems [11]. All of the methods

above have been (or can be) extended to several classical problems for which the

discretization of second order diffusive terms is central.

In this work we present a unified implementation covering a wide range of lowest

order methods and applications based on similar experiences in the context of finite

element methods. Finite element libraries have nowadays reached a good level of

maturity, and user-friendly front-ends are provided in several cases. Just to men-

tion a few, we recall Feel++ [20] (formerly known as Life), FEniCS [19],

FreeFEM++ [7]. Our goal is to show that similar tools can be conceived and im-

plemented for lowest order methods. The starting point is to reformulate the method

at hand as a (Petrov)-Galerkin scheme based on possibly incomplete broken affine

spaces. This new unified perspective, drawing on the lines of [9], allows, in partic-

ular, to recycle many ideas originally developed for finite elements. A major differ-

ence, however, is that the lowest order methods considered herein are often based on

reconstructions of first order differential operators which may depend on problem

data such as the diffusion coefficient or the boundary condition. As a consequence,

the classical approach based on a table of degrees of freedom computed from a

mesh and a finite element (see, e.g., [16, Chapters 7–8]) is no longer adequate. This

issue is solved by introducing the programming counterpart of tensor-valued lin-

ear combinations of (globally numbered) degrees of freedom. This concept allows,

in particular, to reproduce a finite element-like matrix assembly with local contri-

butions stemming from integrals over mesh elements and faces. A further layer of

abstraction is added by defining a domain-specific language (DSL) for variational

formulations. The DSL is closely inspired by that of Feel++, the most noticeable

differences being the type-based identification of test and trial functions and the

possibility to store linear and bilinear forms as expressions independently of their

algebraic representation. Another novelty is the introduction of tensor-like notation

for systems of PDEs. Domain-specific languages and generative programming are

an established tool to break down the complexity of industrial applications by distin-

guishing the actors that tackle different aspects of the problem, and providing each

of them with means of expression as close as possible to his/her technical jargon.

An important advantage of the DSL is that it potentially allows to combine low-

est order methods with more standard discretizations techniques in a seamless way.

Lowest order methods: A unified approach to definition and implementation 3

In the presentation we try to avoid all technicalities and to pinpoint the main diffi-

culties as well as the proposed solutions. Although the language of choice is C++,

the listings are rather to be intended as pseudo-code since simplifications are often

made to improve readability. The actual implementation is based on the Arcane

framework [18], a proprietary platform conjointly developed at CEA-DAM and IFP

Energies nouvelles which takes care of technical aspects such as memory manage-

ment, parallelism and post-processing.

The material is organized as follows. In §2 we propose a unified perspective

and show how several lowest order methods can fit in there for a simple diffusion

problem. In §3 we discuss the implementation. More specifically, we first discuss the

solutions to the issues that arise when trying to mimic the finite element approach

and then present a DSL which allows to conceal the related technicalities.

2 Definition

2.1 Discrete setting

Let Ω ⊂ ❘d , d ≥ 2, denote a bounded connected polyhedral domain. The first in-

gredient in the definition of lowest order methods is a suitable discretization of Ω .

We denote by Th a finite collection of nonempty, disjoint open polyhedra Th = {T}
forming a partition of Ω such that h = maxT∈Th

hT and hT denotes the diameter

of the element T ∈ Th. Admissible meshes include general polyhedral discretiza-

tions with possibly nonconforming interfaces; see Figure 1. Mesh nodes are col-

lected in the set Nh and, for all T ∈ Th, NT contains the nodes that lie on the

boundary of T . We say that a hyperplanar closed subset F of Ω is a mesh face if it

has positive (d−1)-dimensional measure and if either there exist T1, T2 ∈ Th such

that F ⊂ ∂T1 ∩ ∂T2 (and F is called an interface) or there exist T ∈ Th such that

F ⊂ ∂T ∩ ∂Ω (and F is called a boundary face). Interfaces are collected in the set

F i
h, boundary faces in F b

h and we let Fh := F i
h∪F b

h . For all T ∈Th we set

FT := {F ∈Fh | F ⊂ ∂T}. (1)

Symmetrically, for all F ∈Fh, we define

TF := {T ∈Th | F ⊂ ∂T}.

The set TF consists of exactly two mesh elements if F ∈F i
h and of one if F ∈F b

h .

For all mesh nodes P ∈Nh, FP denotes the set of mesh faces sharing P, i.e.

FP := {F ∈Fh | P ∈ F}. (2)

For every interface F ∈F i
h we introduce an arbitrary but fixed ordering of the ele-

ments in TF and let nF = nT1,F = −nT2,F , where nTi,F , i ∈ {1,2}, denotes the unit

4 Daniele A. Di Pietro and Jean-Marc Gratien

Fig. 1 Left. Mesh Th Right. Pyramidal submesh Ph

normal to F pointing out of Ti ∈ TF . On a boundary face F ∈ F b
h , nF denotes

the unit normal pointing out of Ω . The barycenter of a face F ∈Fh is denoted by

xF :=
∫

F x/|F |d−1. For each T ∈ Th we identify a point xT ∈ T (the cell center)

such that T is star-shaped with respect to xT . For all F ∈FT we let

dT,F := dist(xT ,F).

It is assumed that, for all T ∈ Th and all F ∈FT , dT,F > 0 is comparable to hT .

Starting from cell centers we can define a pyramidal submesh of Th as follows:

Ph := {PT,F}T∈Th,F∈FT
,

where, for all T ∈ Th and all F ∈FT , PT,F denotes the open pyramid of apex xT

and base F , i.e.,

PT,F := {x ∈ T | ∃y ∈ F \∂F, ∃θ ∈ (0,1) | x = θy+(1−θ)xT}.

The pyramids {PT,F}T∈Th,F∈FT
are nondegenerate by assumption. Let Sh be such

that

Sh = Th or Sh = Ph. (3)

For all k ≥ 0, we define the broken polynomial spaces of total degree ≤ k on Sh,

P
k
d(Sh) := {v ∈ L2(Ω) | ∀S ∈Sh, v|S ∈ P

k
d(S)},

with Pk
d(S) given by the restriction to S ∈Sh of the functions in Pk

d .

Remark 1 (Admissible mesh sequence). In the context of a priori convergence anal-

ysis for vanishing mesh size h it is necessary to bound some quantities uniformly

with respect to h. This leads to the concept of admissible mesh sequence. This topic

is not addressed in detail herein since our focus is mainly on implementation. For a

comprehensive discussion we refer to [6, 5, 13, 17, 9]; see also [11, Chapter 1].

We close this section by introducing trace operators which are of common use

in the context of nonconforming finite element methods. Let v be a scalar-valued

function defined on Ω smooth enough to admit on all F ∈Fh a possibly two-valued

trace. To any interface F ⊂ ∂T1∩∂T2 we assign two nonnegtive real numbers ωT1,F

and ωT2,F such that

ωT1,F +ωT2,F = 1,

Lowest order methods: A unified approach to definition and implementation 5

and define the jump and weighted average of v at F for a.e. x ∈ F as

JvKF(x) := v|T1
− v|T2

, {{v}}ω,F(x) := ωT1,F v|T1
(x)+ωT2,F v|T2

(x). (4)

If F ∈F b
h with F = ∂T ∩∂Ω , we conventionally set {{v}}ω,F(x)= JvKF(x)= v|T (x).

The subscript ω is omitted from the average operator when ωT1,F = ωT2,F = 1
2 . The

dependence on x and on the face F is also omitted if no ambiguity arises.

2.2 An abstract perspective

The key idea to gain a unifying perspective is to regard lowest order methods as

nonconforming methods based on incomplete broken affine spaces that are defined

starting from the space of degrees of freedom (DOFs) ❱h. More precisely, we let

❚h := ❘
Th , ❋h := ❘

Fh ,

and consider the following choices:

❱h = ❚h or ❱h = ❚h×❋h.

In every case the elements of ❱h are indexed with respect to the mesh entity they

belong to. Other choices for ❱h are possible but are not considered herein for the

sake of conciseness. To fix the ideas, one can assume that the choice ❱h = ❚h cor-

responds to cell centered finite volume (CCFV) and cell centered Galerkin (CCG)

methods, while the choice ❱h = ❚h×❋h leads to mimetic finite difference (MFD)

and mixed/hybrid finite volume (MHFV) methods.

The key ingredient in the definition of the broken affine space is a piecewise

constant linear gradient reconstruction Gh : ❱h→ [P0
d(Sh)]

d (the linearity of Gh is

a founding assumption for the implementation discussed in §3). Starting from Gh,

we can define the linear operator Rh : ❱h→ P
1
d(Sh) such that, for all vh ∈ ❱h,

∀S ∈Sh, S⊂ TS ∈Th, ∀x ∈ S, Rh(vh)|S = vTS
+Gh(vh)|S·(x−xTS

) ∈ P1
d(Sh).

(5)

The operator Rh maps every vector of DOFs onto a piecewise affine function be-

longing to P1
d(Sh). Hence, we can define a broken affine space as follows:

Vh =Rh(❱h)⊂ P
1
d(Sh). (6)

The operator Rh is additionally assumed to be injective, so that a bijective oper-

ator can be obtained by restricting its codomain. The next section presents some

examples covering the methods listed above.

6 Daniele A. Di Pietro and Jean-Marc Gratien

F F

F F

(a) GF = L-groups containing the face F

xT
xT2

xT1

F1

F2

(b) L-construction

Fig. 2 L-construction

2.3 Examples

In this section we focus on the model problem

−∇·(κ∇u) = f , u = 0, (7)

where f ∈ L2(Ω) and κ ∈ [P0
d(Th)]

d is a piecewise constant, uniformly elliptic ten-

sor field (possibly resulting from a homogeneization process). Problem (7) provides

the paradigm to illustrate how selected lowest order methods can be recast in the

framework of §2.2.

The G-method

As a first example we consider the special instance of CCFV methods analyzed

in [3]. A preliminary step consists in presenting the so-called L-construction intro-

duced in [2]. The key idea of the L-construction is to use d cell and boundary face

values (provided, in this case, by the homogeneous boundary condition) to express

a continuous piecewise affine function with continuous diffusive fluxes. The values

are selected using d neighboring faces belonging to a cell and sharing a common

vertex. More precisely, we define the set of L-groups as follows:

G := {g⊂FT ∩FP, T ∈Th, P ∈NT | card(g) = d} ,

with FT and FP given by (1) and (2) respectively. It is useful to introduce a symbol

for the set of cells concurring in the L-construction: For all g ∈ G , we let

Tg := {T ∈Th | T ∈TF , F ∈ g}.

Let now g∈ G and denote by Tg an element Tg such that g⊂FTg (this element may

not be unique). For all vh ∈ ❱h we construct the function ξg

vh
piecewise affine on the

family of pyramids {PT,F}F∈g,T∈Tg
such that: (i) ξg

vh
(xT) = vT for all T ∈Tg and

Lowest order methods: A unified approach to definition and implementation 7

ξg

vh
(xF) = 0 for all F ∈ g∩F b

h ; (ii) ξg

vh
is affine inside Tg and is continuous across

every interface in the group: For all F ∈ g∩F i
h such that F ⊂ ∂T1∩∂T2,

∀x ∈ F, ξg

vh |T1
(x) = ξg

vh |T2
(x);

(iii) ξg

vh
has continuous diffusive flux across every interface in the group: For all

F ∈ g∩F i
h such that F ⊂ ∂T1∩∂T2,

(κ∇ξg

vh
)|T1
·nF = (κ∇ξg

vh
)|T2
·nF .

For further details on the L-construction including an explicit formula for ξg

vh
we

refer to [3]. For every face F ∈Fh we define the set GF of L-groups containing F ,

GF := {g ∈ G | F ∈ g}, (8)

and introduce the set of nonnegative weights {ςg,F}g∈GF
such that ∑g∈GF

ςg,F = 1.

The trial space for the G-method is obtained as follows: (i) let Sh = Ph and ❱h =
❚h; (ii) let Gh =G

g
h with G

g
h such that

∀vh ∈ ❚h, ∀T ∈Th, ∀F ∈FT , G
g
h(vh)|PT,F

= ∑
g∈GF

ςg,F ∇ξg

vh |PT,F
.

We denote by R
g
h the reconstruction operator defined as in (5) with Gh = G

g
h and

let V
g
h

:=R
g
h(❱h). The G-method of [3] is then equivalent to the following Petrov-

Galerkin method:

Find uh ∈V
g
h s.t. a

g
h(uh,vh) =

∫

Ω
f vh for all vh ∈ P

0
d(Th),

where a
g
h(uh,vh) :=−∑F∈Fh

∫

F {{κ∇huh}}·nFJvhK with ∇h broken gradient on Sh.

Remark 2 (An unconditionally stable method). The main drawback of the G-method

is that stability can only be proven under quite stringent conditions; see, e.g., [3,

Lemma 3.4]. A possible way to circumvent this difficulty has recently been proposed

by one of the authors [10] in the context of CCG methods. The key idea is to use

V
g
h both as a trial and test space, and modify the discrete bilinear form to recover

both consistency and stability. Since the discrete functions in V
g
h are discontinuous

across the lateral faces of the pyramids in Ph, least-square penalization of the jumps

is required to assert stability in terms of coercivity. The resulting method also enters

the present framework, but is not detailed here for the sake of conciseness.

A cell centered Galerkin method

The L-construction is used to define a trace reconstruction in the CCG method of [8,

10]. More specifically, for all F ∈F i
h, we select one group gF ∈ GF with GF defined

by (8) and introduce the linear trace operator T
g
h : ❚h→ ❋h which maps every vector

of cell centered DOFs vh ∈ ❚h onto a vector (vF)F∈Fh
∈ ❋h such that

8 Daniele A. Di Pietro and Jean-Marc Gratien

vF =

{

ξgF
vh

(xF) if F ∈F i
h,

0 if F ∈F b
h .

(9)

The trace operator T
g
h is then employed in a gradient reconstruction based on

Green’s formula and inspired from [17]. More precisely, we introduce the linear gra-

dient operator G
green
h : ❚h×❋h → [P0

d(Th)]
d such that, for all (vT ,vF) ∈ ❚h×❋h

and all T ∈Th,

G
green
h (vT ,vF)|T =

1

|T |d
∑

F∈FT

|F |d−1(vF − vT)nT,F . (10)

The discrete space for the CCG method under examination can then be obtained as

follows: (i) let Sh = Th and ❱h = ❚h; (ii) let Gh =G
ccg
h with G

ccg
h such that

∀vh ∈ ❱h, G
ccg
h (vh) =G

green
h (vh,T

g
h(vh)). (11)

The reconstruction operator defined taking Gh = G
ccg
h in (5) is denoted by R

ccg
h ,

and the corresponding discrete space by V
ccg
h

:= R
ccg
h (❚h). The last ingredient to

formulate the discrete problem is a suitable definition of the weights in the average

operator. To this end, we let, for all F ∈F i
h such that F ⊂ ∂T1∩∂T2,

ωT1,F =
λT2 ,F

λT1 ,F
+λT2 ,F

, ωT2,F =
λT1 ,F

λT1 ,F
+λT2 ,F

,

where λTi,F := κ |Ti
nF ·nF for i ∈ {1,2}. Set, for all (uh,vh) ∈V

ccg
h ×V

ccg
h ,

a
ccg
h (uh,vh) :=

∫

Ω
κ∇huh·∇hvh− ∑

F∈Fh

∫

F
[{{κ∇huh}}ω ·nFJvhK+ JuhK{{κ∇vh}}ω ·nF]

+ ∑
F∈Fh

η
γF

hF

∫

F
JuhKJvhK,

(12)

with ∇h broken gradient on Th, γF =
2λT1 ,F

λT2 ,F

λT1 ,F
+λT2 ,F

on internal faces F ⊂ ∂T1∩∂T2 and

γF = κ |T nF ·nF on boundary faces F ⊂ ∂T ∩∂Ω . The user-dependent parameter η
should be chosen large enough to ensure stability. The CCG method reads

Find uh ∈V
ccg
h s.t. a

ccg
h (uh,vh) =

∫

Ω
f vh for all vh ∈V

ccg
h . (13)

The bilinear form a
ccg
h has been originally introduced by Di Pietro, Ern and Guer-

mond [12] in the context of dG methods for degenerate advection-diffusion-reaction

problems. In particular, for κ = 1d , the method (13) coincides with the Symmetric

Interior Penalty (SIP) method of Arnold [4] associated to the bilinear form

Lowest order methods: A unified approach to definition and implementation 9

a
sip
h (uh,vh) =

∫

Ω
∇huh·∇hvh− ∑

F∈Fh

∫

F
[{{∇huh}}·nFJvhK+ JuhK{{∇hvh}}·nF]

+ ∑
F∈Fh

η

hF

∫

F
JuhKJvhK.

(14)

For further details on the link between CCG and discontinuous Galerkin methods

we refer to [8, 10, 9].

A hybrid finite volume method

As a last example we consider a variant of the SUSHI scheme of [17]; see also [14]

for a discussion on the link with the MFD methods of [6, 5]. This method is based

on the gradient reconstruction (10), but stabilization is achieved in a rather different

manner with respect to (12). More precisely, we define the linear residual operator

rh : ❚h×❋h→ P
0
d(Ph) as follows: For all T ∈Th and all F ∈FT ,

rh(v
T
h ,vF

h)|PT,F
=

d
1
2

dT,F

[

vF − vT −G
green
h (vT

h ,vF
h)|T ·(xF −xT)

]

.

The discrete space for SUSHI method with hybrid unknowns is then obtained as

follows: (i) let Sh = Ph and ❱h = ❚h×❋h; (ii) let Gh =G
hyb
h with G

hyb
h such that,

for all (vT
h ,vF

h) ∈ ❚h×❋h, all T ∈Th and all F ∈FT ,

G
hyb
h (vT

h ,vF
h)|PT,F

=G
green
h (vT

h ,vF
h)|T + rh(v

T
h ,vF

h)|PT,F
nT,F . (15)

Denote by R
hyb
h the reconstruction operator defined by (5) with Gh = G

hyb
h . The

SUSHI method with hybrid unknowns reads

Find uh ∈V
hyb
h s.t. asushi

h (uh,vh) =
∫

Ω
f vh for all vh ∈V

hyb
h ,

with asushi
h (uh,vh) :=

∫

Ω κ∇huh·∇hvh and ∇h broken gradient on Ph. Alternatively,

one can obtain a cell centered version by setting ❱h = ❚h and replacing G
hyb
h defined

by (15) by Gh =Gcc
h with Gcc

h such that

∀vh ∈ ❚h, Gcc
h (vh) =G

hyb
h (vh,T

g
h(vh)), (16)

and trace operator T
g
h defined by (9). This variant coincides with the version pro-

posed in [17] for homogeneous κ , but it has the advantage to reproduce piecewise

affine solutions of (7) on Th when κ is heterogeneous. The discrete space obtained

taking Gh =Gcc
h in (6) is labeled V cc

h .

10 Daniele A. Di Pietro and Jean-Marc Gratien

Listing 1 Implementation of the bilinear form (14) using the DSL of §3

1 / / Define discrete spaces, test and trial functions

2 typedef FunctionSpace<span<Polynomial<d, 1> >,

3 gradient<GreenFormula<LInterpolator> >

4 >::type CCGSpace;

5 CCGSpace Vh(Th);

6 Vh.gradient().trace().set(DiffusionCoefficient, κ);
7 CCGSpace::TrialFunction uh(Vh, "uh");

8 CCGSpace::TestFunction vh(Vh, "vh");

9 / / Define the bilinear form

10 Form2 ah =

11 integrate(All<Cell>::items(Th), dot(grad(uh),grad(vh)))

12 -integrate(All<Face>::items(Th), dot(N(),avg(grad(uh)))*jump(vh)

13 +dot(N(),avg(grad(vh)))*jump(uh))

14 +integrate(All<Face>::items(Th), η/H()*jump(uh)*jump(vh));
15 / / Evaluate the bilinear form

16 MatrixContext context(A);

17 evaluate(ah, context);

3 Implementation

The goal of this section is to lay the foundations for a DSL which transposes the

mathematical concepts of §2 into practical implementations. To illustrate the ca-

pabilities of the DSL in a nutshell, compare Listing 1 with the expression of the

bilinear form a
sip
h (14). The DSL is here embedded in C++, which allows to exploit

the optimization features of the compiler as well as several constructs from the host

language. The material is organized as follows: §3.1 introduces the algebraic back-

end aiming at replacing the table of DOFs in the context of a element-like assembly

procedure; §3.2 deals with more abstract concepts that mimic function spaces, linear

and bilinear forms to offer a functional front-end.

3.1 Algebraic back-end

In this section we focus on the elementary ingredients to build the terms appearing

in the linear and bilinear forms of §2, which constitute the back-end of the DSL

presented in §3.2.

Linear combination

The point of view presented in §2 naturally leads to finite element-like assembly

of local contributions stemming from integrals over elements or faces. However,

a few major differences have to be taken into account: (i) the stencil of the local

Lowest order methods: A unified approach to definition and implementation 11

Listing 2 Implementation of the gradient reconstruction G
green
h (10) for an element T ∈Th. Buffer-

ization is a means to improve efficiency

1 LinearCombination<0> vT;

2 vT += LinearCombination<1>::Term(IT,1.);

3 LinearCombination<1, Buffer> buffer;

4 for(F ∈FT) {

5 const LinearCombination<0> & vF = Th.eval(F);

6 buffer +=
|F |d−1

|T |d
(vF-vT)nT,F;

7 }

8 LinearCombination<1, Vector> GT;

9 buffer.compact(GT);

contributions may vary from term to term; (ii) the stencil may be data-dependent,

as is the case for the methods of §2 based on the L-construction; (iii) the stencil

may be non-local, as DOFs from neighboring elements may enter in local recon-

structions. All of the above facts invalidate the classical approach based on a global

table of DOFs inferred from a mesh and a finite element in the sense of Ciarlet.

Our approach to meet the above requirements is to (i) drop the concept of local el-

ement, and to refer to DOFs by a unique global index; (ii) introduce the concept

of LinearCombination (with template parameters to be specified in what fol-

lows), which realizes a linear application from ❱h onto the space ❚r of real tensors

of order r ≤ 2.

In practice, a LinearCombination is an efficient mapping of the DOFs in

❱h onto the corresponding coefficients in ❚r. A LinearCombination l
r can

indeed be thought of as a list of couples (I,τl,I)I∈■l where ■l ⊂ ❱h is the stencil (i.e.,

a vector of global DOFs) and τl,I ∈ ❚r, I ∈ ■l, are the corresponding coefficients. To

account for strongly enforced boundary conditions, LinearCombination also

contains a constant coefficient τl,0, so that the evaluation at vh ∈ ❱h (obtained by

calling the function LinearCombination.eval(vh)) actually returns

l
r(vh) = ∑

I∈■l

τl,IvI + τl,0 ∈ ❚r.

It is useful to define efficient operations such as the sum and subtraction of lin-

ear combinations, as well as different kinds of products by constants. This allows,

e.g., to implement the gradient G
green
h defined by (10) as described in line 6 of List-

ing 2. When needed, each DOF I can be represented as a LinearCombination

containing only the couple (I,1). As a result, both the hybrid version with face un-

knowns (15) and the cell centered version (11) of the gradient reconstruction can be

obtained from Listing 2 by simply changing the value returned by the trace interpo-

lator Th.eval(F) in line 5. We also pinpoint that the tensor order is a template

parameter of LinearCombination to reduce the need for dynamic allocation.

In the implementation, particular care must be devoted to expressions con-

taining the sum or subtraction of two linear combinations l
r
1 and l

r
2, since this

12 Daniele A. Di Pietro and Jean-Marc Gratien

involves computing the intersection of the corresponding set of DOFs, say ■l1

and ■l2
respectively. To overcome this difficulty, complicate expressions are com-

puted in two steps: a first step in which duplicate DOF indices are allowed, fol-

lowed by a compaction stage where the algebraic sums of the corresponding co-

efficients are performed. This is obtained by changing the value of the second

template parameter of LinearCombination. Specifically, in Buffer-mode a

LinearCombination efficiently supports adding terms and can appear in the

left-hand side of an assignment operator, while Vector-mode (default) only al-

lows to traverse its elements in a fixed order; c.f. lines 3 and 8 of Listing 2.

Linear and bilinear contributions

Exploiting the concept of LinearCombination, it is possible to devise a unified

treatment for local contributions stemming from integrals over elements or faces.

We illustrate the main ideas using the an example: For a given T ∈ Th and for

uh, vh ∈V
ccg
h , we consider the local contribution Aloc associated to the term

∫

T
κ∇huh·∇hvh.

For the sake of simplicity we focus on the case when the constant coefficient τl,0
is zero (in the example, this corresponds to the homogeneous Dirichlet boundary

condition in problem (7)). The key remark is that both (κ∇huh)|T = κ |T ∇(uh|T) and

(∇hvh)|T =∇(vh|T) can be represented as objects of type LinearCombination<1>,

say l
1
u = (J,τlu,J)J∈❏ and l

1
v = (I,τlv,I)I∈■. The associated local contribution reads

Aloc = [|T |dτlv,I ·τlu,J]I∈■,J∈❏ . (17)

Generalizing the above remark, one can implement local terms in matrix assembly

as BilinearContributions which can be represented as triplets (■,❏,Aloc)
containing two vectors of DOF indices ■ and ❏ and the local matrix Aloc. Observe,

in particular, that ■ and ❏ play the same role as the lines of the table of DOFs corre-

sponding to test and trial functions supported in T in standard finite element imple-

mentations. As such, they are related to the lines and columns of the global matrix

A to which Aloc contributes,

A(■,❏)← A(■,❏)+Aloc. (18)

When the LinearCombinations concurring to a local term take values in ❚r, the

vector inner product in (17) should be replaced by the appropriate tensor contraction.

An additional argument γ in BilinearContribution serves as a multiplicative

factor for the whole expression (in the above example, γ = |T |d). More generally, γ
can be a function of space and time, and may depend on discrete variables.

Similarly, LinearContributions serve to represent right-hand side contri-

butions. LinearContributions are not detailed here for the sake of brevity. A

Lowest order methods: A unified approach to definition and implementation 13

Listing 3 Assembly of a bilinear and linear contribution (A represents here the global matrix b

the global right-hand side vector)

1 LinearCombination<r> l
r
u, l

r
v;

2 / / Assemble a bilinear contribution into the left-hand side

3 BilinearContribution<r> blc(γ, l
r
u, l

r
v);

4 A << blc;

5 / / Assemble a linear contribution into the right-hand side

6 LinearContribution<r> lc(γ, l
r
v);

7 b << lc;

Listing 4 FunctionSpace concept

1 class FunctionSpace {

2 / / Types for trial and test functions

3 class TrialFunction;

4 class TestFunction;

5 / / Create a new instance of the space

6 FunctionSpace create(const Mesh &);

7 / / Constant value of Gh|S for S ∈Sh as a vector-valued linear combination of DOFs

8 const LinearCombination<1> & Gh(S) const;

9 / / Value of Rh|S(x) for x ∈ S and S ∈Sh as a scalar-valued linear combination of DOFs

10 const LinearCombination<0> & Rh(S, x) const;

11 };

typical assembly pattern is described in Listing 3. In particular, line 4 is the pro-

gramming counterpart of (18).

3.2 Functional front-end

A further level of abstraction can be reached defining a DSL that allows to conceal

all technical details and provide only the relevant components in a form as close as

possible to the mathematical formulations of §2. We focus here, in particular, on the

programming equivalent of discrete spaces and bilinear forms.

Function spaces

Incomplete broken polynomial spaces defined by (6) are mapped onto C++ types

conforming to the FunctionSpace concept detailed in Listing 4. The actual

types are generated by a helper template class parametrized by a containing poly-

nomial space, labeled span, and a piecewise constant gradient reconstruction,

labeled gradient (labels for template arguments are here defined using the

boost::parameter library). An example of usage is provided in lines 2–4 in

14 Daniele A. Di Pietro and Jean-Marc Gratien

Listing 1. The gradient reconstruction implicitly fixes both the choice (6) for the

algebraic space of DOFs and the choice (3) for Sh. The programming counterparts

of the function spaces appearing in §2 are listed in Table 1.

Table 1 span and gradient template parameters for the discrete spaces of §2

Space Sh span gradient

P
0
d(Th) Th Polynomial<d, 0> Null

V
g
h Ph Polynomial<d, 1> GFormula

V
ccg
h Th Polynomial<d, 1> GreenFormula<LInterpolator>

V
hyb
h Ph Polynomial<d, 1> SUSHIFormula<HybridUnknowns>

V cc
h Ph Polynomial<d, 1> SUSHIFormula<LInterpolator>

The key role of a FunctionSpace is to bridge the gap between the algebraic

representation of DOFs and the functional representation used in the methods of §2.

This is achieved by the functions Gh and Rh, which are the C++ counterpart of

the linear operators Gh and Rh respectively; see §2.1. More specifically, (i) for

all S ∈ Sh, Gh(S) returns a vector-valued linear combination corresponding to

the (constant) restriction Gh|S; (ii) for all S ∈ Sh and all x ∈ S, Rh(S, x) re-

turns a scalar-valued linear combination corresponding to Rh|S(x) defined accord-

ing to (5). The linear combinations returned by Gh and Rh can be used to gener-

ate LinearContributions and BilinearContributions to build linear

and bilinear terms as described above. A FunctionSpace also defines the types

TestFunction and TrialFunction that correspond to the mathematical no-

tions of test and trial functions in variational formulations. The main difference be-

tween a TestFunction and a TrialFunction is that the latter is associated

to a vector of DOFs which is stored in memory. In addition, when used to define bi-

linear contributions, test and trial functions are associated to the lines and columns

of the local matrix respectively. We conclude by observing that the choice of iden-

tifying test and trial functions by their type is in contrast with the approach of [20,

§3.4], where special keywords accomplish this task.

Linear and bilinear forms

Linear and bilinear forms are obtained as sums of linear and bilinear terms result-

ing from the composition of TestFunctions and TrialFunctions (or unary

modifications thereof) by suitable tensor contractions. Examples of tensor contrac-

tions in Listing 1 are the dot and * operators. Products by functions of space,

time and possibly discrete variables are also allowed. In Listing 1 we also dis-

play examples of geometric operators such as N() and H(), which allow to ac-

cess face normals and element diameters respectively. Unary modifiers encountered

in Listing 1 are grad, avg and jump, corresponding, respectively, to the broken

gradient on Sh and to the average and jump operators defined by (4). When ap-

Lowest order methods: A unified approach to definition and implementation 15

Listing 5 Stokes problem

1 CCGSpace::VectorTrialFunction uh(d);

2 CCGSpace::VectorTestFunction vh(d);

3 P0Space::TrialFunction ph;

4 P0Space::TestFunction qh;

5 Range::Index i(Range(0,dim-1));

6 Form2 ah, bh, sh;

7 ah = integrate(All<Cell>::items(Th),

8 sum(i)(dot(grad(uh(i)),grad(vh(i)))))

9 +integrate(Internal<Face>::items(Th),

10 sum(i)(-dot(fn,avg(grad(uh(i)))))*jump(vh(i))

11 -jump(uh(i))*dot(N(),avg(grad(vh(i))))

12 +η/H()*jump(uh(i))*jump(vh(i))));
13 bh =-integrate(Internal<Face>::items(Th),jump(ph)*dot(N(),avg(vh)));

14 sh = integrate(Internal<Face>::items(Th),H()*jump(ph)*jump(qh));

plied to a test or trial function, a unary modifier is an object capable of returning a

LinearCombination at evaluation.

By default, linear and bilinear forms are represented by vectors and (sparse)

matrices, but other representations are possible resulting, e.g., in matrix-free im-

plementations. In contrast with [20], the expression corresponding to a linear or

bilinear form is stored instead of being evaluated on-the-fly. This allows, in par-

ticular, to change the operations actually performed at evaluation according to a

context. Changing the representation of linear and bilinear forms thus amounts

to changing the context of evaluation. An example of evaluation is provided in

lines 16–17 of Listing 1, where the global matrix A is assembled according to

the expression of ah and to the procedure defined in MatrixContext. Dur-

ing the evaluation, each term in the expression of ah generates a corresponding

BilinearContribution, which is in turn assembled as described in §3.1.

To conclude, we present a more complicate example involving a system of PDEs.

More specifically, we consider the Stokes problem:

−△u+∇p = f in Ω , ∇·u = 0 in Ω , u = 0 on ∂Ω ,

with 〈p〉Ω = 0 to ensure well-posedness. Let Xh := [V
ccg
h]d×P0

d(Th)/❘. In Listing 5

we present the implementation of the CCG method of [9, §3]: Find (uh, ph) ∈ Xh

such that

ah(uh,vh)+bh(vh, ph)−bh(uh,qh)+ sh(ph,qh) =
∫

Ω
f ·vh, ∀(vh,qh) ∈ Xh

where ah(uh,vh) := ∑
d
i=1 a

sip
h (uh,i,vh,i), bh(ph,vh) := −∑F∈F i

h

∫

FJphK{{vh}}·nF and

sh(ph,qh) := ∑F∈F i
h

hF

∫

FJphKJqhK. Notice, in particular, the use of the sum key-

word.

Acknowledgements. Fruitful discussions with Christophe Prud’homme (Labora-

16 Daniele A. Di Pietro and Jean-Marc Gratien

toire Jean Kuntzmann, University of Grenoble) are gratefully acknowledged. We

also wish to thank all the contributors to the Arcane platform.

References

1. I. Aavatsmark, T. Barkve, Ø. Bøe, and T. Mannseth. Discretization on unstructured grids for
inhomogeneous, anisotropic media, Part I: Derivation of the methods. SIAM J. Sci. Comput.,
19(5):1700–1716, 1998.

2. I. Aavatsmark, G. T. Eigestad, B. T. Mallison, and J. M. Nordbotten. A compact multipoint
flux approximation method with improved robustness. Numer. Methods Partial Differ. Eq.,
24:1329–1360, 2008.

3. L. Agélas, D. A. Di Pietro, and J. Droniou. The G method for heterogeneous anisotropic
diffusion on general meshes. M2AN Math. Model. Numer. Anal., 44(4):597–625, 2010.

4. D. N. Arnold. An interior penalty finite element method with discontinuous elements. SIAM

J. Numer. Anal., 19:742–760, 1982.
5. F. Brezzi, K. Lipnikov, and M. Shashkov. Convergence of mimetic finite difference methods

for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal., 43(5):1872–1896, 2005.
6. F. Brezzi, K. Lipnikov, and V. Simoncini. A family of mimetic finite difference methods on

polygonal and polyhedral meshes. M3AS, 15:1533–1553, 2005.
7. I. Danaila, F. Hecht, and O. Pironneau. Simulation numérique en C++. Dunod, Paris, 2003.

http://www.freefem.org.
8. D. A. Di Pietro. Cell centered Galerkin methods. C. R. Acad. Sci. Paris, Ser. I, 348:31–34,

2010.
9. D. A. Di Pietro. Cell centered Galerkin methods for diffusive problems. Submitted.

Preprint available at http://hal.archives-ouvertes.fr/hal-00511125/en/,
September 2010.

10. D. A. Di Pietro. A compact cell-centered Galerkin method with subgrid stabilization. C. R.

Acad. Sci. Paris, Ser. I., 2010.
11. D. A. Di Pietro and A. Ern. Mathematical aspects of discontinuous Galerkin methods. Math-

ematics & Applications. Springer-Verlag, Berlin, 2010. In press.
12. D. A. Di Pietro, A. Ern, and J.-L. Guermond. Discontinuous Galerkin methods for anisotropic

semi-definite diffusion with advection. SIAM J. Numer. Anal., 46(2):805–831, 2008.
13. J. Droniou and R. Eymard. A mixed finite volume scheme for anisotropic diffusion problems

on any grid. Num. Math., 105(1):35–71, 2006.
14. J. Droniou, R. Eymard, T. Gallouët, and R. Herbin. A unified approach to mimetic finite

difference, hybrid finite volume and mixed finite volume methods. M3AS, Math. Models

Methods Appl. Sci., 20(2):265–295, 2010.
15. M. G. Edwards and C. F. Rogers. Finite volume discretization with imposed flux continuity

for the general tensor pressure equation. Comput. Geosci., 2:259–290, 1998.
16. A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements, volume 159 of Applied

Mathematical Sciences. Springer-Verlag, New York, NY, 2004.
17. R. Eymard, Th. Gallouët, and R. Herbin. Discretization of heterogeneous and anisotropic

diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization
and hybrid interfaces. IMA J. Numer. Anal., 4(30):1009–1043, 2010.

18. Gilles Grospellier and Benoit Lelandais. The arcane development framework. In Proceed-

ings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Comput-

ing, POOSC ’09, pages 4:1–4:11, New York, NY, USA, 2009. ACM.
19. A. Logg and G. N. Wells. DOLFIN: Automated finite element computing. ACM TOMS, 37,

2010.
20. C. Prud’homme. A domain specific embedded language in C++ for automatic differentiation,

projection, integration and variational formulations. Scientific Programming, 14(2):81–110,
2006.

http://www.freefem.org
http://hal.archives-ouvertes.fr/hal-00511125/en/

	Lowest order methods for diffusive problems on general meshes: A unified approach to definition and implementation
	Daniele A. Di Pietro and Jean-Marc Gratien
	Introduction
	Definition
	Discrete setting
	An abstract perspective
	Examples

	Implementation
	Algebraic back-end
	Functional front-end

	References

