Influence Measures for CART Classification Trees

Abstract : This paper deals with measuring the influence of observations on the results obtained with CART classification trees. To define the influence of individuals on the analysis, we use influence functions to propose some general criterions to measure the sensitivity of the CART analysis and its robustness. The proposals, based on jakknife trees, are organized around two lines: influence on predictions and influence on partitions. In addition, the analysis is extended to the pruned sequences of CART trees to produce a CART specific notion of influence. A numerical example, the well known spam dataset, is presented to illustrate the notions developed throughout the paper. A real dataset relating the administrative classification of cities surrounding Paris, France, to the characteristics of their tax revenues distribution, is finally analyzed using the new influence-based tools.
Type de document :
Article dans une revue
Journal of Classification, Springer Verlag, 2015, 32 (1), pp.21-45. 〈10.1007/s00357-015-9172-4〉
Liste complète des métadonnées
Contributeur : Servane Gey <>
Soumis le : mercredi 2 février 2011 - 16:14:59
Dernière modification le : jeudi 7 février 2019 - 16:38:59
Document(s) archivé(s) le : mardi 3 mai 2011 - 03:27:23


Fichiers produits par l'(les) auteur(s)


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Partage selon les Conditions Initiales 4.0 International License



Avner Bar-Hen, Servane Gey, Jean-Michel Poggi. Influence Measures for CART Classification Trees. Journal of Classification, Springer Verlag, 2015, 32 (1), pp.21-45. 〈10.1007/s00357-015-9172-4〉. 〈hal-00562039〉



Consultations de la notice


Téléchargements de fichiers