C. Mead, Neuromorphic electronic systems, Proc. IEEE, pp.1629-1636, 1990.
DOI : 10.1109/5.58356

URL : http://authors.library.caltech.edu/53090/1/00058356.pdf

T. S. Lande, Analog Integr, Analog Integrated Circuits and Signal Processing, vol.13, issue.1/2, pp.5-7, 1997.
DOI : 10.1023/A:1008205416826

K. A. Boahen, A retinomorphic vision system, IEEE Micro, vol.16, issue.5, pp.30-39, 1996.
DOI : 10.1109/40.540078

E. Culurciello, R. Etienne-cummings, and K. A. Boahen, A biomorphic digital image sensor, IEEE Journal of Solid-State Circuits, vol.38, issue.2, pp.281-294, 2003.
DOI : 10.1109/JSSC.2002.807412

P. Lichtsteiner, C. Posch, and T. Delbrück, A 128 2 128 dB 15 s latency asynchronous temporal contrast vision sensor, IEEE J. Solid- State Circuits, vol.42, issue.2, pp.566-576, 2008.
DOI : 10.1109/jssc.2007.914337

J. Lazzaro and J. Wawrzynek, Silicon models for auditory scene analysis, Advances in Neural Information Processing Systems5 (NIPS95), 1995.

A. Van-schaik and S. Shamma, A Neuromorphic Sound Localizer for a Smart MEMS System, Analog Integrated Circuits and Signal Processing, vol.39, issue.3, pp.267-273, 2004.
DOI : 10.1023/B:ALOG.0000029662.37528.c7

G. Indiveri, Neuromorphic selective attention systems, Proc. IEEE Int. Symp. Circuits and Systems, pp.770-773, 2003.
DOI : 10.1016/b978-012375731-9/50107-5

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.9796

C. Dioro, D. Hsu, and M. Figueroa, Adaptive CMOS: from biological inspiration to systems-on-a-chip, Proc. IEEE, pp.345-357, 2002.
DOI : 10.1109/5.993402

M. Mahowald and R. Douglas, A silicon neuron, Nature, vol.354, issue.6354, pp.515-518, 1991.
DOI : 10.1038/354515a0

T. Delbrück and S. C. Liu, A silicon early visual system as a model animal, Vision Research, vol.44, issue.17, pp.2083-2089, 2004.
DOI : 10.1016/j.visres.2004.03.021

K. A. Zaghoul and K. Boahen, Optic Nerve Signals in a Neuromorphic Chip II: Testing and Results, IEEE Transactions on Biomedical Engineering, vol.51, issue.4, pp.667-675, 2004.
DOI : 10.1109/TBME.2003.821040

M. F. Simoni, G. S. Cymbalyuk, M. E. Sorensen, R. L. Calabrese, and S. P. Dewerth, A Multiconductance Silicon Neuron With Biologically Matched Dynamics, IEEE Transactions on Biomedical Engineering, vol.51, issue.2, pp.342-354, 2004.
DOI : 10.1109/TBME.2003.820390

M. F. Simoni and S. P. Dewerth, Two-Dimensional Variation of Bursting Properties in a Silicon-Neuron Half-Center Oscillator, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.14, issue.3, pp.281-289, 2006.
DOI : 10.1109/TNSRE.2006.881537

F. Tenore, R. Etienne-cummings, and M. A. Lewis, Entrainment of silicon central pattern generators for legged locomotory control, Advances in Neural Information Processing systems, 2004.

R. L. Calabrese, Half-center oscillators underlying rhythmic movements , " in The Handbook of Brain Theory and Neural Networks, pp.444-447, 1995.

J. V. Arthur and K. Boahen, Learning in silicon: Timing is everything, Advances in Neural Information Processing Systems (NIPS05), 2005.

G. Indiveri, E. Chicca, and R. Douglas, A VLSI Array of Low-Power Spiking Neurons and Bistable Synapses With Spike-Timing Dependent Plasticity, IEEE Transactions on Neural Networks, vol.17, issue.1, pp.211-221, 2006.
DOI : 10.1109/TNN.2005.860850

Q. Zou, Y. Bornat, J. Tomas, S. Renaud, and A. Destexhe, Real-time simulations of networks of Hodgkin???Huxley neurons using analog circuits, Neurocomputing, vol.69, issue.10-12, pp.1137-1140, 2006.
DOI : 10.1016/j.neucom.2005.12.061

URL : https://hal.archives-ouvertes.fr/hal-00182181

L. Avaldo, J. Tomas, S. Saïghi, S. Renaud-le-masson, T. Bal et al., Hardware computation of conductancedbased models, Neurocomputing, pp.58-60, 2004.

S. Saïghi, J. Tomas, Y. Bornat, and S. Renaud, A Conductance-Based Silicon Neuron with Dynamically Tunable Model Parameters, Conference Proceedings. 2nd International IEEE EMBS Conference on Neural Engineering, 2005., pp.285-288, 2005.
DOI : 10.1109/CNE.2005.1419613

Q. Zou, Y. Bornat, S. Saïghi, J. Tomas, S. Renaud et al., Analog-digital simulations of full conductance-based networks of spiking neurons with spike timing dependent plasticity, Network: Computation in Neural Systems, vol.18, issue.3, pp.211-233, 2006.
DOI : 10.1016/j.neucom.2005.12.061

URL : https://hal.archives-ouvertes.fr/hal-00120641

G. , L. Masson, S. Renaud-le-masson, D. Debay, and T. Bal, Feedback inhibition controls spike transfer in hybrid thalamic circuits, Nature, vol.417, pp.854-858, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00124031

K. Hynna and K. Boahen, Neuron ion-channel dynamics in silicon, Proc. IEEE Int. Symp. Circuits and Systems, pp.3614-3617, 2006.

E. Farquhar and P. Hasler, A bio-physically inspired silicon neuron, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.52, issue.3, pp.477-488, 2005.
DOI : 10.1109/TCSI.2004.842871

J. Georgiou, E. M. Drakakis, C. Toumazou, and P. Premanoj, An analogue micropower log-domain silicon circuit for the Hodgkin and Huxley nerve axon, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349), pp.286-289, 1999.
DOI : 10.1109/ISCAS.1999.780707

R. J. Vogelstein, U. Mallik, J. T. Volgenstein, and G. Cauwenberghs, Dynamically Reconfigurable Silicon Array of Spiking Neurons With Conductance-Based Synapses, IEEE Transactions on Neural Networks, vol.18, issue.1, pp.253-265, 2007.
DOI : 10.1109/TNN.2006.883007

J. Schemmel, D. Bruederle, K. Meier, and B. Ostendorf, Modeling Synaptic Plasticity within Networks of Highly Accelerated I&F Neurons, 2007 IEEE International Symposium on Circuits and Systems, pp.3367-3370, 2007.
DOI : 10.1109/ISCAS.2007.378289

A. L. Hodgkin and F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of Physiology, vol.117, issue.4, pp.500-544, 1952.
DOI : 10.1113/jphysiol.1952.sp004764

C. Koch, Beyond Hodgkin and Huxley: Calcium and calcium-dependent potassium currents, Biophysics of Computation, pp.212-231, 1999.

A. Destexhe, Z. F. Mainen, and T. J. Sejnowski, An Efficient Method for Computing Synaptic Conductances Based on a Kinetic Model of Receptor Binding, Neural Computation, vol.30, issue.1, pp.14-18, 1994.
DOI : 10.1162/neco.1993.5.2.200

C. Toumazou, F. G. Lidgey, and D. G. Haigh, Introduction, " in Analogue IC Design: The Current-Mode Approach, pp.1-10, 1990.

B. Gilbert, Current-mode circuits from translinear viewpoint: A tutorial , " in Analogue IC Design: The Current-Mode Approach, pp.11-91, 1990.

P. E. Allen and D. G. Holberg, CMOS amplifiers, CMOS Analog Circuit Design, pp.257-321, 1987.

Y. Tietze and C. Schenck, Operational Amplifier Applications, Electronics Circuits: Handbook for Design and Applications, pp.725-765, 2008.
DOI : 10.1007/978-3-540-78655-9_11

Y. Tietze and C. Schenck, Analog Switches and Sample-and-Hold Circuits, Electronics Circuits: Handbook for Design and Applications, pp.929-944, 2008.
DOI : 10.1007/978-3-540-78655-9_17

A. Hastings, The Art of Analog Layout, p.576, 2000.

K. S. Cole, Membranes, Ions, and Impulses: A Chapter, Classical Biophysics, p.569, 1968.

M. Pospischil, M. Toledo-rodriguez, C. Monier, Z. Piwkowska, T. Bal et al., Minimal Hodgkin???Huxley type models for different classes of cortical and thalamic neurons, Biological Cybernetics, vol.17, issue.4-5, pp.4-5, 2008.
DOI : 10.1007/s00422-008-0263-8

URL : https://hal.archives-ouvertes.fr/hal-00377075

G. , L. Masson, and R. Maex, Introduction to equation solving parameter fitting, Computational Neuroscience: Realistic Modeling for Experimentalists. Boca Raton, FL: CRC, pp.1-23, 2001.

D. Brüderle, E. Müller, A. Davison, E. Muller, J. Schemmel et al., Etablishing a novel modeling tool: A python-based interface for a neuromorphic system, Frontiers in Neuroinformatics, vol.3, issue.17, 2009.

M. Djurfeldt, C. Johanson, Ö. Ekeberg, M. Rehn, M. Lundqvist et al., Massively parallel simulation of brain-scale neuronal network models Available: www-03.ibm.com/sys- tems/resources/systems_ deepcomputing_pdf_Blue_Gene_Applica- tions_Paper_KTH_0306.pdf NeuReal: An interactive simulation system for implementing artificial dendrites and large hybrid networks, J. Neurosci. Meth, vol.169, pp.290-301, 2005.

A. A. Hill, J. Lu, M. A. Masino, O. H. Olsen, and R. L. Calabrese, A model of a segmental oscillator in the leech heartbeat neuronal network, Journal of Computational Neuroscience, vol.10, issue.3, pp.281-302, 2001.
DOI : 10.1023/A:1011216131638

A. Daouzli, Systèmes neuromorphiques: Etude et implantation de fonctions d'apprentissage et de plasticité, Ecole doctorate des Sciences Physiques et de l'Ingénieur, 2009.

S. Renaud, J. Tomas, N. Lewis, Y. Bornat, A. Daouzli et al., PAX: A mixed hardware/software simulation platform for spiking neural networks, Neural Networks, vol.23, issue.7
DOI : 10.1016/j.neunet.2010.02.006

URL : https://hal.archives-ouvertes.fr/hal-01179647

T. Lévi, N. Lewis, J. Tomas, and P. Fouillat, IP-based methodology for analog design flow: Application on neuromorphic engineering, 2008 Joint 6th International IEEE Northeast Workshop on Circuits and Systems and TAISA Conference, pp.343-346, 2008.
DOI : 10.1109/NEWCAS.2008.4606391

J. Tomas, Y. Bornat, S. Saïghi, T. Lévi, and S. Renaud, Design of a modular and mixed neuromimetic ASIC, 2006 13th IEEE International Conference on Electronics, Circuits and Systems, pp.946-949, 2006.
DOI : 10.1109/ICECS.2006.379946

URL : https://hal.archives-ouvertes.fr/hal-00181404

Y. B. Tomas, C. Lopez, O. Malot, B. Belhadj, and S. Renaud, Design of analog/digital simulator dedicated to real-time neurocomputing, Proc. XXII Conf. Design of Circuits and Integrated Systems, pp.391-396, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00404133