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A General Algebraic Algorithm for Blind Extraction
of one Source in a MIMO Convolutive Mixture

Rémi Dubroca, Christophe De Luigilember IEEEMarc CastellaMember IEEEand Eric MoreauSenior
Member |EEE

Abstract—The paper deals with the problem of blind source approach that has been studied in a convolutive context
extraction from a MIMO convolutive mixture. We define a new (see [4], [18], [14] for the i.i.d. case and [5] for the non
criterion for source extraction which uses higher-order camtrast ii.d. case). The separation is not performed sequentially

functions based on so called reference signals. It generadis but all th tracted simult v Such
existing reference-based contrasts. In order to optimizehte new PUt @l € Sources are extracted simuitaneously. such an

criterion, we propose a general algebraic algorithm basedmbest approach faces two major obstacles in practice. First, a
rank-1 tensor approximation. Computer simulations illustrate the  prewhitening is required, which is a difficult task. In adlufit,
good behavior and the interest of our algorithm in comparism  the optimization scheme of the criteria is likely to conwerg
with other approaches. to a wrong solution because of the existence of local spariou

Index Terms—Contrast Functions, Blind Source Extraction, maxima [2].

Higher Order Statistics, Tensor Decomposition, Independet Contrast functions based on higher-order statistics have
Component Analysis. been proved to be efficient for both blind source separation
or extraction [4], [17]. Here we focus on Multiple-Input /
l. INTRODUCTION Single-Output (MISO) extraction criteria relying on highe
HE problem of blind extraction of one source signabrder statistics. One potential drawback is the high order
appears in a wide range of signal processing applicatiospendence on the parameters. Recently “reference”-based
such as bio-medical and telecommunications. The aim dentrasts have been investigated to lower this dependence o
to restore one source signal from the observation of ta improve the extraction performance [1], [3], [15]. These
set of mixed sources. Among existing mixing models, wapproaches impose some constraints on the referencessignal
consider a Multiple-Input / Multiple-Output (MIMO) conteéx  In order to extract one source, we propose in this paper a
where non observable source signals are mixed througtfamily of contrast functions based on higher-order cumtulan
multidimensionalconvolutivechannel. The separation is saicand using reference signals. These contrast functionssenpo
to be performedlindly when the mixing system is unknownno constraint on the reference signals. We show the usefiine
and cannot be identified. of tensorial algorithms applied to independent component

Such mixtures are considered in telecommunicati@nalysis (ICA) [6]. The optimization problem shows an
applications like cellular communications. The mobile ruseequivalence to the problem of best rahkapproximation
signals are mixed through the air channel and observed on tiietensors [8], [7], [10]. This optimization scheme is also
different antennas of the base station. In this context,rwhapplied to the classical kurtosis contrast function [19%eT
the extraction of one mobile user signal has to be performasmputation of these best rankapproximations is done
the problem cannot be treated as Single-Input / Single-@utghrough the use of the Higher-Order Power Method (HOPM)
blind equalization because the other mobile user signalgorithm (higher-order generalization of the power meho
cannot be considered as noise: they are interfering signdlee novel results in this paper are the following ones: we
The mobile user of interest is extracted from the mixture afitroduce a new family of reference based contrasts, we
all users. The choice of a blind method for extraction of thiaterprete tensor approximation in BSS and we propose new
source potentially avoids the necessity of a training segeie optimization method adapted to the proposed criteria.
and therefore lowers bandwidth loss.

The blind source extraction problem may be considered asThe problem is formulated in Section 1l and Section Il
part of the general blind source separation (BSS) problemtroduces the new contrast function. Some recalls on Tenso
Iterative methods in the context of BSS, extract the sourcalgebra and decomposition from [8] are done in Section
one by one and therefore rely on the ability to extrad/ and an optimization algorithm for our new criterion
one source. These so-called deflation methods, preseritegresented in Section V. Section VI illustrates through
in [16], developed in [13], [20], [9], [3], decompose thecomputer simulations the good behavior of the proposed
separation problem in successive stages for each souagproach. Finally we conclude this paper in Section VII.
These methods can deal both with temporally independent
identically distributed (i.i.d.) sources and temporalnn.i.d. Notations.Tensors are denoted by bold-face calligraphic letters
sources [19]. Hence the blind source extraction problem (&, B, ...), matrices by bold-face capital lettera (B, ...),

a critical part in these methods, the separation relies en tectors by bold-face lower-case lettets %, . ..), and scalars
ability to extract well each source. by normal lettersd, b, ...;a, 3,...).
The former method is in contrast to a global separatidn the whole papern stands for a generic integen (€ Z).



All quantities throughout the paper may be either real or As the source signals are unobservable, there exists some
complex-valued(.)* stands for the complex conjugate)” inherent undetermined factors in their estimation. Theyloa

for matrix transpose(.)” for matrix conjugate transpose.recovered only up to a permutation and to a scalar filtering. S
Finally Cum{.} stands for the the cumulant of any set othe extraction of one source is said to be achieved when there
random variables, and; ; stands for the Kronecker symbol,exists an index, € {1, ..., K} such that the filter components
i.e.d;; =1if i =7 and0 otherwise. in g(n) read

Vi€ {l,...,K} gi(n) £ (8(n)i = 9(n)dii,-  (7)

The above relation is called the “extraction condition” and
expresses the fact thatn) is equal to the source signal, (n)
up to a filtering by the scalar filter with impulse respopée).
x(n) = ZM(k)s(n —k), (1) The source signal correlation sequences are denoted by

e yi(k) £ E{si(n)s; (n — k)},
wherex(n) is the (N, 1) observation vectorN > 2), s(n) _ ) .
is the (K,1) source vector K > 2), and M(n) is the Wherek € Z andi € {1,...,K}. For any indexj &
(N, K) matrix corresponding to the impulse response of tHe - - £} and any scalar filter with impulse resporise),
convolutive mixing system. The transfer function of the LTYVE define itsj-norm by:

Il. PROBLEM FORMULATION

We consider a linear time-invariant (LTI) MIMO mixing
model with K inputs andN outputs

mixing system is denoted by HhH? A Z h(ky)R* (k2)vy; (ko — k1) (8)
M(z)=_ M(n)z"", ) ke
nez |13 is the variance of the signal obtained when filtering the
and we assum&/ > K. sources;(n) by the filter with impulse responsk(n). We

define the (weighted)?-norm of the (, K) global filter g(n)

To achieve the extraction of one source blindly, that is withY: K
no access to the source signals nor to the mixing system filter lel? 2 2”9'”2
we have to make some assumptions on the LTI mixing system e
and the sources: =

Al. The LTI mixing system is stable, left invertible.
Therefore it exists a systeW (n) such that the global
LTI system with impulse response

)

Since the sources are unit power, one can restrict to the
unit-norm global filter case in (7) by imposing the consttain
E{|y(n)|?} =1. Itis straithforward to show that this constraint
is equivalent to|/g||? = 1. In the particular case of i.i.d.

G(n)éZW(k)M(n —k) (3) sources, this constraint is equivalent to:
keZ K
2
corresponds to the identity system. S lgilk)? =1. (10)
i=1 k€EZ
A2. The source signals;(n), ¢ € {1,..., K} are zero- Moreover, in the i.i.d. case, the contrast functions (defiime

mean, unit-variance, random stationary signals. Moreowvitse next section) allow one to equalize the sources. Conse-
they are statistically mutually independent (at least up tpuently we define the stronger separation condition:

the order of the considered cumulants). At least one .
the sources has non-zetieth order auto-cumulant, i.e. %Tl € Zand3ip € {1,..., K} such thatg;(n) = adn10ii,-

ists (11)
there exists € {1,...., N} such that Here the scalar filtey(n) reduces to a delay and a scaling
Cum{s;(n), s;(n), s;(n), s;(n)} # 0. factora € C* and (11) is actually a condition for separation

L ) and equalization.
In the MISO context, the aim is to estimate(h N) row

vector filterw(n) such that the scalar signal The set of source signals satisfying assumptich will

be denoted byS. The set of unit norm vector filters will be
= k —k 4
y(n) ZW( Jx(n = k) @) denoted byg;. Finally, we denote byy the set of output of
the MISO extractog(n) when the input source signals belong

restores one of the sou_rces(n), i€ {12 ...,K}, uptoa toS and the global system belongs .
non-zero scalar filter. It is useful to define the global vecto

keZ

. EXTRACTION CRITERIA

g(n) £ w(k)M(n — k), (5) A. Recalls on contrast function
keZ A contrast is an objective function depending on the statis-
thus tics of the outputs of the extracting system. Its maximaati
y(n) = Zg(n — k)s(k) £ (g +s)(n). (6) leads to the extraction of one source. In consequence, the

ez source extraction problem becomes an optimization problem



We can notice that a contrast is a function frgmto R but The r;(n),7 € {1,...,R — S}, are given reference signals
it may also be seen as a function frad to R. In the i.i.d. (2 < S < R) which are assumed to satisfied the following

case, the following definition is considered: assumption

Definition 11l.1. Contrast function for i.i.d. sources A3. The reference signals;(n),i € {1,...,R — S} are
Let C be a function from) to R. It is called a contrast obtained by a stable MIMO filtering of the sources or of

function when it satisfies the following two properties: their complex-conjugates.

pl. 3 (ig, ko) € {1,..., K} x Z such that:
Note that the cas® = 2 is treated in [3] and the case= R
Vyn)ely Cly(n)} <C{si(n—ko)} . (12) is treated in [17]. In the following we consider the general

<R.
p2. The equality holds in (12) if and only if(n) equals a case2 <5< R

multiple of s;(n — k) for somei € {1,..., K} and some
k € Z (i.e. the global filter is extracting and statisfie

D). Cs.re{y(n)} 2 s pe{y(n)} . (17)
In the case of i.i.d. source signals, the maximization of

the contrast function restores one source up to a delay and &) Case of i.i.d. source signals:
scaling factor. The following supremum is assumed to satisfy the assump-

tion
However this definition cannot be used for the non i.i.d. case A4. 3(jo, ko) such that:
because the extraction of a source can be only guaranteed up
to a scalar filtering. Hence we give a weaker definition for the [y sup|rs.reds;(n—k)}| = ks e ds5 (n—ko)}| < oc.
non i.i.d. case: =1 kez 7 ” a8

We can now state the following proposition (f2r< S < R):

SWe now define the following function:

Definition I1ll.2. Contrast function for non i.i.d. sources
Let C be a function from) to R. It is called a contrast

function when it satisfies the following two properties: Proposition 111.3. In the case of i.i.d. source signals, under
pl. YV y(n) € V: assumptionsAl.-A4., the functionCs r . is a contrast over
the set).
K
Cly(n)} < max g:HSgtl\I\)id Cl{lgxs)(nm)} (13 116 proof is given in Appendix A.
llg;ll;=0 Vj#i

2) Case of non i.i.d. source signals:

p2. The equality holds in (13) if and onlyy{n) is a filtered We define the following supremum,

version ofs;(n) for somei € {1,..., K} (i.e. the global

filter statisfies (7)) for som&). M a mié(lfiMs,R,i (19)
A classical contrast function defined in [19] is the absolute =
value of the kurtosis: where
Cufy(n)} £ |Cam{y(n), " (n),y"(n), (M)} (14) Mspi = swp Conel(gxs)m}  (20)

A contrast function based on referenced signal is defined , .
\}?e make the following assumption:
[3] by the absolute value of the fourth order cross-cumulan

between the output of the extracting system and a referenceAS. For all i such thatMg r; = M5, the extremum
signalr(n): Mg r,i is reached by at least one filter of uriinhorm

defined in (8).
62,4,7‘{y(n)} é |Cum{y(n),y*(n),r(n),r* (TL)H (15) We can state (Wltm < S < R)

Proposition 1ll.4. In the case of non i.i.d. source signals,

under assumption81.-A3. and A5., the functionCs r » iS a
The main goal of the paper is to propose a family of contrasbntrast over the seyp.

functions based on reference signals generalizing theasint

in [3]. For that, we consider the following-th order R >

3) cross-cumulant wheré)®*)x, k € {1,...,S} are optional

complex conjugate:

B. New reference based contrast function

The proof is given in Appendix B.

We can notice that the observation signals satisfy the
assumptiomA3. and can serve as reference signals. Note also
ks,re{y(n)} = thatri(n) = ... = rr_s(n) is a possible choice. As we have
Cum{y(*>1(n) y(*)s(n) ), s(n)} . (16) seen in the previous pro_p_osmons, we remark that the new

AP ’ AR contrast requires no condition on the reference signalepxc
s the assumptioi\3..




IV. RECALLS ON TENSORDECOMPOSITION HOPM algorithm
Input: A € Chx-xIv
Output: A € Chx--xIn

|

Tensorial algorithms applied to ICA [6] are of interest an

the optimization problem has an equivalence to the problem|o ;) :gltlal vtalu?_T.uO »n €[l o N].
best rankt approximation of tensors [8], [7]. We recall notiong ) epei) unt conve(g?snce. )" ()
on tensor decomposition which are necessary in Section&/. Se e U, =Aeyu,’ e3u’ ey ...eyu,
[8] for more details in tensor algebra. _ A =1l ) and uiY), =alt A,
The n-mode product of a tenspt € C/+*--*I~ py a matrix . . Y
U € C/»*I» denoted byde, U, isan(l; x...xJ, x...Iy)- . ﬁg;l =Ae; ugﬂ o uf) o ...0n ul(cN)
i i 2 ~(2) 2) ~(2 2
tensor whose entries are given by )‘I(H—l _ |\U;(€+1|| and “1(c+1 _ u;ﬁzl//\gﬁzl
DLy @ (V-1)¥
(Aon Oivaguin 23 Ata i in Upnia: (21) T D S
in Aesr = ol and wy g = w9 /A
H L4 (1 N
The outer product of N vectors u® ... u™) of size Solutions :u®, ..., u"), A,
; ; _ s ST XX IN 3) A= uWo.. . ocu®™,

I, ..., In respectively is @-order tensor irC with
elements defined byl;,.;, =u!”...u!" for all values of This iterative algorithm has to be initialized, which can be
the indices. It is denoted by o ... ou™), done using the Higher Order Singular Value Decomposition
A N-order tensor inCl1*--*I~ is rank-1 if it can be written (HOSVD), as proposed in [8]. The stopping criterion of the
as the outer product ofV vectorsu™, ..., u™) of size algorithm is also studied in this paper.
Ii,...,IN respectively.
The best rank-1 approximation of A-order tensor can be V. PROPOSED ALGORITHM
described as follows. Giverd e C!'*--*!v, find a scalar e describe a general algorithm for the optimization of the
X and unit-norm vectora"), ..., u™) such that the rank-1 pronosed family of contrast functions.

tensor.A € C11%--*In defined by

A. Optimization method

A£xuVo . ou® (22)  We assume that the mixing filter is a FIR filter with impulse
response of lengtll and thatM(z) is irreducible. Then it
minimizes the least-squares cost function admits a MIMO-FIR left inverse filter of length (see [12]),

which is assumed causal with no loss of generality. The row
- vectors which define the impulse response can be stacked in
[A— Al (23)  the following (1, ND) row vector:

w2 (w(0)...w(D - 1)). 27)

f(A)

The Frobenius norm oL is defined byj|.A|| £ /(A, A) with .
the scalar productA, B) of two tensorsA, B € Clix-xIx  We also define th¢N' D, 1) column vector

defined by x(n) 2 (x(n)Tx(n-17.. . x(n—-D+1)T)T . (28)
It is then easily seen that
(AB) 2> A B - (24)

Let the covariance matrix b® = E{x(n)x(n)?}, so we

The minimization of the cost functiofi(.A) is equivalent to haveE{|y(n)[’} =wRw".

the maximization, over the unit-norm vectau$", ..., u™),
of the function: Now using the assumptioA3., the multilinearity property

of cumulants and (29), we have
g®,.u™) = |Aeru ey ey u™MIE(25) kg p fym)} = 3wl we
i14e0yis
The scalar) is reached by: Cum{zgf)l(n), e ,L(Z)S(n),ﬁ (n),...,rr—s(n)},

(30)

1HH N)H
A=Aeu ey ey ulM, (26) Wherewl(:)", ke {1,...,S}, stands fo,; conjugated in the

same way ag/*)* in (16). Thus this relation can be written
A solution can be found by an ALS method which is a highe®s aS-order tensor decomposition ([8])
order extension of the power method (HOPM) for matrices [8]. ks.rely(n)} = Cs o W)l ey, egw®s (31)



where the tenso€s is defined component wise as x(n) extraction
3
77777777777777777777777 (W' (2)
(CS)i i = | reference |
Tyeees
Crm ™" (s | ) |
um{z; ' (n),...,z; % (n),r1(n),...,rr—s(n)} . (32) o — |
ontras "

Hence the optimization of the contrast function in (17) unde i optimization [1W (%) i

the unit power constraint reads | w'(2) | r(n) | w3(2)
! |
max [Cgeiw*)iey. . egw™)s| with wRw! =1. (33) ! L[ Contrast . |
) . ) . | optimization [|W (=) |
The covariance matrix can have some of its eigenvalues equal || ; |
to zero. It is important to notice that for any row vector such ! W) ) |
that ﬂgl € ker R we have } Contrast j
woRw{ = 0. | fixed point iteration Lo ]

The solution of the above maximization problem (33) is nafg. 1. Fixed point like method for 3 iterations.
unique, it follows that we may impose in addition” <
(ker R)*. Thus,w is projected onto the signal subspace. S
by a SVD, we decompose

*fixed-point” like algorithm (for [,,., iterations)
Input: x,wP.
R = UDU”, (34) |Output:w'===.
1) forl € {1,...,lmax}:

« fix the reference to(n) = w'~'x(n),
P=UD"? and Q=D Y?*U” (35) o w! = argmaxy, Cs.zr{y(n)} where

in order to project onto the signal subspace: y(n) = w 5(7_1)- o N
2) The separating filter is given by the coefficients .

and we define

w=wP and Cs=Cse; Q" e;...05Q"s. (36)

We obtainCs andw and finally the problem in (33) reduces VI. SIMULATIONS

to the following one: We now propose computer simulations in order to illustrate
max|és o, %) ey ... g i(*)sl with ww” = 1. (37) the usefulness of our criterion w.r.t. other approaches.

This projection onto the signal subspace is equivalent to aWe focus on the fourth order cumulant based contrasts in
prewhitening step on the observations. order to compare the generalized approach to the contrast

functions defined in (14) and (15). In this context, we define
In Section IV, we have seen that the above maximizatidhe following contrast function foRR = 4 and S = 3:

is equivalent to the minimization of the cost function foeth c Y 2 1Cumfu(n). v (). v (n). +(n 38

best rank-1 approximation of tensdf [8]. So we compute 3ar{y(n)} = | _{y( )}y )’_y (n),r(m)}. (38)
here the best rank-1 approximation of tengby, using the ~ We compare three different algorithms:
HOPM algorithm (it can be seen as a higher order extensiod) The algorithmE, maximizes the quadratic criterion de-
of the power method for best rank-1 approximation of magrix) ~ fined in (15). The solution is given by the eigenvector

to maximize the proposed contrast. of C, associated to the eigenvalue with largest modulus.
In practice it is obtained by the SVD of the considered
B. A “fixed-point” like method matrix (second order tensor).

) The algorithmFE3 maximizes the cubic criterion defined
in (38). The solution is given by the best rank-one
approximation of the tensats. In practice it is obtained
by a HOPM applied to the considered tensor (third order
tensor).

The algorithmFE,; maximizes the classical quartic crite-
rion with no reference defined in (14). The solution is
given by the best rank-one approximation of the tensor
C.. In practice it is obtained by a HOPM applied to the

It has been proposed in a previous work [3] an iterative2
method to improve the performances of the extraction
algorithm for the case& = 2. This “fixed-point” like method
can be also generalized to the considered family of comtrast
Here, we recall briefly the method. 3)

We assume, in this paragraph, that all references are the
same. Thatis forall € {1,..., R—S}, we haver;(n) = r(n)
(or possiblyr;(n) = r*(n) in the complex case). The output considered tensor (fourth order tensor).

obttalnteddafter m?ﬁlmlfr?“onf(ﬁsﬁ’” shoulld lée gloTlermto t?e The quality of extraction is measured thanks to an errorxinde
extracted source than the reference signal. Basicallytkysu syggested in [11] and defined by:

which has been previously obtained by the maximization o )
Cs ryr Serves as a new reference signal. The fixed point ie{l?f?(N}kZZMi(kﬂ
principle is illustrated for three iterations in the figureatd ind(g) 21— - S 5
explained below: > lgi(k)]

(39)
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—-—= 3 iterations
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I 103

Fig. 2. Performance versus coefficighfor two sources (where the referenceFig. 3. Fixed point method foFE3 algorithm, complex i.i.d. case: Perfor-
signal isr(n) = Bs1(n) + (1 — B)s2(n)). mance versus number of samples without noise.

This error index is non negative and takes its values betwegihsources sampled’, of i.i.d. complex-valued Quadrature

0 and 1. The zero value represents a perfect extraction! In Amplitude Modulation sources with 16 states (16-QAM). In
simulations the mean of the error index 02680 Monte-Carlo this figure, we give the performance of tli& algorithm for
realizations is considered. At each run, the mixing systedifferent number of iterations in the “fixed-point” method.
and the sources have been drawn randomly. The refereReforming more than two “fixed-point” iterations does not
signal is chosen as the first observation from the mixingprove the performance sharply. Therefore, in the follayvi
system (except in section VI-A). experiments for i.i.d. sources, we will fix, for thes and

In the following simulations, we have choosen to fix in thé’; algorithms, the number of iterations of the “fixed-point”
“fixed-point” method the number of iterations to two formethod to two.

i.i.d. sources and five for non i.i.d. sources to compare tiNow we consider non i.i.d. complex-valued Continuous Phase
referenced contrasts to the classical one (except in sectModulated sources. Pseudo-symbols of CPM signals are unit
VI-A). modulus signals defined by the relation

sp(n +1) = exp(erhyak)

A. Experiment 1 - Influence of the reference signal where by, €]0,1[ is a modulation index and® is the i.i.d.
We consider the case ok = 2 i.i.d. real-valued binary Pinary symbol sequence transmitted byAtth user. We fix
source signals (they take their values{in1,1} with equal the modulation index: to 0.2. In figure 4 the error index is
probabilities), N = 5 observation signals and a real-valuedrawn versus the number of sources samplesin this figure,
mixing filter of length L = 3. Its coefficients are drawn We give the performance of th&; algorithm for different
randomly according to a zero-mean and unit variance normimber of iterations in the “fixed-point” method. After five
distribution. To evaluate the influence of the referencealig iterations, the performance does not improve sharply, then
we choose it as(n) = Bs1(n)+ (1— B)s2(n) with 8 € [0,1]. the following experiments for non i.i.d. sources, we will,fix
In Figure 2, for N, = 5000, the mean error index is plottedfor the E; and E algorithms, the number of iterations of the
versus 3 for the E, and the E5 algorithms (there is no ‘fixed-point” method to five.
reference in thdv, algorithm). Better results are obtained for
values of3 near 0 or 1 that is to say when the reference signgl Experiment 3 - i.i.d. real-valued source signals

is close to one source. The performance of Hiealgorithm . . o
P g We consider real-valued binary sources. The mixing system

fails for 3 = 0.5 whereas theb; algorithm still works. This . . 7
. . j also real-valued and its coefficients are drawn randoitdy a
shows that our approach imposes nearly no constraint on the . . ; S

. . o cording to a zero-mean and unit variance normal distriloutio
reference signalFE; is less sensitive to the chosen referenc\% ) . - )
signal ask, e consider here a mixture df = 3 i.i.d. source signals.

' The length of the mixing filter i, = 3 and the number of
_ _ ) observations isN = 6. In figure 5 the error index is drawn
B. Experiment 2 - fixed point method versus the number of sources samplés In this figure, we

The mixing system is complex-valued and its coefficientsompare the performance of the, F3 and E, algorithms.

are drawn randomly according to a zero-mean and unit va@ur approach performs better thdsy for small amount of
ance normal distribution. We consider here a mixtur&of 3 samples and similarly for large amount of samples. Herej eve
i.i.d. source signals. The length of the mixing filterlis=3 if £, is much more complex thats (fourth order tensor
and the number of observationsié = 6. versus third order tensor), the latter performs slightytdret
In figure 3 the error index is drawn versus the numbéthe extraction performance of the, algorithm is slightly
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Fig. 4. Fixed point method foi; algorithm, complex non i.i.d. case: Fig- 6.  Complex-valued i.i.d. case: Performance versusheurof samples

Performance versus number of samples without noise. without noise.
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Fig. 5. Real-valued i.i.d. case: Performance versus nunofesamples 15
without noise.

Fig. 7. Complex-valued i.i.d. case: Extracted QAM-16 celtation, error
. . . . L . index is equal td.002.
lower in this configuration but it is important to note that it

performances can be improved by increasing the number of

iteration in the fixed point method. method with an adaptatively adjusted step-size (initisit

to one and divided by two each time the contrast does not
D. Experiment 4 - i.i.d. complex-valued source signals increase), called Kurtosis. The Kurtosis aff algorithms

. . perform very similarly. The results in table Il show up that

. we consu;ier complex-valued 16'.QAM SOurces. The mixy fixed point optimizations of the cubic criterion can be

Ing system is co_mplex-valued and its coeff_|C|ent_s are dra rformed about 6 times faster than a single optimization

:ja_mtd_obrrll_y ac\(/:\;) rding tg aﬁero-megr][ an%TuD|;ygz;ance NOTMY the classical kurtosis contrast (the execution timesehav
1St Iu I(')rrth. Ie cotr;]m ferth ereg_mlegl:e f: 7"'?; .sc(;utrﬁe been estimated on a dual processor Intel Xeon Dual Core

S|gn%s. ; eb eng i 0 i;—mIGXITgf'I er I6 th_ and de 5150 running at.667GHz clock frequency and with6GB

nug\ eroto ser\:ﬁ lons b_ f h figure € errcl)r Th'ex RAM). Even if we have higher value of the mean error index

|fs rawn versus the Eum efr 0 source? sam%lf@s nd EIS than in the previous experiment for the three algorithms, th
|(i:1ure_t,hwe cgmparet € Eer O;mance 0 tEE it 3 ?n of 4 extraction is well performed. We illustrate this fact in the

algorithms. ©IUr approach performs again better Banfor figure 7, with the constellation of a extracted 16-QAM source

small amount of sampled; is performing better for number of 5000 samples. The algorithm used for this extractioR'js

of samples below 2000. With larger amount of samples, tk}\ﬁth N, = 5000 and the error index is equal 0002

E,4 and theE5 algorithms are performing very similarly. The N '

extraction performance of th&, algorithm is again slightly _ N )

lower in this configuration. E. Experiment 5 - non i.i.d. complex-valued source signals
In order to compare different optimization schemes, we putNow we consider non i.i.d. complex-valued CPM sources.

in the table | the performances of the cubic criterion and/e still consider a mixture of¢ = 3 source signals, a mixing

the contrast defined in (14) optimized using a gradient dscditter length of L = 3 and N = 6 observations. We fix the



Number of samples 5000 6000 7000 8000 9000 10000
Kurtosis 1.59x 1073 [ 1.29x 1073 | 1.12x 1073 | 9.69 x 10~* | 8.88 x 10~% | 7.59 x 10—%
Cubic Criterion 1.69x 1073 [ 1.33x 1072 [ 1.18 x 1073 | 1.00 x 10~3 | 9.18 x 10~ % | 7.76 x 10~ %
TABLE |

COMPARISON OF THE AVERAGE ERROR INDEX FOH) ONE OPTIMIZATION OF THE KURTOSIS CONTRAST2) 2 FIXED POINT ITERATIONS OPTIMIZATION
OF CUBIC CRITERION

Number of samples 5000 6000 7000 8000 9000 10000
Kurtosis 12.38 17.38 20.55 24.41 28.53 32.71
Cubic Criterion 2.18 2.55 2.99 3.52 4.13 4.80

TABLE I
COMPARISON OF THE AVERAGE EXECUTION TIME(IN S) FOR 1) ONE OPTIMIZATION OF THE KURTOSIS CONTRAST2) 2 FIXED POINT ITERATIONS
OPTIMIZATION OF CUBIC CRITERION

Number of samples
2000 3500 5000 6500 8000 9500

Signal to Noise Ratio (dB)
0 20 30 40
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80
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Fig. 8. Complex-valued non i.i.d. case: Performance versusber of

Fig. 9.
samples without noise.

Complex-valued i.i.d. case: Performance versus 8XR. = 5000.

modulation index: to 0.2. In figure 8 the error index is drawn

versus the number of sources samplésand with no noise. M(n) is the convolutive mixing system matrix.

In figure 8, we compare the performance of the, F; and We consider here a mixture ok = 3 source signals in
E, algorithms. For non i.i.d. complex-valued sourcEs,and WO situations: with i.i.d. and non i.i.d. source signals.
Es perform equally well and better thaff,. The length of the mixing filter isL = 3 and the number

of observations isN 6. In the figures 9 and 10 the
error index is drawn versus the SNR wifti, = 5000 and
we compare the performance of the, F5 and E, algorithms.
We consider here an additive noise signal in the model (1)

that is:

F. Experiment 6 - additive noise signal

x(n) =>_ M(k)s(n — k) + n(n),

keZ

(40) 1) i.i.d. case: In the figure 9, we consider a mixture of
16-QAM source signals. Our approach performs better than
. . . . E, for low SNR values, undet0 dB. After that point, we
yvher(;:\n(n) zthe(N, 1(j)dnt9|se vector The Inmje &gnfal"s(n),th get back the same results as in the figure 6 Xor= 5000:

i €{l,...,N} are adartive, compiex-valued and foflow eE3 and £, are performing similarly and better tham.

same normal law with zero-mean afg, variance.

We define the SNR in the worst case. through the power

ratio of the contributions of all the sources to the additive 2) non i.i.d. case:In the figure 10, we consider a mixture
noise. !

of CPM source signals. We fix the modulation indexo 0.2.

_ 2y In this case all the algorithms are performing well for SNR
SNRas (IMIF)az = (No)as, (1) values above 5 dB. After 50 dB, our algorithm andt, are
where performing similarly better than thés. The E3 algorithm
N K is less computationally intensive thdy (fourth order tensor
M2 = Z Z Z|]\/fi,j|2(k)a (42) versus third order tensor), and the extraction thank&'ds

kez i=1 j=1 done in allmost all the situation presented here.



, Signal to Noise Ratio (dB) Using this result and the assumptiéd., we have

— k2 2
s Csrefy(m)} < D 1gi(k)I |ms,ra{si(n — k)]
1071 \\:\ 4 ],]{}
N N 2
N < maxsuplrs,re{s;(n = k)} Y lg; (k)]
><10’2 N J=1 kez Tk
S 7>
< e N
Thos N < maxsupleg,re{sj(n —k)} . (46)
S * =1 kez
w0t TN Finally considering the equality, we ha‘{/gg-(k)|s = |gj(l<:)|2
Sl L] only if it exists a given coupléjo, ko) such that
Gjo (kO) =1 47
1076 { gj(k) =0 V(]a k) 7& (jOa ko) : ( )
(47) corresponds to the equalization condition. [ ]
Fig. 10. Complex-valued non i.i.d. case: Performance we8NR for N, =
5000.
APPENDIXB
PROOF OFPROPOSITIONIII.4
VIl. CONCLUSION Proof: We want to prove that at most one component of
) ) ~ the norm of the global filter is non-zero.
We have proposed generalized contrast functions within thgr any; € {1,..., K}, we write thei-th component of the

framewo_rk of _blind extr_action.of one source from a MIMQnit norm vector filterg: g; = ||g;||:3; whereg; readsg; /|| gi/;
convolutive mixture. This family of contrasts holds for bot it |41, £ 0 andg; is zero if ||g;; = 0.

i.i.d. and non i.i.d. sources. In order to optimize thisemitn, pefining §;(n) 2 (g; * s;) (n), from the assumptioA3., the

we have developped a new generalized algebraic algoritiimulant multilinearity and the mutual independance of the
based on best rank-1 tensor decomposition. signalsgi(n), i € {1,..., K}, yield:

Unlike other referenced approaches, our new contrasts re-
quire no constraint on the reference signals. The new approa
realizes a good compromise between generality and implemen
tation simplicity. Computer simulations illustrate ingsting . _
features and good performance in comparison with quadrafigén We have the following inequality:

and quartic criteria. K
Cs,rrf(gxs) ()} <D llgill? Irsraldi(m)}].  (49)
i=1

K
wsrely(n)} =D lgil? wsrelBi(n)}.  (48)
i=1

APPENDIXA

PROOF OFPROPOSITIONIII.3 Using (19),[|gill: = 1 and g|| = 1, we get:

K
Proof: Using the assumptioA3., the multilinearity prop- Csrri(gxs)(n)} < ZHgin Ms g
erty of cumulants and the i.i.d. assumption of source sgnal i=1
we have

N

K
5% D _laill?
i=1

K
< MEED llgill?
i=1

S
rsrelym} = (o8 (1)) ks nalsin—k)} . (43)
=1

J.k

Hence a
< MER (50)
s _ .
Conrly(n)} = Z (Hg§*)l(k)) ks.rels;(n— k)Y The last inequality holds because, &s> 2,
gk I=1 K K
(44) S lglld <> lgilli =1
and thus i=1 i=1

The previous inequality proves that the property pl. of the
Cs.raly(m)} <Y lgi(k)I% Imsr{si(n = k)Y - (45)  gefinition (I11.2) is satisfied.
7.k

Moreover, if the equality is satisfied, we can write

As y(n) is unit power, we hav)  |g;(k)|* = 1. K K
2 Sl = 3l =1 =

Hence|g;(k)|” < 1 and asS > 2 we have for allj andk i=1 =1
It comes that for all; € {1,..., K}, at most oneglg;||; is
9; (k)% < g; (k)] non zero. Additionally this value of is such thatMg g; =



max

$%. Thus, the property p2. of (Ill.2) is satisfied. The
converse is easily deduced, and the proposition (l11.2)
satisfied.
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