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A General Algebraic Algorithm for Blind Extraction
of one Source in a MIMO Convolutive Mixture

Rémi Dubroca, Christophe De Luigi,Member IEEE,Marc Castella,Member IEEEand Eric Moreau,Senior
Member IEEE

Abstract—The paper deals with the problem of blind source
extraction from a MIMO convolutive mixture. We define a new
criterion for source extraction which uses higher-order contrast
functions based on so called reference signals. It generalizes
existing reference-based contrasts. In order to optimize the new
criterion, we propose a general algebraic algorithm based on best
rank-1 tensor approximation. Computer simulations illustrate the
good behavior and the interest of our algorithm in comparison
with other approaches.

Index Terms—Contrast Functions, Blind Source Extraction,
Higher Order Statistics, Tensor Decomposition, Independent
Component Analysis.

I. I NTRODUCTION

T HE problem of blind extraction of one source signal
appears in a wide range of signal processing applications

such as bio-medical and telecommunications. The aim is
to restore one source signal from the observation of a
set of mixed sources. Among existing mixing models, we
consider a Multiple-Input / Multiple-Output (MIMO) context
where non observable source signals are mixed through a
multidimensionalconvolutivechannel. The separation is said
to be performedblindly when the mixing system is unknown
and cannot be identified.

Such mixtures are considered in telecommunication
applications like cellular communications. The mobile user
signals are mixed through the air channel and observed on the
different antennas of the base station. In this context, when
the extraction of one mobile user signal has to be performed,
the problem cannot be treated as Single-Input / Single-Output
blind equalization because the other mobile user signals
cannot be considered as noise: they are interfering signals.
The mobile user of interest is extracted from the mixture of
all users. The choice of a blind method for extraction of the
source potentially avoids the necessity of a training sequence
and therefore lowers bandwidth loss.

The blind source extraction problem may be considered as
part of the general blind source separation (BSS) problem.
Iterative methods in the context of BSS, extract the sources
one by one and therefore rely on the ability to extract
one source. These so-called deflation methods, presented
in [16], developed in [13], [20], [9], [3], decompose the
separation problem in successive stages for each source.
These methods can deal both with temporally independent
identically distributed (i.i.d.) sources and temporally non i.i.d.
sources [19]. Hence the blind source extraction problem is
a critical part in these methods, the separation relies on the
ability to extract well each source.

The former method is in contrast to a global separation

approach that has been studied in a convolutive context
(see [4], [18], [14] for the i.i.d. case and [5] for the non
i.i.d. case). The separation is not performed sequentially,
but all the sources are extracted simultaneously. Such an
approach faces two major obstacles in practice. First, a
prewhitening is required, which is a difficult task. In addition,
the optimization scheme of the criteria is likely to converge
to a wrong solution because of the existence of local spurious
maxima [2].

Contrast functions based on higher-order statistics have
been proved to be efficient for both blind source separation
or extraction [4], [17]. Here we focus on Multiple-Input /
Single-Output (MISO) extraction criteria relying on higher-
order statistics. One potential drawback is the high order
dependence on the parameters. Recently “reference”-based
contrasts have been investigated to lower this dependence or
to improve the extraction performance [1], [3], [15]. These
approaches impose some constraints on the reference signals.

In order to extract one source, we propose in this paper a
family of contrast functions based on higher-order cumulant
and using reference signals. These contrast functions impose
no constraint on the reference signals. We show the usefulness
of tensorial algorithms applied to independent component
analysis (ICA) [6]. The optimization problem shows an
equivalence to the problem of best rank-1 approximation
of tensors [8], [7], [10]. This optimization scheme is also
applied to the classical kurtosis contrast function [19]. The
computation of these best rank-1 approximations is done
through the use of the Higher-Order Power Method (HOPM)
algorithm (higher-order generalization of the power method).
The novel results in this paper are the following ones: we
introduce a new family of reference based contrasts, we
interprete tensor approximation in BSS and we propose new
optimization method adapted to the proposed criteria.

The problem is formulated in Section II and Section III
introduces the new contrast function. Some recalls on Tensor
algebra and decomposition from [8] are done in Section
IV and an optimization algorithm for our new criterion
is presented in Section V. Section VI illustrates through
computer simulations the good behavior of the proposed
approach. Finally we conclude this paper in Section VII.

Notations.Tensors are denoted by bold-face calligraphic letters
(A, B, . . .), matrices by bold-face capital letters (A,B, . . .),
vectors by bold-face lower-case letters (a,b, . . .), and scalars
by normal letters (a, b, . . . ; α, β, . . .).
In the whole paper,n stands for a generic integer (n ∈ Z).
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All quantities throughout the paper may be either real or
complex-valued.(.)∗ stands for the complex conjugate,(.)T

for matrix transpose,(.)H for matrix conjugate transpose.
Finally Cum{.} stands for the the cumulant of any set of
random variables, andδi,j stands for the Kronecker symbol,
i.e. δi,j = 1 if i = j and0 otherwise.

II. PROBLEM FORMULATION

We consider a linear time-invariant (LTI) MIMO mixing
model withK inputs andN outputs

x(n) =
∑

k∈Z

M(k)s(n − k), (1)

wherex(n) is the (N, 1) observation vector (N > 2), s(n)
is the (K, 1) source vector (K > 2), and M(n) is the
(N, K) matrix corresponding to the impulse response of the
convolutive mixing system. The transfer function of the LTI
mixing system is denoted by

M(z)=
∑

n∈Z

M(n)z−n, (2)

and we assumeN > K.

To achieve the extraction of one source blindly, that is with
no access to the source signals nor to the mixing system filter,
we have to make some assumptions on the LTI mixing system
and the sources:

A1. The LTI mixing system is stable, left invertible.
Therefore it exists a systemW(n) such that the global
LTI system with impulse response

G(n),
∑

k∈Z

W(k)M(n − k) (3)

corresponds to the identity system.

A2. The source signalssi(n), i ∈ {1, . . . , K} are zero-
mean, unit-variance, random stationary signals. Moreover
they are statistically mutually independent (at least up to
the order of the considered cumulants). At least one of
the sources has non-zero4-th order auto-cumulant, i.e.
there existsi ∈ {1, . . . , N} such that

Cum{si(n), si(n), si(n), si(n)} 6= 0.

In the MISO context, the aim is to estimate a(1, N) row
vector filterw(n) such that the scalar signal

y(n) =
∑

k∈Z

w(k)x(n − k) (4)

restores one of the sourcessi(n), i ∈ {1, . . . , K}, up to a
non-zero scalar filter. It is useful to define the global vector
filter g(n) by

g(n) ,
∑

k∈Z

w(k)M(n − k), (5)

thus
y(n) =

∑

k∈Z

g(n − k)s(k) , (g ⋆ s)(n). (6)

As the source signals are unobservable, there exists some
inherent undetermined factors in their estimation. They can be
recovered only up to a permutation and to a scalar filtering. So,
the extraction of one source is said to be achieved when there
exists an indexi0 ∈ {1, . . . , K} such that the filter components
in g(n) read

∀i ∈ {1, . . . , K} gi(n) , (g(n))i = g(n)δi,i0 . (7)

The above relation is called the “extraction condition” and
expresses the fact thaty(n) is equal to the source signal,si0(n)
up to a filtering by the scalar filter with impulse responseg(n).
The source signal correlation sequences are denoted by

γi(k) , E{si(n)s∗i (n − k)},

where k ∈ Z and i ∈ {1, . . . , K}. For any indexj ∈
{1, . . . , K} and any scalar filter with impulse responseh(n),
we define itsj-norm by:

‖h‖2
j ,

∑

(k1,k2)∈Z2

h(k1)h
∗(k2)γj(k2 − k1). (8)

‖h‖2
j is the variance of the signal obtained when filtering the

sourcesj(n) by the filter with impulse responseh(n). We
define the (weighted)l2-norm of the (1, K) global filterg(n)
by:

‖g‖2 ,

K∑

i=1

‖gi‖
2
i . (9)

Since the sources are unit power, one can restrict to the
unit-norm global filter case in (7) by imposing the constraint
E{|y(n)|2}=1. It is straithforward to show that this constraint
is equivalent to‖g‖2 = 1. In the particular case of i.i.d.
sources, this constraint is equivalent to:

K∑

i=1

∑

k∈Z

|gi(k)|2 = 1. (10)

Moreover, in the i.i.d. case, the contrast functions (defined in
the next section) allow one to equalize the sources. Conse-
quently we define the stronger separation condition:

∃ l ∈ Z and∃ i0 ∈ {1, . . . , K} such thatgi(n) = αδn,lδi,i0 .
(11)

Here the scalar filterg(n) reduces to a delayl and a scaling
factor α ∈ C∗ and (11) is actually a condition for separation
and equalization.

The set of source signals satisfying assumptionA2. will
be denoted byS. The set of unit norm vector filters will be
denoted byG1. Finally, we denote byY the set of output of
the MISO extractory(n) when the input source signals belong
to S and the global system belongs toG1.

III. E XTRACTION CRITERIA

A. Recalls on contrast function

A contrast is an objective function depending on the statis-
tics of the outputs of the extracting system. Its maximization
leads to the extraction of one source. In consequence, the
source extraction problem becomes an optimization problem.



3

We can notice that a contrast is a function fromY to R but
it may also be seen as a function fromG1 to R. In the i.i.d.
case, the following definition is considered:

Definition III.1. Contrast function for i.i.d. sources
Let C be a function fromY to R. It is called a contrast

function when it satisfies the following two properties:

p1. ∃ (i0, k0) ∈ {1, . . . , K} × Z such that:

∀ y(n) ∈ Y C{y(n)} 6 C{si0(n − k0)} . (12)

p2. The equality holds in (12) if and only ify(n) equals a
multiple ofsi(n − k) for somei ∈ {1, . . . , K} and some
k ∈ Z (i.e. the global filter is extracting and statisfies
(11)).

In the case of i.i.d. source signals, the maximization of
the contrast function restores one source up to a delay and a
scaling factor.

However this definition cannot be used for the non i.i.d. case
because the extraction of a source can be only guaranteed up
to a scalar filtering. Hence we give a weaker definition for the
non i.i.d. case:

Definition III.2. Contrast function for non i.i.d. sources
Let C be a function fromY to R. It is called a contrast

function when it satisfies the following two properties:

p1. ∀ y(n) ∈ Y:

C{y(n)} 6
K

max
i=1

sup
g:||gi||i=1

||gj ||j=0 ∀j 6=i

C{(g ⋆ s)(n)}. (13)

p2. The equality holds in (13) if and only ify(n) is a filtered
version ofsi(n) for somei ∈ {1, . . . , K} (i.e. the global
filter statisfies (7)) for somei0).

A classical contrast function defined in [19] is the absolute
value of the kurtosis:

C4{y(n)} , |Cum{y(n), y∗(n), y∗(n), y(n)}|. (14)

A contrast function based on referenced signal is defined in
[3] by the absolute value of the fourth order cross-cumulant
between the output of the extracting system and a reference
signalr(n):

C2,4,r{y(n)} , |Cum{y(n), y∗(n), r(n), r∗(n)}|. (15)

B. New reference based contrast function

The main goal of the paper is to propose a family of contrast
functions based on reference signals generalizing the contrast
in [3]. For that, we consider the followingR-th order (R >
3) cross-cumulant where(.)(∗)k , k ∈ {1, . . . , S} are optional
complex conjugate:

κS,R,r{y(n)} ,

Cum{y(∗)1(n), . . . , y(∗)S(n)
︸ ︷︷ ︸

S

, r1(n), . . . , rR−S(n)} . (16)

The ri(n), i ∈ {1, . . . , R − S}, are given reference signals
(2 < S ≤ R) which are assumed to satisfied the following
assumption

A3. The reference signalsri(n), i ∈ {1, . . . , R − S} are
obtained by a stable MIMO filtering of the sources or of
their complex-conjugates.

Note that the caseS = 2 is treated in [3] and the caseS = R
is treated in [17]. In the following we consider the general
case2 < S ≤ R.

We now define the following function:

CS,R,r{y(n)} , |κS,R,r{y(n)}|. (17)

1) Case of i.i.d. source signals:
The following supremum is assumed to satisfy the assump-
tion

A4. ∃(j0, k0) such that:

N
max
j=1

sup
k∈Z

|κS,R,r{sj(n−k)}| = |κS,R,r{sj0(n−k0)}| < ∞.

(18)

We can now state the following proposition (for2 < S 6 R):

Proposition III.3. In the case of i.i.d. source signals, under
assumptionsA1.-A4., the functionCS,R,r is a contrast over
the setY.

The proof is given in Appendix A.

2) Case of non i.i.d. source signals:
We define the following supremum,

Mmax
S,R ,

K
max
i=1

MS,R,i (19)

where

MS,R,i , sup
g:||g||i=1

CS,R,r{(g ⋆ s)(n)}. (20)

We make the following assumption:

A5. For all i such thatMS,R,i = Mmax
S,R , the extremum

MS,R,i is reached by at least one filter of uniti-norm
defined in (8).

We can state (with2 < S 6 R):

Proposition III.4. In the case of non i.i.d. source signals,
under assumptionsA1.-A3. and A5., the functionCS,R,r is a
contrast over the setY.

The proof is given in Appendix B.

We can notice that the observation signals satisfy the
assumptionA3. and can serve as reference signals. Note also
that r1(n) = . . . = rR−S(n) is a possible choice. As we have
seen in the previous propositions, we remark that the new
contrast requires no condition on the reference signals except
the assumptionA3..
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IV. RECALLS ON TENSORDECOMPOSITION

Tensorial algorithms applied to ICA [6] are of interest and
the optimization problem has an equivalence to the problem of
best rank-1 approximation of tensors [8], [7]. We recall notions
on tensor decomposition which are necessary in Section V. See
[8] for more details in tensor algebra.
The n-mode product of a tensorA ∈ CI1×...×IN by a matrix
U ∈ CJn×In , denoted byA•nU, is an(I1×. . .×Jn×. . . IN )-
tensor whose entries are given by

(A •n U)i1i2...jn...iN
,

∑

in

Ai1i2...in...iN
Ujnin

. (21)

The outer product ofN vectors u(1), . . . ,u(N) of size
I1, . . . , IN respectively is aN -order tensor inCI1×...×IN with
elements defined byAi1...iN

= u
(1)
i1

. . . u
(N)
iN

for all values of
the indices. It is denoted byu(1) ◦ . . . ◦ u(N).
A N -order tensor inCI1×...×IN is rank-1 if it can be written
as the outer product ofN vectors u(1), . . . ,u(N) of size
I1, . . . , IN respectively.
The best rank-1 approximation of aN -order tensor can be
described as follows. GivenA ∈ CI1×...×IN , find a scalar
λ and unit-norm vectorsu(1), . . . ,u(N) such that the rank-1
tensorÃ ∈ CI1×...×IN defined by

Ã , λ u(1) ◦ . . . ◦ u(N) (22)

minimizes the least-squares cost function

f(Ã) = ‖A − Ã‖2. (23)

The Frobenius norm ofA is defined by‖A‖ ,
√

〈A, A〉 with
the scalar product〈A, B〉 of two tensorsA, B ∈ CI1×...×IN

defined by

〈A, B〉 ,
∑

i1

. . .
∑

iN

Ai1...iN
B∗

i1...iN
. (24)

The minimization of the cost functionf(Ã) is equivalent to
the maximization, over the unit-norm vectorsu(1), . . . ,u(N),
of the function:

g(u(1), . . . ,u(N)) = |A •1 u(1)H

•2 . . . •N u(N)H

|2. (25)

The scalarλ is reached by:

λ = A •1 u(1)H

•2 . . . •N u(N)H

. (26)

A solution can be found by an ALS method which is a higher-
order extension of the power method (HOPM) for matrices [8].

HOPM algorithm
Input: A ∈ CI1×...×IN

Output:Ã ∈ C
I1×...×IN

1) Initial values:u(n)
0 , n ∈ [1, . . . , N ].

2) Repeat until convergence:

• ũ
(1)
k+1 = A •2 u

(2)H

k •3 u
(3)H

k •4 . . . •N u
(N)H

k

λ
(1)
k+1 = ‖ũ

(1)
k+1‖ and u

(1)
k+1 = ũ

(1)
k+1/λ

(1)
k+1

• ũ
(2)
k+1 = A •1 u

(1)H

k+1 •3 u
(3)H

k •4 . . . •N u
(N)H

k

λ
(2)
k+1 = ‖ũ

(2)
k+1‖ and u

(2)
k+1 = ũ

(2)
k+1/λ

(2)
k+1

• . . .
• ũ

(N)
k+1 = A•1 u

(1)H

k+1 •2 u
(2)H

k+1 •3 . . .•N−1 u
(N−1)H

k+1

λ
(N)
k+1 = ‖ũ

(N)
k+1‖ and u

(N)
k+1 = ũ

(N)
k+1/λ

(N)
k+1

Solutions :u(1), . . . ,u(N), λ.
3) Ã = λ u(1) ◦ . . . ◦ u(N).

This iterative algorithm has to be initialized, which can be
done using the Higher Order Singular Value Decomposition
(HOSVD), as proposed in [8]. The stopping criterion of the
algorithm is also studied in this paper.

V. PROPOSED ALGORITHM

We describe a general algorithm for the optimization of the
proposed family of contrast functions.

A. Optimization method

We assume that the mixing filter is a FIR filter with impulse
response of lengthL and thatM(z) is irreducible. Then it
admits a MIMO-FIR left inverse filter of lengthD (see [12]),
which is assumed causal with no loss of generality. The row
vectors which define the impulse response can be stacked in
the following (1, ND) row vector:

w , (w(0) . . .w(D − 1)). (27)

We also define the(ND, 1) column vector

x(n) , (x(n)T x(n − 1)T . . .x(n − D + 1)T )T . (28)

It is then easily seen that

y(n) = wx(n). (29)

Let the covariance matrix beR = E{x(n)x(n)H}, so we
haveE{|y(n)|2}=wRwH .

Now using the assumptionA3., the multilinearity property
of cumulants and (29), we have

κS,R,r{y(n)} =
∑

i1,...,iS

w
(∗)1
i1

. . . w
(∗)S

iS

Cum{x
(∗)1
i1

(n), . . . , x
(∗)S

iS
(n), r1(n), . . . , rR−S(n)},

(30)

wherew
(∗)k

ik
, k ∈ {1, . . . , S}, stands forwik

conjugated in the
same way asy(∗)k in (16). Thus this relation can be written
as aS-order tensor decomposition ([8])

κS,R,r{y(n)} = CS •1 w(∗)1 •2 . . . •S w(∗)S (31)
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where the tensorCS is defined component wise as

(CS)i1,...,iS
=

Cum{x
(∗)1
i1

(n), . . . , x
(∗)S

iS
(n), r1(n), . . . , rR−S(n)} . (32)

Hence the optimization of the contrast function in (17) under
the unit power constraint reads

max |CS•1w
(∗)1•2. . .•Sw(∗)S | with wRwH = 1 . (33)

The covariance matrix can have some of its eigenvalues equal
to zero. It is important to notice that for any row vector such
that wH

0 ∈ kerR we have

w0RwH
0 = 0.

The solution of the above maximization problem (33) is not
unique, it follows that we may impose in additionwH ∈
(kerR)⊥. Thus,w is projected onto the signal subspace. So,
by a SVD, we decompose

R = UDUH , (34)

and we define

P = UD1/2 and Q = D−1/2UH (35)

in order to project onto the signal subspace:

w̃ = wP and C̃S = CS •1 Q(∗)1 •2 . . . •S Q(∗)S . (36)

We obtainC̃S andw̃ and finally the problem in (33) reduces
to the following one:

max|C̃S •1 w̃(∗)1 •2 . . . •S w̃(∗)S | with w̃ w̃H = 1. (37)

This projection onto the signal subspace is equivalent to a
prewhitening step on the observations.

In Section IV, we have seen that the above maximization
is equivalent to the minimization of the cost function for the
best rank-1 approximation of tensorC̃S [8]. So we compute
here the best rank-1 approximation of tensorC̃S , using the
HOPM algorithm (it can be seen as a higher order extension
of the power method for best rank-1 approximation of matrix),
to maximize the proposed contrast.

B. A “fixed-point” like method

It has been proposed in a previous work [3] an iterative
method to improve the performances of the extraction
algorithm for the caseS = 2. This “fixed-point” like method
can be also generalized to the considered family of contrasts.
Here, we recall briefly the method.

We assume, in this paragraph, that all references are the
same. That is for alli ∈ {1, . . . , R−S}, we haveri(n) = r(n)
(or possiblyri(n) = r∗(n) in the complex case). The output
obtained after maximization ofCS,R,r should be closer to the
extracted source than the reference signal. Basically, theoutput
which has been previously obtained by the maximization of
CS,R,r serves as a new reference signal. The fixed point
principle is illustrated for three iterations in the figure 1and
explained below:

Fig. 1. Fixed point like method for 3 iterations.

“fixed-point” like algorithm (for lmax iterations)
Input: x,w0.
Output:wlmax .

1) for l ∈ {1, . . . , lmax}:

• fix the reference tor(n) = wl−1x(n),
• wl = arg maxw CS,R,r{y(n)} where

y(n) = w x(n).

2) The separating filter is given by the coefficientswlmax .

VI. SIMULATIONS

We now propose computer simulations in order to illustrate
the usefulness of our criterion w.r.t. other approaches.

We focus on the fourth order cumulant based contrasts in
order to compare the generalized approach to the contrast
functions defined in (14) and (15). In this context, we define
the following contrast function forR = 4 andS = 3:

C3,4,r{y(n)} , |Cum{y(n), y∗(n), y∗(n), r(n)}|. (38)

We compare three different algorithms:
1) The algorithmE2 maximizes the quadratic criterion de-

fined in (15). The solution is given by the eigenvector
of C̃2 associated to the eigenvalue with largest modulus.
In practice it is obtained by the SVD of the considered
matrix (second order tensor).

2) The algorithmE3 maximizes the cubic criterion defined
in (38). The solution is given by the best rank-one
approximation of the tensor̃C3. In practice it is obtained
by a HOPM applied to the considered tensor (third order
tensor).

3) The algorithmE4 maximizes the classical quartic crite-
rion with no reference defined in (14). The solution is
given by the best rank-one approximation of the tensor
C̃4. In practice it is obtained by a HOPM applied to the
considered tensor (fourth order tensor).

The quality of extraction is measured thanks to an error index
suggested in [11] and defined by:

ind(g) , 1 −

max
i∈{1,...,N}

∑

k∈Z

|gi(k)|2

∑

i∈{1,...,N}

∑

k∈Z

|gi(k)|2
. (39)
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Fig. 2. Performance versus coefficientβ for two sources (where the reference
signal isr(n) = βs1(n) + (1 − β)s2(n)).

This error index is non negative and takes its values between
0 and 1. The zero value represents a perfect extraction. In all
simulations the mean of the error index over200 Monte-Carlo
realizations is considered. At each run, the mixing system
and the sources have been drawn randomly. The reference
signal is chosen as the first observation from the mixing
system (except in section VI-A).
In the following simulations, we have choosen to fix in the
“fixed-point” method the number of iterations to two for
i.i.d. sources and five for non i.i.d. sources to compare the
referenced contrasts to the classical one (except in section
VI-A).

A. Experiment 1 - Influence of the reference signal

We consider the case ofK = 2 i.i.d. real-valued binary
source signals (they take their values in{−1, 1} with equal
probabilities),N = 5 observation signals and a real-valued
mixing filter of length L = 3. Its coefficients are drawn
randomly according to a zero-mean and unit variance normal
distribution. To evaluate the influence of the reference signal,
we choose it asr(n) = βs1(n)+(1−β)s2(n) with β ∈ [0, 1].
In Figure 2, forNe = 5000, the mean error index is plotted
versus β for the E2 and the E3 algorithms (there is no
reference in theE4 algorithm). Better results are obtained for
values ofβ near 0 or 1 that is to say when the reference signal
is close to one source. The performance of theE2 algorithm
fails for β = 0.5 whereas theE3 algorithm still works. This
shows that our approach imposes nearly no constraint on the
reference signal.E3 is less sensitive to the chosen reference
signal asE2.

B. Experiment 2 - fixed point method

The mixing system is complex-valued and its coefficients
are drawn randomly according to a zero-mean and unit vari-
ance normal distribution. We consider here a mixture ofK = 3
i.i.d. source signals. The length of the mixing filter isL = 3
and the number of observations isN = 6.
In figure 3 the error index is drawn versus the number

Fig. 3. Fixed point method forE3 algorithm, complex i.i.d. case: Perfor-
mance versus number of samples without noise.

of sources samplesNe of i.i.d. complex-valued Quadrature
Amplitude Modulation sources with 16 states (16-QAM). In
this figure, we give the performance of theE3 algorithm for
different number of iterations in the “fixed-point” method.
Performing more than two “fixed-point” iterations does not
improve the performance sharply. Therefore, in the following
experiments for i.i.d. sources, we will fix, for theE2 and
E3 algorithms, the number of iterations of the “fixed-point”
method to two.
Now we consider non i.i.d. complex-valued Continuous Phase
Modulated sources. Pseudo-symbols of CPM signals are unit
modulus signals defined by the relation

sk(n + 1) = exp(ıπhkak
n)

where hk ∈]0, 1[ is a modulation index andak
n is the i.i.d.

binary symbol sequence transmitted by thk-th user. We fix
the modulation indexh to 0.2. In figure 4 the error index is
drawn versus the number of sources samplesNe. In this figure,
we give the performance of theE3 algorithm for different
number of iterations in the “fixed-point” method. After five
iterations, the performance does not improve sharply, thenin
the following experiments for non i.i.d. sources, we will fix,
for theE2 andE3 algorithms, the number of iterations of the
“fixed-point” method to five.

C. Experiment 3 - i.i.d. real-valued source signals

We consider real-valued binary sources. The mixing system
is also real-valued and its coefficients are drawn randomly ac-
cording to a zero-mean and unit variance normal distribution.
We consider here a mixture ofK = 3 i.i.d. source signals.
The length of the mixing filter isL = 3 and the number of
observations isN = 6. In figure 5 the error index is drawn
versus the number of sources samplesNe. In this figure, we
compare the performance of theE2, E3 and E4 algorithms.
Our approach performs better thanE4 for small amount of
samples and similarly for large amount of samples. Here, even
if E4 is much more complex thanE3 (fourth order tensor
versus third order tensor), the latter performs slighty better.
The extraction performance of theE2 algorithm is slightly
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Fig. 4. Fixed point method forE3 algorithm, complex non i.i.d. case:
Performance versus number of samples without noise.

Fig. 5. Real-valued i.i.d. case: Performance versus numberof samples
without noise.

lower in this configuration but it is important to note that its
performances can be improved by increasing the number of
iteration in the fixed point method.

D. Experiment 4 - i.i.d. complex-valued source signals

We consider complex-valued 16-QAM sources. The mix-
ing system is complex-valued and its coefficients are drawn
randomly according to a zero-mean and unit variance normal
distribution. We consider here a mixture ofK = 3 i.i.d. source
signals. The length of the mixing filter isL = 3 and the
number of observations isN = 6. In figure 6 the error index
is drawn versus the number of sources samplesNe. In this
figure, we compare the performance of theE2, E3 and E4

algorithms. Our approach performs again better thanE4 for
small amount of samples.E2 is performing better for number
of samples below 2000. With larger amount of samples, the
E4 and theE3 algorithms are performing very similarly. The
extraction performance of theE2 algorithm is again slightly
lower in this configuration.

In order to compare different optimization schemes, we put
in the table I the performances of the cubic criterion and
the contrast defined in (14) optimized using a gradient ascent

Fig. 6. Complex-valued i.i.d. case: Performance versus number of samples
without noise.

Fig. 7. Complex-valued i.i.d. case: Extracted QAM-16 constellation, error
index is equal to0.002.

method with an adaptatively adjusted step-size (initiallyset
to one and divided by two each time the contrast does not
increase), called Kurtosis. The Kurtosis andE3 algorithms
perform very similarly. The results in table II show up that
2 fixed point optimizations of the cubic criterion can be
performed about 6 times faster than a single optimization
of the classical kurtosis contrast (the execution times have
been estimated on a dual processor Intel Xeon Dual Core
5150 running at2.667GHz clock frequency and with16GB
RAM). Even if we have higher value of the mean error index
than in the previous experiment for the three algorithms, the
extraction is well performed. We illustrate this fact in the
figure 7, with the constellation of a extracted 16-QAM source
of 5000 samples. The algorithm used for this extraction isE3

with Ne = 5000 and the error index is equal to0.002.

E. Experiment 5 - non i.i.d. complex-valued source signals

Now we consider non i.i.d. complex-valued CPM sources.
We still consider a mixture ofK = 3 source signals, a mixing
filter length of L = 3 and N = 6 observations. We fix the



8

Number of samples 5000 6000 7000 8000 9000 10000
Kurtosis 1.59 × 10−3 1.29 × 10−3 1.12 × 10−3 9.69 × 10−4 8.88 × 10−4 7.59 × 10−4

Cubic Criterion 1.69 × 10−3 1.33 × 10−3 1.18 × 10−3 1.00 × 10−3 9.18 × 10−4 7.76 × 10−4

TABLE I
COMPARISON OF THE AVERAGE ERROR INDEX FOR1) ONE OPTIMIZATION OF THE KURTOSIS CONTRAST2) 2 FIXED POINT ITERATIONS OPTIMIZATION

OF CUBIC CRITERION

Number of samples 5000 6000 7000 8000 9000 10000
Kurtosis 12.38 17.38 20.55 24.41 28.53 32.71

Cubic Criterion 2.18 2.55 2.99 3.52 4.13 4.80

TABLE II
COMPARISON OF THE AVERAGE EXECUTION TIME(IN S) FOR 1) ONE OPTIMIZATION OF THE KURTOSIS CONTRAST2) 2 FIXED POINT ITERATIONS

OPTIMIZATION OF CUBIC CRITERION

Fig. 8. Complex-valued non i.i.d. case: Performance versusnumber of
samples without noise.

modulation indexh to 0.2. In figure 8 the error index is drawn
versus the number of sources samplesNe and with no noise.
In figure 8, we compare the performance of theE2, E3 and
E4 algorithms. For non i.i.d. complex-valued sources,E4 and
E3 perform equally well and better thanE2.

F. Experiment 6 - additive noise signal

We consider here an additive noise signal in the model (1)
that is:

x(n) =
∑

k∈Z

M(k)s(n − k) + n(n), (40)

wheren(n) is the(N, 1) noise vector. The noise signalsni(n),
i ∈ {1, . . . , N} are additive, complex-valued and follow the
same normal law with zero-mean andN0 variance.
We define the SNR in the worst casei.e. through the power
ratio of the contributions of all the sources to the additive
noise.

SNRdB = (‖M‖2)dB − (N0)dB, (41)

where

‖M‖2 =
∑

k∈Z

N∑

i=1

K∑

j=1

|Mi,j |
2(k), (42)

Fig. 9. Complex-valued i.i.d. case: Performance versus SNRfor Ne = 5000.

M(n) is the convolutive mixing system matrix.
We consider here a mixture ofK = 3 source signals in
two situations: with i.i.d. and non i.i.d. source signals.
The length of the mixing filter isL = 3 and the number
of observations isN = 6. In the figures 9 and 10 the
error index is drawn versus the SNR withNe = 5000 and
we compare the performance of theE2, E3 andE4 algorithms.

1) i.i.d. case: In the figure 9, we consider a mixture of
16-QAM source signals. Our approach performs better than
E4 for low SNR values, under10 dB. After that point, we
get back the same results as in the figure 6 forNe = 5000:
E3 andE4 are performing similarly and better thanE2.

2) non i.i.d. case:In the figure 10, we consider a mixture
of CPM source signals. We fix the modulation indexh to 0.2.
In this case all the algorithms are performing well for SNR
values above15 dB. After 50 dB, our algorithm andE4 are
performing similarly better than theE2. The E3 algorithm
is less computationally intensive thanE4 (fourth order tensor
versus third order tensor), and the extraction thanks toE3 is
done in allmost all the situation presented here.
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Fig. 10. Complex-valued non i.i.d. case: Performance versus SNR forNe =
5000.

VII. C ONCLUSION

We have proposed generalized contrast functions within the
framework of blind extraction of one source from a MIMO
convolutive mixture. This family of contrasts holds for both
i.i.d. and non i.i.d. sources. In order to optimize this criterion,
we have developped a new generalized algebraic algorithm
based on best rank-1 tensor decomposition.

Unlike other referenced approaches, our new contrasts re-
quire no constraint on the reference signals. The new approach
realizes a good compromise between generality and implemen-
tation simplicity. Computer simulations illustrate interesting
features and good performance in comparison with quadratic
and quartic criteria.

APPENDIX A
PROOF OFPROPOSITIONIII.3

Proof: Using the assumptionA3., the multilinearity prop-
erty of cumulants and the i.i.d. assumption of source signals,
we have

κS,R,r{y(n)} =
∑

j,k

( S∏

l=1

g
(∗)l

j (k)
)

κS,R,r{sj(n− k)} . (43)

Hence

CS,R,r{y(n)} =

∣
∣
∣
∣
∣
∣

∑

j,k

( S∏

l=1

g
(∗)l

j (k)
)

κS,R,r{sj(n − k)}

∣
∣
∣
∣
∣
∣

,

(44)
and thus

CS,R,r{y(n)} 6
∑

j,k

|gj(k)|S |κS,R,r{sj(n − k)}| . (45)

As y(n) is unit power, we have
∑

j,k

|gj(k)|
2

= 1.

Hence|gj(k)|2 6 1 and asS > 2 we have for allj andk

|gj(k)|
S

6 |gj(k)|
2
.

Using this result and the assumptionA4., we have

CS,R,r{y(n)} 6
∑

j,k

|gj(k)|
2
|κS,R,r{sj(n − k)}|

6
N

max
j=1

sup
k∈Z

|κS,R,r{sj(n − k)}|
∑

j,k

|gj(k)|
2

6
N

max
j=1

sup
k∈Z

|κS,R,r{sj(n − k)}| . (46)

Finally considering the equality, we have|gj(k)|S = |gj(k)|2

only if it exists a given couple(j0, k0) such that
{

gj0(k0) = 1
gj(k) = 0 ∀(j, k) 6= (j0, k0) .

(47)

(47) corresponds to the equalization condition.

APPENDIX B
PROOF OFPROPOSITIONIII.4

Proof: We want to prove that at most one component of
the norm of the global filter is non-zero.
For anyi ∈ {1, . . . , K}, we write thei-th component of the
unit norm vector filterg: gi = ‖gi‖ig̃i whereg̃i readsgi/‖gi‖i

if ‖gi‖i 6= 0 and g̃i is zero if ‖gi‖i = 0.
Defining ỹi(n) , (g̃i ⋆ si) (n), from the assumptionA3., the
cumulant multilinearity and the mutual independance of the
signalsỹi(n), i ∈ {1, . . . , K}, yield:

κS,R,r{y(n)} =
K∑

i=1

‖gi‖
S
i κS,R,r{ỹi(n)}. (48)

Then we have the following inequality:

CS,R,r{(g ⋆ s)(n)} 6

K∑

i=1

‖gi‖
S
i ‖κS,R,r{ỹi(n)}‖. (49)

Using (19),‖g̃i‖i = 1 and‖g‖ = 1, we get:

CS,R,r{(g ⋆ s)(n)} 6

K∑

i=1

‖gi‖
S
i MS,R,i

6 Mmax
S,R

K∑

i=1

‖gi‖
S
i

6 Mmax
S,R

K∑

i=1

‖gi‖
2
i

6 Mmax
S,R (50)

The last inequality holds because, asS > 2,

K∑

i=1

‖gi‖
S
i 6

K∑

i=1

‖gi‖
2
i = 1 .

The previous inequality proves that the property p1. of the
definition (III.2) is satisfied.
Moreover, if the equality is satisfied, we can write

K∑

i=1

‖gi‖
S
i =

K∑

i=1

‖gi‖
2
i = 1. (51)

It comes that for alli ∈ {1, . . . , K}, at most one‖gi‖i is
non zero. Additionally this value ofi is such thatMS,R,i =
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Mmax
S,R . Thus, the property p2. of (III.2) is satisfied. The

converse is easily deduced, and the proposition (III.2) is
satisfied.
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(France). He obtained his Ph.D. degree from “Uni-
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