Time compactness tools for discretized evolution equations and applications to degenerate parabolic PDEs

Abstract : We discuss several techniques for proving compactness of sequences of approximate solutions to discretized evolution PDEs. While the well-known Aubin-Simon kind functional-analytic techniques were recently generalized to the discrete setting by Gallouët and Latché [15], here we discuss direct techniques for estimating the time translates of approximate solutions in the space $L^1$. One important result is the Kruzhkov time compactness lemma. Further, we describe a specific technique that relies upon the order-preservation property. Motivation comes from studying convergence of finite volume discretizations for various classes of nonlinear degenerate parabolic equations. These and other applications are briefly described.
Type de document :
Communication dans un congrès
J. Fořt, J. Fürst, J. Halama, R. Herbin, F. Hubert. Finite Volumes for Complex Applications VI, Jun 2011, Prague, Czech Republic. Springer, Springer Proceedings in Mathematics, 4 (1), pp. 21-29, Finite Volumes for Complex Applications VI. 〈10.1007/978-3-642-20671-9_3〉
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00561344
Contributeur : Boris Andreianov <>
Soumis le : jeudi 24 février 2011 - 14:03:49
Dernière modification le : vendredi 6 juillet 2018 - 15:18:04
Document(s) archivé(s) le : mercredi 25 mai 2011 - 03:00:30

Fichier

AndreianovFVCA6-revised.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale 4.0 International License

Identifiants

Collections

Citation

Boris Andreianov. Time compactness tools for discretized evolution equations and applications to degenerate parabolic PDEs. J. Fořt, J. Fürst, J. Halama, R. Herbin, F. Hubert. Finite Volumes for Complex Applications VI, Jun 2011, Prague, Czech Republic. Springer, Springer Proceedings in Mathematics, 4 (1), pp. 21-29, Finite Volumes for Complex Applications VI. 〈10.1007/978-3-642-20671-9_3〉. 〈hal-00561344v2〉

Partager

Métriques

Consultations de la notice

376

Téléchargements de fichiers

141