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Introduction

Three-dimensional television (3DTV) is meant to enhance conventional
2D television by the added feeling of depth. The introduction of 3DTV will
be successful if the perceived image quality and the viewing comfort are at
least comparable to conventional television. Therefore, it is of relevant im-
portance to understand human vision mechanisms, in order to provide the
best image quality and a great 3D experience.

Stereoscopic vision is based on stereopsis : depth perception relies on
the fusion of two slightly di�erent viewpoints of the same scene and also
on monocular cues. In 3DTV, stereoscopic video pairs can be provided by
a multi-view video acquisition, and enhanced by depth estimations of the
scene. Original stereoscopic pair or virtual rendered ones are then displayed
on autostereoscopic display systems. In order to achieve a su�cient 3D ex-
perience, many �elds should be studied.

This document is divided in three main parts. First, human depth percep-
tion will be addressed ; then an overview of 2D and 3D perceptual modelling
is presented. The third part will address the applications.

Perceptual modelling for 2D and 3D D1.1
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Chapitre 1

Introductory elements of

psychophysics

Achieving good image quality requires extensive research through the
whole imaging process chain, i.e. content generation, coding algorithms, trans-
mission and display technology. Preferences of customers drive the improve-
ments to be done and thus, it is important to understand the mechanisms of
vision, and the typical needs in 3D video. So, psycho visual aspects have to
be considered when elaborating quality metrics that can drive the imaging
process.

This chapter will �rst address the human visual system and human depth
perception. Then elements on eye tracking will be presented.

7



Anatomy 8

1.1 Anatomy

The human vision is a very complex process that is still not fully unders-
tood. The �rst organ responsible for vision is identi�ed as the eye, which
consists of many parts (see �gure 1.1).

Figure 1.1 � Human eye[1]

Visual information is received
through the eye and transmitted to
the brain which processes it and al-
lows us to interpret the environment.
Through the hole in the middle of
the iris, namely the pupil, the light
enters. The light then refracts when
entering the lens whose curvature
can be changed by the attached
muscles. At the back of the eye, the
retina receives the images, but be-
cause of the optical characteristics,
the projection is reversed. After a
few pre-process through the retina's
cells, the image is brought in to the
brain which processes it. Those cells
can be divided in two categories : the
parvocellular cells that response to
�ne image details and chromatic information ; and the magnocellular cells
which are sensitive to form, motion, depth. Then the photoreceptors (cones
and rods) detect colours and bright light.

Through visual pathways, the light arrives to the visual cortex, at the
back of the brain. Later, the signals are brought to others areas such as V2
area and dorsomedial area (V6), and V5, all of which make a primary path-
way. This pathway, also known as dorsal stream is associated with motion,
representation of object locations and control of the eyes. The second path-
way consists of V2 area, V4 area and the inferior visual cortex. It is known
as the vental stream and is associated with form recognition and object re-
presentation.

For more details on human anatomy, please refer to [2] and [3].

Perceptual modelling for 2D and 3D D1.1
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1.2 Human perception of depth

Both human eyes receive on their two retinæ the explicit 2D-images from
their environment. But how the third dimension -the distance of the surface
from the observer- which is lost in the optical projection from surfaces in a
3D world to the 2D retinæ, is regained ?

In the literature [4], the perception of spatial arrangement of surface to
the observer is divided in two areas. First by the depth determination :
distance of the surface to the observer in a 3D environment. Secondly by the
surface orientation perception : the slant and tilt of the surface with respect
to the viewer's line of sight. Depth and surface are however intrinsically
interdependent, the orientation of surfaces give a distance information of
its various parts from the observer. This concept of surface perception was
originally proposed by [5] (in 1950), and was later modelized by [6] (1978) by
a surface-based representation : the 2.5D sketch. A representation of oriented
surfaces in depth has been proven to be necessary to vision. The next sections
will help to understand higher level perceptual phenomenas.

It is now widely accepted that the human vision system (HVS) inte-
grates di�erent �cues� with more or less accuracy. The di�erent depth cues,
or sources of information giving the depth are presented in table 1.1. A
classi�cation of �ve depth characteristics are used : ocular versus optical,
binocular versus monocular, static versus dynamic, relative versus absolute,
and qualitative versus quantitative.

The depth determination vs surface orientation could be seen as another
division, but they are in fact intrinsically interdependent, and one helps to
determine the other. Next chapter present how some depth cues relied on
pictorial information to determine surface orientation and then the depth of
the various surface parts.

1.2.1 Ocular information

The ocular information are related to state of the eyes and their compo-
nents. The focus of lens, is called accommodation and the angle between
the two lines of sight of each eyes is calledconvergence or sometimes also
vergence.

Accommodation

For each eye, the optical focus of the lens is controlled by the ciliary
muscles around it. By applying di�erent tensions on the lens, the shape of
the lens vary temporarily : thin to focus on light to faraway objects, and thick

Perceptual modelling for 2D and 3D D1.1
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INFORMATION
SOURCE

Ocular/ Binocular/ Static/ Relative/ Qualitative/

Optical Monocular Dynamic Absolute Quantitative

Accommodation ocular monocular static absolute quantitative
Convergence ocular binocular static absolute quantitative
Binocular disparity optical binocular static relative quantitative
Motion Parallax optical monocular dynamic relative quantitative
Texture accretion/del. optical monocular dynamic relative qualitative
Convergence of parall. optical monocular static relative quantitative
Position/ Horizon optical monocular static relative quantitative
Relative size optical monocular static relative quantitative
Familiar size optical monocular static absolute quantitative
Texture gradient optical monocular static relative quantitative
Edge interpretation optical monocular static relative qualitative

Shading and shadows optical monocular static relative qualitative

Aerial perspective optical monocular static relative qualitative

Table 1.1 � Sources of information about Depth from [4] �This chart speci�es
�ve important characteristics of depth information : ocular versus optical,
binocular versus monocular, static versus dynamic, relative versus absolute,
and qualitative versus quantitative�

for nearby ones. So, if the HVS has information about the tension to apply
on the muscles that control the shapes, then it has absolute information
about the distance of the object to focus on (considering the visual system
is properly �calibrated�).

Di�erent studies have shown accommodation is a weak but useful source
of depth information at close distance, not especially to make direct judgment
about distance but also to evaluate the size of objects [7]. Beyond 2 meters,
accommodation provides hardly no depth information, as ciliary muscles are
already in their most relaxed state.

But how does the HVS guess the accommodation to adopt ? The visual
system guess the proper focus to apply on the retina by blurriness/sharpness
analysis of edges : indeed the best indication of proper focus is the amount of
�sharpness� of edges. Psychophysically speaking, as sharp edges contains more
energy than blurry ones, it is likely that ciliary muscle tension is adjusted so
it maximize the output of high spatial frequency channels.

Vergence

The second ocular depth information is the eye vergence : the extent
between two eyes turned inward, i.e the angle in degree between the two line
of sight. The objective of this function is to make the eyes �xate the same
point in space so that emitted light from that point falls in the center of
both foveae simultaneously. Then, the angle of vergence is correlated and
varies directly with the distance to the �xated object. A close object will

Perceptual modelling for 2D and 3D D1.1
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be �xated with a large convergence angle, a far one with a small one. It is
then a binocular source of depth information, and provides an absolute
information about the distance : HVS can specify the actual distance to the
�xated object.

The convergence can be expressed through right triangles trigonometry
as

d =
c

2tan(a/2)

with d the distance in meters and a the convergence angle in degree. From
this asymptote behavior we can see that the angle of convergence decrease
rapidly up to a meter or two, but very little after, where it tends to the
asymptote. That also means that vergence control information is a reliable
and accurate information up to two meters, as for the accommodation case.

Accommodation and vergence are interdependent and covary : change in
the distance to an object will imply related change in accommodation and
vergence. Studies with covered eyes also shown that the convergence is driven
by the monocular accommodation.

Accommodation and vergence are then dependent contributions to depth
perception and are among the few cues that give absolute distance to �xation
point, but at close distance.

1.2.2 Stereoscopic information

The distance between the two human eyes enables to perceive the world
from two slightly translated viewpoints. Regarding the last vergence section,
we have seen that this viewpoints are also rotated to �xate the same object.
The visual �eld then overlap in the central region of vision, so that the
same point projected to left and right retinæ are displaced according to the
distance of this point from the �xation point (and according to the distance
from distant �xated point). This relative displacement is called binocular
disparity.

Binocular disparity

The direction of disparity shows which points are closer and farther than
the �xated point, the magnitude provides the quantitative information on
how much closer and farther they are. As binocular disparity happened when
a given point in the external world is not projected to the same position on
the left and right retinæ, a closer-in-depth point than the �xated point will
fall in outward direction on both fovea, this is the crossed disparity. At
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the opposite, a farther point will project in the inward direction, this is
uncrossed disparity, as illustrated in �gure 1.2.

Figure 1.2 � Crossed versus uncrossed binocular disparity. When a point P is
�xated, closer points (C)are displaced outwardly in crossed disparity.Farther
points (F) are displaced inwardly in uncrossed disparity

The stereopsis, the process of perceiving distance to object or �depth�
based on their lateral displacement, has to deal with the correspondence
problem : how the visual system process to determine which feature in one
retinal image correspond to another one in the second retinal one ? First
theorists assumed that a process of shape analysis realized this task before
stereopsis, but stereogram tests tends to say the opposite : stereopsis come
�rst without any monocular shape information.

Vertical disparity

As seen before, binocular disparity consists of viewing the same object
from two viewpoints. But now if this object is moving not only along a depth
axis, but along an horizontal line from the eyes viewpoint, it will introduced a
vertical binocular disparity. Let's consider the image in �gure 1.3, the object
seen by the right eye is bigger in right retinea than in left one. In fact the
object is bigger along the horizontal axis in both direction, but also along
the vertical axis. There is a vertical disparity between corresponding points
in space.

Perceptual modelling for 2D and 3D D1.1



Human perception of depth 13

Figure 1.3 � Illustration of the vertical disparity. Here a surface of an object
is closer to one eye than the other, di�erences in size on each retinae (B) leads
to horizontal and vertical disparity

Da Vinci stereopsis

[8] underline the fact that, in binocular condition, an another perception
of depth is allowed through the occluded areas. For di�erent object depth,
a part of object surface will be seen by just one eye. Considering to surface
as �gure 1.4, only the right eye can see the right part of the farther surface
occluded by the closer surface on the left eye. This monocular perception

Figure 1.4 � Illustration of the Da Vinci stereopsis. Occluded part on one
retinal image can be disoccluded on the other retinal one.

of regions provides an important binocular information about the relative
position and distance of surfaces. Indeed, the depth information arise from
the single monocularly viewed region, which belong necessarily to the farther
surface. As with the vertical disparity, this relative depth cue can be seen as
a subpart of the binocular disparity cue.

Perceptual modelling for 2D and 3D D1.1
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1.2.3 Dynamic cues

Displacement of object on the retinae over the time provides dynamic
visual information to the HVS. It is then due to retinal image motion, or
�optic �ow�. Whatever if an observer moves, the �xated object moves in
an environment, or the whole environment is moving around an observer,
direction and rate at which objects are retinally displaced depend on the
motion, but also on the distance and the position from the object to the
observer. The next sections describe how the visual system manage to get
the �Depth from motion� information.

Motion parallax

The perception that image of points at di�erent distances from the obser-
ver moves at di�erent retinal velocities as the observer viewpoint is changing
is an illustration of the motion parallax. In other terms, the di�erential mo-
tion of pairs of points due to their di�erent depths relative to the �xation
point provides the motion and then the depth information.

An analogy can be done with the binocular disparity (see section 2.1)
Binocular disparity is related to the di�erence between a pair of displaced,
but taken in the same time, retinal images, whereas motion parallax involves
the di�erence between a pair of displaced through time retinal images. As
for binocular disparity, the nature of retinal motion parallax is related to
the distance to objects in the environment but also to the observer's �xation
point.

In addition, the perception we have of motion parallax i.e the real mo-
vement of an object on the retinal image is a perception of depth rather
than movement. We naturally experienced from motion parallax objects at
di�erent depth rather than objects at di�erent motion speeds.

Consequently, motion parallax gives only a relative information about
the distance to an object like binocular disparity, it tells how much closer or
farther on object is from the �xated one.

It is also worth to note that motion parallax has been described to be
su�cient for depth perception, in case on blindness of other depth cues.
Experiments shows that motion parallax is su�cient only when the spatial
information is rich enough.(Texture presence instead of uniformed colored
surface).

Optic �ow : case of a moving observer

The optic �ow is more related to an high-level visual process to extract
depth from motion, and linked to the motion parallax, than a simple and

Perceptual modelling for 2D and 3D D1.1
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strong depth cue. [9] advanced that when an observer is moving, the image
motion is structured and depends on the structure of the 3D environment,
its oriented surface, and the observer's motion. He introduced the concept of
motion gradients to describe the motion of regions, their quantity, (speed)
and direction. An observer moving leftward while �xating a point in the
middle of a line along depth (by example a straight road directed to the
horizon) will lead to a relative motion leftward for the closer points on the
line (and the closer they are, the faster they will move), rightward for the
farthest one.

Optic �ow : case of moving objects

In the visual �eld, an object moving with respect to the observer enables
also to perceive the depth. Relative movement of points depending of their
positions on the object give to the HVS the distance information : which
points of a surface is closer, which points is farther. [10] described the phe-
nomenon through the kinetic depth e�ect (KDE). They backprojected the
shadow of a 3D bent-wire �gure. When the �gure is static, the wire is sta-
tionary, no depth is perceived. Then, when the wire �gure is rotated, it pops
into a 3D shape. Recovering depth information from object rotation is ne-
vertheless ambiguous, the 2D retinal motion could be perceived as a �gure
which is deforming over the time. But people perceived instead a rigid object
consistent with the moving image : an object in rotation.

Texture accretion/deletion

Still in the moving context, a further source of depth information can be
�nd in the appearance-disappearance of texture behind a moving edge [11] :
the accretion-deletion of texture. As the edge always belongs to the closer
surface, and the occluded-disoccluded texture to the farther surface, depth
from this motion can be perceived. As a parallel can be drawn between motion
parallax and binocular disparity, accretion/deletion of texture revealed over
the time what is revealed across the views of left and right eyes in da Vinci
stereopsis : occlusion information.

1.2.4 Pictorial information

The remaining depth cues are called pictorial cues because there are avai-
lable in static monocularly viewed pictures, i.e they are signals obtained in-
dependently of any stereopsis or motion. However, these cues are important,
su�cient to extract the depth from 2D pictures, and can even overcome the

Perceptual modelling for 2D and 3D D1.1
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stereo depth information in tricky experiments where stereo is reversed by
optical devices.

Perspective projection

The perspective projection is a generic term that regroup all pictorial
sources of information coming from the projection of a 3D scene on a 2D
surface, either a picture or a retina.

Convergence of parallel lines / Vanishing point

The parallel lines in a 3D world rarely projects as parallel lines but as line
converging to a vanishing point on the horizon line. (the distance between
parallel lines becomes increasingly small with the increasing distance to the
observer). Importantly, there are in�nitely many vanishing points on the
�horizon� line of other planes in 3D space (as shown on �gure 1.5).

Figure 1.5 � A draftsman drawing in two-point perspective projection,
where the house parallel edges converge to two vanishing points A and B
on the horizon line (from [4])

Position relative to the horizon of a surface

The height of objects on the level plane relative to the horizon gives an
extra information on their possible position in space. This cue is said to be
quantitative [12], as geometrically speaking, the distance d from the observer
to any point P on the surface can be determined from the horizon angle A
(the angle between the line of sight to the horizon and the line of sight to

Perceptual modelling for 2D and 3D D1.1
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the point on plane), and the perpendicular distance to the surface h (�gure
1.6).

Figure 1.6 � Distance as a function of the horizon angle to a point on a
surface (from [4])

As observers have information of the height of their eyes above the ground
plane, and as long as they know the horizon lines, the angular distance to the
horizon gives an e�cient quantitative information about distance to objects
along it.

Relative size

Depth in perspective projection also involves size comparison of identical
-or supposed to be- objects : distant objects will then project smaller images
onto the retina. Considering h the height of the object, a the visual angle it
subtends, the right triangle has a height h and and an angle a. The distance
to the object d can be expressed with the tangent of the angle a :

d =
h

tana
(1.1)

The problem is that in order to know the distance, the size of object h must
be known. This information of object size is ambiguous because we can't tell
from a given image size whether it's a smaller object nearby or a larger one
farther away. The HVS uses a heuristic to overcome this indetermination. It
assumes that two identical objects have the same actual size so that their
relative distances can be determined from relative image sizes projected on
retina. Painting in 1.7 illustrates this idea where the di�erent sizes of men
recreate the depth e�ect.[13] recently conclude from ground/ceiling experi-
ments that the perceived layout of objects in a scene depends both on the
positions of the objects relative to a background surface and relative to the
horizon.

Perceptual modelling for 2D and 3D D1.1
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Figure 1.7 � �Jour de pluie à Paris�, painting by Gustave Caillebote, 1877

Familiar size

Familiar size cue could seem similar to relative size but involves an �a
priori� of the size of the objects. By familiar, we mean that most of objects
have a characteristic size or range of size with which people are familiar. For
example, the majority of adult men vary between 1.6 and 1.9 meters, table
are about 80 cm above the ground etc. If the size of a unique object is known
to the observer, then the previous size-distance equation can be solved for
its actual distance to the observer. However, [4] underlined the fact that this
�automatic knowledge� process is unconscious.

Texture gradients

Gibson [5] also mentioned texture gradient as an important cue among
perspective projection. Systematic changes in size and shape of texture ele-
ments, i.e stationarity and regularity of environmental surfaces provide a
good information about surface orientation. As the size of texture elements
decrease with distance, it can be used to estimate the relative distance to the
di�erent parts of the involved surface and also its orientation. Once again,
an heuristic assumption is made. The distance to texture elements based
on their image-size will be accurate only if these elements (texels) are ob-
jectively similar in size. Projected shape of texture elements can also carry
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information about the orientation of the surface (illustration in �gure 1.8 ).

Figure 1.8 � Arti�cial texture gradients. Arti�cial surfaces of arbitrarily
complex shapes can be rendered bu using identical texture elements (from
[14] )

Di�erent algorithms were developed for estimating surface orientation
from textural shape analysis, based on di�erent heuristic assumptions.[15]
devised an algorithm for slant and tilt recovering of small patches based only
on a weaker assumption : texture elements are approximately invariant over
small translations along the surface. Concretely, they �nd the best-�tting
parameters of surface orientation and curvature accounting for shape and
size between nearby elements.

Edge interpretation

The edge interpretation gives another pictorial information about depth :
the occlusion from an object, by an opaque object -delimited by edges- and
appearing nearer the viewer gives an ordinal depth relation : which object is
farther than any other and how much it is farther. This edge interpretation
is a relative rather than absolute, qualitative rather than quantitative cue.
Nevertheless, these relations are available from any distant viewpoints, since
occluding object is opaque. Di�erent computational models of edge interpre-
tation have been given in the past years, but no link has been made with the
actual processes involved in human vision.

Perceptual modelling for 2D and 3D D1.1
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Shading information

Like previous aspects of depth perception, the visual analysis of shading
often rests on heuristic assumptions to solve an underconstrained inverse
problem. One of them is that we implicitly assume that illumination come
from above, which is almost always the case in our environment. Figure
1.9 shows surfaces with 2 rows of indentations. The top ones appear to be

Figure 1.9 � Direction of illumination and perceived convexity (from [4])

convex bumps, and the bottom ones to be concave. This perception is based
on heuristic and is veridical only if the illumination comes from above in this
scene.(if you reverse the �gures, this will reverse the perceived relief).

This assumption of illumination resolves surface orientation determina-
tion problem, and give good indications about depth.

Aerial perspective

Aerial perspective (sometimes called atmospheric perspective) gives an
additional indication about the depth in particular conditions. Large objects
viewed from far away, like building, mountains, sea, appear �washed out� i.e
with a lower contrast because of additional atmosphere. The farther they are,
the more the atmosphere contains particles or pollutants that scatter light.
It can also take a blue tint as the particles in atmosphere scatter longer
wavelengths of light than shorter wavelength (in the range we perceive the
blue).

1.2.5 Integration of these di�erent information sources

Perceiving depth in a scene involves numerous widely di�erent sources.
But how the HVS accomplish the integration of all these sources, since they
all result in the same interpretation of surfaces oriented in depth ? By putting
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di�erent cues into con�ict, scientists try to understand how the visual system
integrates the di�erent information : is there any dominance, interaction or
compromise between two con�icting sources ?

Some studies show that pictorial source of information almost always wins
out in case of con�ict, but more recently, [16] [17] demonstrated that the weak
fusion model is also a good candidate to the compromise solution. It consists
in numerous di�erent estimations of depth may computed independently and
in parallel, before an integration by a mathematical combination (averaging,
additive, multiplicative) at di�erent locations in the depth map. The result
is then a compromise between the di�erent cues.

This description run counter to the fact that only absolute depth maps
can be combined to have good depth results. As we have seen, quantita-
tive sources of relative depth such as binocular disparity or motion parallax
need to interact with other cues to produce absolute depth information. For
example, binocular disparity speci�es only ratios of distances to surfaces. On
the contrary, convergence cue specify absolute depth, only for the �xated
object. Together, they determine the absolute distance to object in the �eld
of view. A complete depth map can then be computed if these two sources
interact, and these can be generalize to any other absolute source on infor-
mation. The knowledge of one absolute distance determines the distances to
every object.

The model of modi�ed weak fusion by [17] takes into account some limited
interactions between depth sources we mentioned. Interestingly, he describes
a representation where di�erent sources of information are upgraded to the
level of one absolute depth for the whole visual �eld : the �depth map�.
With analogy to saliency models, the �promotion� is the process that upgrade
information from a depth source to this metric depth map. Convergence,
accommodation can then be used to promote binocular disparity via scaling,
before a combination of promoted depth maps by numerical integration is
�nally realized.

To conclude, the combination of the di�erent depth cues into a unique
representation of the 3D layout of surface remains a complex and an open
issue. Even if it sounds plausible, there is no systematic physiological evidence
of these interaction integration-based scenarios. The research on these topics
are just beginning.
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1.3 Eye tracking

Eye tracking is a technique which records the eye-movements so that the
researchers can know both where a person is looking at any given time and
the sequence in which their eyes are shifting from one location to another[18].
Eye tracking plays a substantial role in the research of psychology, biology
and also computer vision. Especially in our future research of visual attention,
it is necessary to use the eye-movement data from eye tracking experiment
as the ground truth to evaluate the performance of computational models.

In this section, several eye tracking techniques will be �rst introduced.
After that, the measurements of di�erent eye-movements will be described.
And we will introduce the setup of eye tracking experiment and how to
generate the human saliency map as the output of the experiments.

1.3.1 Introduction of eye tracking technology

The technology of eye tracking appeared �rstly more than 100 years ago
for the research of reading [19]. Di�erent techniques have been applied in
eye tracking. For instance, the "electro-oculographic techniques" need to put
electrodes on the skin around the eye so that eye movements can be detec-
ted by measuring the di�erences in electric potential. Some other methods
relied on the wearing of large contact lenses covered the cornea (the trans-
parent front part of the eye) and sclera (the white part of the eye). A metal
coil was embedded around the lens so it moved along with the eye. The eye-
movement could be measured by �uctuations in an electromagnetic �eld when
the eye was moving[20]. These methods a�ect observers' eye-movement and
are inconvenient to implement. Nowadays, modern eye trackers use video-
based technologies to determine where a person is looking (i.e., their so-
called "point-of-regard")[18]. Corneal-re�ection/pupil-centre method is used
by most commercial eye trackers to measure the point-of-regard. The corneal
re�ection (shown in �gure 1.10 and �gure 1.11) is also known as (�rst) Pur-
kinje image. During the eye tracking, a camera focuses on one or both eyes
to get images. Contrast is then used to get the location of the pupil, and
infrared light is used to create a corneal re�ection. By measuring the move-
ments of corneal re�ection relative to the pupil, it is then possible to know
the head movement, eye rotation, the direction of gaze and consequently the
point-of-regard.
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Figure 1.10 � Corneal re�ection and pupil as seen in the infrared camera
image.[18]

Figure 1.11 � Corneal re�ection position changing according to point of
regard.[18]

1.3.2 Introduction of eye-movement

It is assumed that what a person is looking at indicates the thought "on
top of the stack" of cognitive processes [21]. This "eye-mind" hypothesis
means that the recordings of eye-movement can provide a trace about where
a person's attention is being directed. Di�erent kinds of eye-movements can
be recorded thanks to the development of eye tracking techniques. Two main
measurements are "�xations" and "saccades". Some other measurements,
including "gaze" and "scanpath", stem from these two basic measures. Pupil
size and blink rate are also two measurements usually studied.

Fixation

Fixation is the location where the eyes are relatively stationary. Fixation
last for 218 milliseconds on average, with a range of 66 to 416 milliseconds[18].
Several metrics derived from �xation are described as follow :

� Number of �xations overall. Goldberg et al.[22] suggest that more �xa-
tions overall indicates a less e�cient visual search of the scene .

� Fixations per area. Experiments show that more �xations on a particu-
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lar area indicate a greater interest or importance of a target[23]. And it
may also mean that the target is complex in some way and di�cult to
encode [21]. But Jacob et al. [24] suggest that, in a search task, a higher
number of �xations often mean a greater uncertainty in recognizing a
target item.

� Fixations duration. A longer �xation can be interpreted in two ways :
it's di�cult to extract information, or the object is more engaging in
some way [21].

� Gaze. Gaze is de�ned as the total duration of all �xations within a
prescribed area. It is also referred to as "dwell", "�xation cluster" or
"�xation cycle"[18]. It could be used to compare attention distributed
between targets, or to measure the anticipation in situation awareness
if longer gaze fall on an area of interest before a possible event occurring
[25].

� Fixation spatial density. Cowen et al.[26] suggest that highly concen-
trated �xations in a small area means focused and e�cient searching,
and evenly spread �xations indicate widespread and ine�cient search .
It is also found that if an object contains an area which is with highly
concentrated �xations, the object is tended to be considered as with
high importance [23].

� Repeat �xations. It is also called "post-target �xations". A higher num-
ber of �xations o�-target after the target has been �xated (i.e., a lower
number of repeat �xations) means that the target lacks meaningfulness
or visibility [22].

� Time to �rst �xation on-target. A shorter time to �rst-�xation on an
object or area indicates that the object or area has better attention-
getting properties [27].

� On-target �xations. It means the number of �xations on-target divided
by the total number of �xations. A lower ratio means lower search
e�ciency [22].

Saccades

Saccades are those quick, simultaneous movements of both eyes in the
same direction [28]. They are also the fast movement of eyes occurring bet-
ween �xations. It is generally believed that no encoding takes place in human
visual system during saccades, so vision is suppressed and it is di�cult for us
to get any clues about the complexity or salience of an object from the hap-
pening saccades. However, we could still get some information about visual
perception from several saccade metrics as follow :

� Number of saccades. A larger number of saccades indicate that more
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searching take place during the observation[22].
� Saccade amplitude. Saccade amplitude is computed by measuring the
distance between one saccade's start point (a �xation) and its end point
(another �xation). Larger amplitude indicates the existence of more
meaningful cues, since the attention is drawn from the distance[29].

Scanpaths

Scanpath is a metric derived from the measurement of both �xations and
saccades. It means a complete saccade-�xate-saccade sequence. The area co-
vered by scanpath indicates the area observed. A longer scanpath means less
e�cient searching[29]. Besides, we can compare the time spent for searching
(saccades) to the time spent for processing (�xation) in a scanpath. A higher
saccade/�xation ratio means more searching or less processing.

Blink rate and pupil size

The blinking of eyes and the changing of pupil size are two eye-movements
that could also be recorded by eye tracking experiments. They can be consi-
dered as a cue of cognitive workload. A lower blink rate is assumed to indicate
a higher cognitive workload [30], and a higher blink rate may indicate visual
fatigue [31]. The changing of pupil size also indicate some kinds of cognitive
e�ort [32]. However, the blink rate and the pupil size can be easily a�ected by
many factors during the observation, such as the luminance of environment.
Because of this, blink rate and pupil size are not widely used in eye tracking
research.

1.3.3 Introduction of eye tracking experiment proce-

dure

The setup of the experiment

Generally, all subjects of an eye tracking experiment should be adults who
have either normal or corrected-to-normal visual acuity. For some experimets
which are to get the bottom-up information from the subjects, the subjects
should be naive to the purpose of the eye tracking experiment, and have
never seen the images or videos which will be presented in the eye tracking
experiment.

The eye tracking experiment needs to be carried out in a dark room.
Visual distractions (e.g., colorful or moving objects around the screen or in
the testing environment) should be eliminated. The experiment room should
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be also silent, since evidences shows that some kinds of sound a�ect eye
movements [33].

To each subject, a calibration process is obligatory before the start of
the eye tracking experiment. This calibration works by displaying some dots
one by one on the screen. For each dot, if the eyes �xate on it for longer
than a certain threshold time and within a certain area, the system records
the relationship between eye position and the speci�c x-y coordinate on the
screen. This procedure is repeated over a 9 to 13 point grid-pattern to gain an
accurate calibration over the whole screen[18]. If the duration of experiment
is long, the calibration procedure should then be repeated at regular intervals
to maintain an accurate point-of-regard measurement.

During the experiment, stimuli (i.e. images or videos) are presented in a
random order. For each image or video, there should be enough time for the
subjects to look. Evidences suggest that the behavior of visual perception
varies according to time[23, 34]. The interval of each stimulus should be also
long enough to eliminate the e�ect of the previous stimulus. Sometimes the
�rst couples of stimuli are considered as the training group, the eye tracking
data of them are discarded from the �nal result[34].

The measurement of di�erent eye-movements

As mentioned previously, there are two kinds of basic eye-movements :
�xations and saccades. Hence, the process of �xation identi�cation, which
separates and label �xations and saccades coming from raw eye-tracking data,
is an essential part of eye-movement analysis.

The �xation identi�cation algorithms need to identify not only the �xa-
tions and the saccades taking place between one �xation and another, they
need also to �gure out those smaller eye movements that occur during �xa-
tions, such as tremors, drifts, and �icks[35]. The �xation identi�cation a
critical aspect of eye-movement data analysis, and it can have signi�cant
e�ects on later analysis. Evidences show that di�erent identi�cation algo-
rithms can produce great di�erent interpretations even when analyzing the
same eye-tracking data

Salvucci et al. [35] suggest that the classi�cation of �xation identi�ca-
tion algorithms can be with respect to spatial or temporal characteristics.
For spatial characteristics, three criteria have been used to distinguish three
primary types of algorithms :

� Velocity-based. These algorithms take advantage of the fact that �xa-
tions points have much lower velocities compared with the saccade
points. Generally, the sampling rate of an eye-tracker is constant, so
we can ignore the temporal component implicit in velocities.
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� Dispersion-based. This kind of algorithms emphasize the spread dis-
tance (i.e., dispersion) of �xation points. It assumes that �xation points
generally occur near one another, but saccades points are far away from
others.

� Area-based. This kind of algorithms identify the points locating within
given areas of interest (AOIs) which represent relevant visual targets.

For temporal characteristics, two criteria are included :
� Duration information. This criterion is based on the fact that �xations
are rarely less than 100 ms and usually in the range of 200-400ms[35].

� Local adaptivity. This criterion means that the interpretation of a given
point is in�uenced by the interpretation of temporally adjacent points.

Velocity-based Algorithms

Among all the velocity-based algorithms, Velocity-Threshold Identi�ca-
tion (I-VT) is one of the simplest algorithms to realize. The velocity pro�les
of eye movements show two distribution of velocities : low velocities for �xa-
tions, and high velocities for saccades. These velocity-based discriminations
are straight forward and robust.

I-VT calculates �rstly point-to-point velocities for each point. Each velo-
city is computed as the distance between the current point and the next (or
previous) point. Each point is then classi�ed as a saccade point or �xation
point based on a velocity threshold : if the velocity is higher than the thre-
shold, it becomes a saccade, otherwise it becomes a �xation point. Finally,
I-VT translate each �xation group into a <x, y, t, d> representation. <x,
y> represent the centroid of the points, t and d means the time of the �rst
point and the duration of the points respectively.

Dispersion-based Algorithms

Dispersion-based Algorithms utilizes the fact that �xation points tends
to cluster closely together because of their low velocity. The Dispersion-
Threshold Identi�cation (I-DT) is one of the Dispersion-based algorithms.
It identi�es �xations as groups of consecutive points within a particular dis-
persion. To help alleviate equipment variability, it incorporates a minimum
duration threshold of 100-200ms [36] because of the fact that �xations usually
have a duration of at least 100ms.

The I-DT algorithm uses a moving window to cover consecutive data
points. The moving window begins at the start of the protocol. It contains
initially a minimum number of points which is determined by the given du-
ration threshold. The I-DT then compute the dispersion of the points in the
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window by summing the di�erences between the points' maximum and mini-
mum x and y : D = [max(x)−min(x)]+[max(y)−min(y)]. If the dispersion
is above a dispersion threshold, the window moves to the following point. If
the dispersion is below the threshold, the window represents a �xation and
will be expended until the window's dispersion is above the threshold. The
�nal window is marked as a �xation which centers at the centroid of the
points and be with the given onset time and duration. Two parameters are
required in I-DT, the dispersion threshold and the duration threshold.

Area-based Algorithms

This algorithm identi�es only �xations that occur within speci�ed target
areas. It also utilizes a duration threshold to help distinguish �xations in
target areas from passing saccades in the areas. Area-of-Interst Identi�cation
(I-AOI) is one of this kind of algorithms. At �rst, I-AOI labels points within a
speci�ed area as �xation points for that target, labels points outside the area
as saccades. rerererIt then collapses those consecutive �xation points for the
same target into �xation groups, removing saccade points. After that, �xa-
tion groups that do not span the minimum duration threshold are removed.
Finally, I-AOI maps each �xation group to a �xation at the centroid of its
points.

The output of the experiment : Human Saliency Map

Saliency map is a topographically arranged map that represents visual
saliency of a corresponding visual scene[37]. Because it is not easy to use the
raw data which is from an eye tracker to quantitatively compare or analysis
the eye movements, the generation of saliency map is crucial. This kind of
saliency map is usually called "Human Saliency Map" since it comes from the
actual movements of the human eye (compared with the "Predicted Saliency
Maps" coming from computational models).

The generation of human saliency map is under the assumption that it is
an integral of Gaussian point spread functions locating at the positions of a
set of successive �xations :

Shuman = H(x) = 1
K

∑K
k=1 h(xk)

where H(x) represents the human saliency map and h(xk) represents the
point spread function (PSF). It is assumed that each �xation xk gives rise
to a Gaussian distributed activity. And the width of the Gaussian kernel
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Figure 1.12 � Example of the calculation of PSF's radius

Figure 1.13 � Some examples of human saliency map. [23]

depends on the size of fovea and the distance between the observer and the
screen. Figure 1.12 is an example of the calculation of PSF's radius.

Generally, the area covered by 0.5-degree visual angle is considered as
the area covered by the fovea. Therefore, we can use trigonometric function
and the distance between eye and screen to computer the size of Gaussian
kernel.Figure 1.13 shows some examples of saliency maps generated by this
method.
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1.4 Conclusion

This section presented the fundamental elements enabling human per-
ception of depth and the eye tracking principles. Human vision and human
perception of depth are not fully understood because the organs involved in
the vision process (eyes, brain) are still under investigation. However, as far
as it is known, human perception of depth requires both monocular cues and
binocular cues. Eye tracking technique allows researchers to know where a
person is looking. This is an helpful tool in order to design perceptual models.
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Chapitre 2

Perceptual modelling

The experience of the user of a communication system determines its
quality. For this reason, engineering metrics, or models are meant to predict
the performance of this experience. Those techniques are based on models of
human perception. This chapter will then address 2D perceptual modelling,
then visual attention models will be presented, and the last section introduces
3D perceptual modelling.

2.1 2D perceptual modelling

Human Visual System (HVS) modelling is meant to perceptually opti-
mized image processing. The HVS models can be classi�ed into two types :
neurobiological models and models based on psychophysical properties of
the vision. The models based on neurobiology estimate the actual low-level
process in human visual system including the eye and optical nerve. Howe-
ver, this type of models are not widely used, because of their overwhelming
complexity [38].

The psychophysical models, which are built upon psychophysical experi-
ments, are used to predict aspects of the human vision. They are typically
implemented in a sequential process shown as follow :

Figure 2.1 � Psychophysical HVS model [38]
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2.1.1 Luminance masking and Color processing

The �rst stage in the processing chain of HVS modelling is the so-called
luminance masking or lightness non-linearity. This stage take care of the
non-linear perception of luminance by the HVS. The color processing stage
is modelled by the transformation of the input signal into an adequate color
space, usually based on opponent colors [39]. As parts of the same process,
luminance masking and color processing take place simultaneously in HVS.

2.1.2 Multi-channel decomposition

Thanks to the measurements of receptive �elds in the primary visual cor-
tex, it is known that the HVS bases its perception on multiple channels that
are tuned to di�erent range of spatial frequencies and orientations. These
channels exhibit approximately a dyadic structure[40]. This behavior can be
modelled by a multi-resolution �lter bank or a wavelet decomposition[38].
The example of the multi-resolution �lter is the cortex transform which is a
�exible multi-resolution pyramid. Besides, it is believed that there are chan-
nels processing di�erent object velocities or temporal frequencies [39]. These
include on temporal low-pass and one or two band-pass mechanisms in the
HVS. They are respectively referred to as sustained channels and transient
channels.

2.1.3 Local contrast and adaptation

After the input signal is decomposed into channels, the local contrast
and adaptation stage takes place. It is widely accepted that the response of
the human visual system depends much more on local luminance variations
to the surrounding than the absolute luminance. This property is known as
Weber-Fechner law [41]. Contrast is widely used in vision models to measure
this relative variation. For the simple patterns, a contrast measure is simple
to de�ne. However, it is much more di�cult to de�ne the contrast measure
in complex images since it depends on the image content. And the contrast
measure is also in�uenced by the adaptation to a speci�c luminance level or
color.

2.1.4 Contrast sensitivity function

The human visual system has di�erent sensitivity to di�erent spatial fre-
quencies. The HVS usually has a decreasing sensitivity for higher spatial

Perceptual modelling for 2D and 3D D1.1



2D perceptual modelling 33

frequency. This phenomenon is modelled by the Contrast Sensitivity Func-
tion (CSF).

It is not easy to correctly model the CSF for color image, thus the sen-
sitivity to color and the sensitivity to pattern is assumed independent for
simplicity. The CSF for each channel of the color space are modeled inde-
pendently. The CSFs for achromatic channel are summarized in [42], and the
CSFs for color channels are described in [43, 44, 45]. Besides, [46] describes
the details of an e�cient CSF-modelling method in combination with the wa-
velet decomposition. Figure 2.2 shows a 2D CSF function. Figure 2.3 shows
the CSF functin for di�erent luminance levels.

Figure 2.2 � The normalized two-dimensional CSF model [47]

Figure 2.3 � Contrast sensitivity function for di�erent luminance levels,
adapted from [38]
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The human visual system has also di�erent sensitivity to di�erent tempo-
ral frequencies. The simplest way to measure temporal sensitivity is to present
an observer with a small �ickering light, and �nd the smallest amount of �i-
cker that the observer can detect. When temporal sensitivity is measure at a
range of �icker rates ,the results can be plotted in a temporal contrast sen-
sitivity function. Similar to the shape of spatial CSF, the shape of temporal
is low-pass or slightly band-pass.

Furthermore, the spatio-temporal contrast sensitivity functions are uti-
lized to describe the interaction between spatial and temporal frequencies.
These sensitivity functions are commonly used in vision models for video
[48]. The implementation of spatio-temporal contrast sensitivity function is
described in [49] and [50].

2.1.5 Masking and facilitation e�ects

Masking e�ect means that a visual stimulus which is visible by itself can-
not be detected due to the presence of another visual stimulus. Facilitation
e�ect can be considered the opposite e�ect of masking : a visual stimulus
which is not visible by itself becomes visible due to the presence of ano-
ther stimulus. Masking e�ect explains why some distortions disturbs in some
region while they are hardly noticeable in another region.

Several di�erent spatial masking e�ects are described in[51, 52], but this
distinction is not clear-cut [39]. The terms contrast masking, edge masking,
texture masking are usually mentioned to describe the masking e�ects cau-
sed by strong local contrast, edges, and local activity, respectively. Temporal
masking is a brief elevation of visibility threshold caused by temporal discon-
tinuities in intensity, e.g. at scene cuts. It occur not only after a discontinuity
but also before [53].
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2.2 Visual attention modelling in 2D

2.2.1 Introduction of Visual Attention

This is William James's suggestion of attention which dates back to 1890 :
"Everyone knows what attention is. It is the taking possession of the mind, in
clear and vivid form, of one out of what seem several simultaneously possible
objects or trains of thought. Focalization, concentration of consciousness are
of its essence. ... "

Visual attention is one of the most important features of the human visual
system. It concerns which part of an image/video attracts the gaze of an
observer. Figure 2.4 gives an example of visual attention :

Figure 2.4 � A example of visual attention

When people look at the �gure, most people will immediately notice the
sheep eating grass at the centre of the image. Only a small number of people
will pay attention to the fence, or wonder the species of the trees which are far
behind that sheep. This is visual attention. To J.K. Tsotsos, visual attention
is a mechanism which has at least the following basic components[54] :
• The selection of a region of interest in the visual �eld ;

• The selection of feature dimensions and values of interest ;

• The control of information �ow through the network of neurons that
constitutes the visual system

• The shifting from one selected region to the next in time.
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In people's everyday life, the environment presents far more perceptual
information than human can e�ectively process. In order to keep the essential
visual information, humans have developed a particular strategy, �rst outli-
ned by James. This strategy involves two mechanisms. The �rst one refers
to the sensory attention driven by environmental events, commonly called
bottom-up or stimulus-driven. The second one is the attention to both ex-
ternal and internal stimuli, usually called top-down or goal-driven[55].

Why do most people �rst notice the sheep ? It is because the sheep is
visually salient due to its color and shape which are very di�erent from the
ones of the grass. This kind of visual di�erentia is generated by the physical
input, which can be analyzed by the computers thanks to the technology of
image processing. This is called bottom-up or stimulus-driven. It is also the
reason why the �ickering advertising banners on the webpage can attract
people's attention.

Besides bottom-up, there is something else. The sheep is at the centre of
the image. As an individual unit, it is the biggest one. It is the main character
of this scene. Due to this, it is reasonable to make a conjecture that the sheep
may be the object which the photographer wants to highlight. So people pay
more attention to the sheep. This is called top-down or concept-driven or
goal-driven. It is also the reason why students focus their attention on the
professor during the class.

2.2.2 Computational model of visual attention

The classi�cation of computational model

Most of the researches of visual attention are to generate a saliency map
indicating where the most visually interesting regions are located. In the past
few years, several models which used di�erent mathematical tools, have been
proposed to compute the saliency maps. According to Le Meur et al.[56],
these computational models can be grouped into three di�erent categories :
Hierarchical models ; Statistical models ; Bayesian models.

• Hierarchical model. The computational architectures of the hierarchical
models are similar. This kind of models is characterized by using hierar-
chical decomposition which might involve a Gaussian, a Fourier-based
or wavelet decomposition. Then a di�erence of Gaussian is applied on
the subbands. After the salience decomposition level has been estimated,
di�erent methods are used to aggregate the information across all the
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levels to generate the �nal saliency map.

• Statistical model. This kind of models utilizes probabilistic methods to
compute the saliency value of each location. It measures di�erent features
of a current location and the features from the regions surrounding the
current location. All the information used in these models is from the
current image. The selection of features is critical.

• Bayesian model. The most di�erent part of this kind of models from the
others is the combination of prior knowledge and bottom-up saliency.
The prior knowledge might concern, for example, the statistic of visual
features in the natural scene, the distribution of various features, and so
on. Itti and Baldi's 'Surprise theory'[57] can be considered as belonging
to this group. They proposed the de�nition of Surprise which measures
the distance between posterior and prior beliefs of the observers.

The features utilized in the computational models

The performances of all the three kinds of models mentioned previously
are close. On the other hand, one thing that can greatly a�ect the perfor-
mance of the computational models is the selection of visual features. Some
features have been used for a long time and have been shown to be e�cient
in the computation of saliency map. For instance, color, intensity, orienta-
tion, contrast, edge strength, locations are the features used widely in many
models.

Besides these features, new features are recently found to be e�cient to
a�ect the visual attention. Kootstra et al. [58] suggested that symmetry could
be considered as a visual feature. They proposed an operator that computes
the symmetry value of each location and generated the saliency map ac-
cording to the symmetry value. In the 3D case, Jukka et al.[59] show that
the complex stereoscopic structures and the structures nearer than the actor
captured the gaze of observers. This might suggest that the complexity of
structure and the depth information could also be used as feature in the pre-
diction of saliency map. Gal and Cohen-Or[60] suggested that the saliency of
a region can be computed according to its size relative to the whole object, its
curvature, the variance of curvature, and the number of changes of curvature.
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Some principle visual attention computational models

The model of Itti et al. At 1998, Itti et al.[61] proposed this compu-
tational model which is one of the most earliest and representative models.
It has been also widely utilized as a reference to compare or evaluate the
performance of other models. This model builds on a biologically plausible
architecture proposed by Koch and Ullman [62]. It explains human visual
search strategies by relating to a so-called "feature integration theory" [63].
This model's framework is also based on the concept of saliency map which is
a two-dimensional topographic representation of conspicuity for each pixels
of the image.

Figure 2.5 � The diagram of Itti et al's model.

Visual input provided in the form of static color images is �rst computed
by a set of linear "center-surround" operations akin to visual receptive �elds.
It is decomposed into three channels : colors, intensity, orientations. This
process yields a set of topographic feature maps :
• The �rst set of feature maps is constructed for intensity contrast. There
are two kinds of intensity contrasts : one is detected by neurons sensitive
to dark centers on bright surrounds and the other one is detected by
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neurons sensitive to bright centers on dark surrounds. Here, both of
them are simultaneously computed in a set of six maps I(c, s), with
c ∈ {2, 3, 4} and s = c+ δ, δ ∈ {3, 4}

I(c, s) = |I(c)	 I(s)| (2.1)

where c represets "center" and s represents "surround"
• The second set of maps is constructed for color channels. A so-called
"color double-opponent" system exists in cortex. It refers to 2 pairs of
colors : red/green and blue/yellow. Due to this, maps RG(c, s) and maps
BY (c, s) are created :

RG(c, s) = |(R(c)−G(c))	 (G(s)−R(s))| (2.2)

BY (c, s) = |(B(c)− Y (c))	 (Y (s)−B(s))| (2.3)

• The third set of maps is concerned with the local orientation contrast
between the center and surround scales.

In total, 42 feature maps are computed : six for intensity, 12 for color, and
24 for orientation. For the three channels, features maps are normalized and
combined across scales and orientations into a "conspicuity maps" for each
channel. Finally, an overall saliency map is obtained by linearly combining
the channels.

This method provides good results, however, it can still be improved
in some respects[64] : Firstly, this model allows each location compete for
conspicuity within each channels, but it separates each channel indepen-
dently. The second one is that it has many parameters that need to be hand-
selected.

The model of Le Meur et al. The work of Le Meur et al. is another
very representative model. This is also a bottom-up model based on Feature
Integration Theory (FIT) from Treisman and Gelade[63] and the biologically
plausible architecture proposed by Koch and Ullman[62]. This model was �rst
described in [55] and then modi�ed in [65], which added the measurement of
movement.

The model proposed in [55], which is for still images, builds on a coherent
psychovisual space to obtain a saliency map. Being justi�ed with psycho-
physical experiments, this space is used to combine visual features, such as
intensity, color, orientation, spatial frequencies. These features are normali-
zed to their individual visibility threshold. The visibility threshold associated
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to each value of each component is calculated by the usage of accurate non-
linear models which simulate visual cells behaviors.

This proposed computational bottom-up model contains several proper-
ties of human visual cells in mind. Three aspects of the vision process are
tackled, the visibility, the perception, and the perceptual grouping.

The �rst vision process utilized is the visibility, which simulates the sen-
sitivity which is limited in human visual system. A coherent normalization
is �rst used for scaling all the visual data. After that, all the visual data is
then grouped into a psychovisual space which bases on the following four
mechanisms :

• Transformation of the RGB Luminance into the Krauskopf's Color Space.
The relation of color spaces is given as follows : A

Cr1
Cr2

 =

 1 1 0
1 −1 0
−0.5 −0.5 1

 L
M
S


• Early visual features extraction.

• Contrast sensitivity functions. CSF has been widely used to measure
the visibility of natural images components. This model apply the 2D
anisotropic CSF designed by Daly on the achromatic component[66]. On
the other hand, the CSFs of the two color visual components Cr1 and
Cr2 are modeled using sinusoidal color gratings.

• Visual masking. It refers to the modi�cation of the di�erential visibility
threshold of a stimulus because of the in�uences of the context. Due to
the subband decomposition, three types of masking are de�ned here :
intrachannel masking, interchannel masking and intercomponent mas-
king. The intrachannel masking is the most important masking e�ect.
This model apply the function designed by Daly [66] to model the in-
tramasking e�ect for the achromatic component. On the other hand, the
function designed by Le Callet[67] was used to model the intramasking
e�ect for the chromatic components.

The second process is perception. The goal of this process is to determine
the achromatic components which are necessary for the calculation of the sa-
liency map. This process contains two mechanisms that can e�ectively detect
the achromatic reinforcement by chromatic context and the center/surround
suppressive interaction. The achromatic reinforcement takes advantage the
color dimension which can e�ciently guide the attention to the most salient
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areas of our visual �eld. The center/surround suppressive interaction simu-
lates the mechanism of the visual systems, which is used to select relevant
areas and reduce the redundant incoming visual information.

The third process is perceptual grouping. It refers to the human visual
ability that group and bind visual features to organize a meaningful higher-
level structure. Perceptual grouping comprises numerous mechanisms. Faci-
litative interactions mechanism, the most common one, is concerned in this
model. This facilitative interaction is usually named as contour enhancement
or contour grouping. In this paper, two butter�y �lters described by [68] are
used for simulating the contour grouping. The two �lters, B0

θi,j,A
and B1

θi,j,A
,

are obtained by a directional term Di,j(x, y) and a proximity term circle Cr
blurred by a Gaussian �lter G(x,y) :

Bθi,j,A = Di,j(x, y) · Cr(x, y) ∗G(x, y) (2.4)

with

Di,j(x, y) =

{
cos(π/2

α
ϕ) if − α < ϕ < α

0 otherwise
(2.5)

Finally, this computational model sums directly the output of the dif-
ferent achromatic channels to obtain a two-dimensional spatial saliency map.
Furthermore, Le Meur et al. proposed combining a temporal saliency map
with the spatial saliency map to measure the visual attention in video. The
computation of temporal saliency map is based on the assumption that the
contrast of movement is the most important attractor of attention. By the
fusion of spatial saliency map and the temporal saliency map, the �nal sa-
liency map is obtained (shown in �gure 2.6).

Compared to other computational model, the advancement of this model
is the usage of the coherent normalization of visual features. However, this
model can still be improved. The combinations of more early visual features
might e�ectively improve the performance. And it is not di�cult to combine
more features thanks to the coherent normalization method proposed in this
paper.
The model of Zhang et al. The model of Zhang et al. [64] starts from
an assumption that an important goal of the visual system is to �nd po-
tential targets and build up a Bayesian probabilistic framework. From this
framework, di�erent kinds of saliency emerge in di�erent ways. Bottom-up sa-
liency emerge naturally as the self-information of visual features, and overall
saliency emerges as the pointwise mutual information between the features
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Figure 2.6 � The diagram of Le Meur et al's model [65]

and the target when searching for a target.

Compared to other bottom-up saliency measures, which are de�ned so-
lely in terms of the image currently being viewed, this model is de�ned based
on natural statistics collected from a set of images of natural scenes. And
this is the reason why it is named SUN. Besides, compared to the others,
it involves only local computation on images, without calculation of global
image statistics or saliency normalization or winner-take-all competition.

Within the Bayesian framework proposed, z denotes a point, (in this
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model, it is a pixel of the image), C denotes whether or not a point belongs
to a target class, L denotes the location, F denote the visual features of a
point. Saliency of z can be de�ned as p(C = 1|F = fz, L = lz). Here, fz
represents the features values observed at z, lz represents the location of z.
Bayes' rule can be used here to calculate this probability :

Sz = p(C = 1|F = fz, L = lz) =
p(F = fz, L = lz|C = 1)

p(F = fz, L = lz)
(2.6)

Due to the assumptions that features and location are independent and condi-
tionally independent given C = 1 and the distribution of a feature does not
change with location, the formulation is given by :

logSz = − log p(F = fz) + log p(F = fz, C = 1) (2.7)

The �rst term on the right side of the equation, − log p(F = fz), is the
self-information. The rarer the features are, the more informative they are.
The second term,log p(F = fz, C = 1), is a log-likelihood term which favors
feature values consistent with our knowledge of the target. It corresponds
to the top-down e�ect when searching for a known target. The third term
in the equation, log p(F = fz, L = lz), is independent of visual features
and represents any prior knowledge of where the target is likely to appear.
By omitting the third part of the equation, the location prior, the resulting
express is obtained :

logSz = log
p(F = fz, C = 1)

p(F = fz)p(C = 1)
(2.8)

This equation can be called the pointwise mutual information between the
visual feature and the presence of a target. It expresses the overall saliency. If
it is the free-viewing condition, the log-likelihood term is unknown, so the ove-
rall saliency reduces to just the self-information term :logSz = − log p(F = fz).
The following part of the paper focuses on this term.

This model takes color images as input and calculates their saliency maps.
It calculates the features in two di�erent ways, DoG (di�erence of Gaussians)
and ICA (independent component analysis), either of which is used in most
saliency algorithms. By comparing the result and the data obtained from
experiment, it is found that this algorithm under the proposed Bayesian
framework performs as well as or better than existing algorithms in predicting
people's eye �xations in free viewing.

The "Suprise" model of Itti et Baldi Itti et Baldi [57] proposed a
concept of surprise which was central to sensory processing, adaptation, lear-
ning, and attention by describing a formal Bayesian de�nition of surprise.
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Surprise quanti�es how data a�ects observers by measuring the di�erence
between prior and posterior beliefs of the observer. By using this framework,
we can measure the extent to which people direct their gaze towards surpri-
sing items while watching a video.

Bayesian De�nition of Surprise : In this paper, the surprise proposed is
a general concept, which can be derived from �rst principles and formalized
across spatio-temporal scales, sensory modalities, and, more generally, data
types and data sources. But for a principled de�nition of surprise, it should
always contain two elements :
• First, surprise can exist only in the presence of uncertainty, which can
arise from intrinsic stochasticity, missing information, or limited compu-
ting resources.
• Second, surprise can only be de�ned in a relative, subjective, manner
and is related to the expectations of the observer. The same data may
carry di�erent amount for di�erent observers, and even for a same ob-
server taken at di�erent times.

Besides, due to the probability and decision theory, a consistent de�nition of
surprise must also involve :
• Probabilistic concepts to cope with uncertainty
• Prior and posterior distributions to capture subjective expectations.
Measure of Surprise : It is necessary to capture the background informa-

tion of an observer by the prior probability distribution {P (M)}M∈M over
the hypotheses or models M in a model spaceM. D is a new data observation
on the observer. Given the prior distribution, the fundamental e�ect of this
new data observation is to change the prior distribution {P (M)}M∈M into
the posterior distribution {P (M |D)}M∈M via Bayes theorem :

∀M ∈M, P (M |D) =
P (D|M)

P (D)
P (M) (2.9)

In this framework, surprise elicited by data is formally measured as some
distance measure between the prior and posterior distributions. It can be
realized by using the relative entropy or Kulback-Leibler (KL) divergence.
Thus, surprise is de�ned by the average of the log-odd ratio taken with respect
to the posterior distribution over the model classM

S(D,M) = KL(P (M |D), P (M)) =

∫
M
P (M |D) log

P (M |D)

P (M)
dM (2.10)

"wow" is consider as the unit of surprise. For a single model M, it may
be de�ned as the amount of surprise corresponding to a two-fold variation
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between P (M |D) and P (M), i.e. logP (M |D)/P (M).

According to the experimental result given in paper [57], it is found that
the metric using surprise to predict the attractor outperforms all other com-
putational models which include entropy metric, contrast metric, saliency
metric, �icker metric, motion metric.

The model of Gao et al. Gao et al. [69] proposed a model which
evaluated the plausibility of a generic principle for visual saliency : all sa-
liency decisions are optimal in a decision-theoretic sense. The discriminant
saliency hypothesis and a classical assumption, that bottom-up saliency is a
center-surround process, are combined to derive a (decision-theoretic) opti-
mal saliency architecture. Under this architecture, the saliency of each image
location can be obtained by computing the discriminant power of a set of
features with respect to the classi�cation problem that opposes stimuli at
center and surround.

The discriminant saliency hypothesis is that all saliency decisions about
the state of the surrounding environment are optimal in a decision-theoretic
sense, e.g., that have minimum probability of error. Discriminant saliency
is de�ned with respect to two classes of stimuli : The �rst one is the class
of stimuli of interest and the second one is a null hypothesis. With respect
to these two classes and lowest expected probability of errors, the locations
of visual �elds that can be classi�ed as containing stimuli of interest are
denoted as salient. This can be accomplished by applying two mathematical
processes :
• De�ning a binary classi�cation problem that opposes stimuli of interest
to the null hypothesis ;
• Equate the saliency of each location in the visual �eld to the discrimi-
nant power (with respect to this problem) of the visual features extracted
from that location.

In fact, the de�nition of saliency mentioned above is applicable to a large
number of problems. For instance, both top-down and bottom-up saliency
can be specialized by di�erent speci�cations of stimuli of interest and null
hypothesis. However, this model focuses on the problem of bottom-up sa-
liency.

The "Discriminant center-surround saliency" proposed by this model can
be considered as a result of combining the discriminant saliency hypothesis
and the classical assumption that bottom-up saliency is a center-surround
process. This classical assumption is formulated as a classi�cation problem.
At each image location l, it includes de�nitions :
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• Stimuli of interest : observations within a neighborhoodW 1
l of l (referred

to as the center)
• Null hypothesis : observations within a surrounding windowW 0

l (referred
to as the surround)

Figure 2.7 � Illustration of discriminant center-surround saliency [69]

The saliency of location l, S(l), is equal to the discriminant power of X for
the classi�cation of the observed feature vector x(j),∀j ∈ Wl = W 0

l ∪W 1
l ,

into center and surround. X(l) = (Xl(l), ..., Xd(l)) is a random process of
dimension d, drawn conditionally on the state of a hidden variable Y(l). S(l)
is quanti�ed by mutual information between features, X, and class label, Y :

S(l) = Il(X;Y ) =
∑
c

∫
PX(l),Y (l)(x, c) log

PX(l),Y (l)(x, c)

PX(l)(x)PX(l)(c)
dx (2.11)

By using the equation above to estimate the mutual information at each
image location after the stage of extracting visual features, we can achieve
our purpose : the discriminant saliency detection in static imagery. The per-
formance of this model is good.

The model of Bruce and Tsotsos At 2009, Bruce et al. [70] put forth a
model of saliency computation within the visual cortex based on the premise
that localized saliency computation serves to maximize information sampled
from one's environment. The framework of the proposed computational mo-
del is depicted in the �gure 2.8 :

In this model, the �rst operation for the input image is the independent
features extraction. For each location i,j in the image, the response of various
learned �lters with properties reminiscent of V1 cortical cells are computed.
This operation may be thought of as measuring the response of various cor-
tical cells coding for content at each individual spatial location. This yields
a group of coe�cients for each local neighborhood of the scene, C(i, j).

The second stage is density estimation. In this stage, the content of each
local neighborhood C(i, j, k) of the image is characterized by several coef-
�cients ak. These coe�cients are corresponding to the various basis �lters
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Figure 2.8 � The diagram of Bruce and Tsotsos's model [70]

coding for that location, and i,j are corresponding to the position of that
local neighborhood. At one spatial location and in the surrounding regions
of that location, there are a set of coe�cients for a same �lter type. Based
on a non-parametric or histogram density estimate, the coe�cients in the
surround form a distribution that may be used to predict the likelihood of
the coe�cients of C(i, j). For computational parsimony, this paper supposes
that each pixel in the image contributes equally to the density estimate and
it is performed based on a 1000 bin histogram density estimate.

The following stages are Joint likelihood and Self-information. Thanks to
the operations before, a likelihood estimate corresponding to a single �lter
type can be a�orded by a density estimate for any single coe�cient based on
coe�cients corresponding to the same �lter type from the surround. Based
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on the independence assumption, the product of the likelihoods associated
with each individual �lter yields an overall likelihood for all coe�cients cor-
responding to a single location. The Shannon Self-Information of this overall
likelihood p(x) is given by − log(p(x)) and the resulting information map
depicts the saliency.

This model for visual saliency computation builds on a �rst principles
information theoretic formulation noted as Attention based on Information
Maximization (AIM). Although this model is built entirely on computational
constraints, the result exhibits considerable agreement with the organization
of the human visual system.

The model of Oliva and Torralba Oliva and Torralba propose a mo-
del of attention guidance based on global scene con�guration[71]. It is based
on the assumption that, by directing their attention to relevant regions in
the image, human observers will use visual context information to facilitate
the search while looking for a speci�c object in a complex scene. The goal of
this paper is to try to locate probable locations of people in scenes, and then
obtain a saliency map from the result.

The saliency map is computed using a hardwire scheme (shown in �gure
2.9) : Processing the local image features by center-surround inhibition and
then using a winner take all strategy to select the most salient regions. The
most commonly used image features are the outputs of multiscale oriented
band-pass �lters. In this paper, each color subband is decomposed by using a
steerable pyramid with 4 scales and 4 orientations. Each location has a fea-
tures vector with 48 dimensions. On the other hand, the saliency is de�ned
in terms of the likelihood of �nding a set of local features in the image. To
de�ne the saliency, this paper uses a probabilistic de�nition : the saliency of
a location is large when it is more unexpected to �nd the image features at
that location. This probability is approximated by �tting a Gaussian to the
distribution of local features in the image.

There are three important processes in this model :

• Contextual modulation of saliency. In the process of contextual modu-
lation of saliency, it formulates the object detection as the evaluation of
a probability function. It is the probability of the presence of the object
given a set of local measurements. After that, the probability is decom-
posed into three factors by using Bayes rule : the object likelihood, the
local saliency and the contextual priors. The terms that do not require
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Figure 2.9 � Attentional system for object detection integrating local sa-
liency and contextual priors about target location. [71]

knowledge of the appearance of the target are attached importance to.
• Computing contextual image features. The structure of the whole image
is describe d by contextual features. Here, the model reduces the dimen-
sionality of the local features to represent the context.
• Learning the location of people. A database of images for which the lo-
cation of the people is known is used for training the PDF. In this paper,
the learning is performed using the EM algorithm and the PDF is then
modeled by using a mixture of Gaussians.

In summary, this computational model is concerned with the visual context
in which objects embedded. In predicting the locations at which peoples will
�x, this computational model does not di�er with the performance of other
more complex models.
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2.3 3D perceptual modelling

In this section, a state-of-the-art of existing models of visual attention
integrating depth cue is presented. Below is a resuming table of models.

EM Input type Depth dimension invol-
ved

Operations Biological/ empirical model

Ouerhani
et al.

Depth map Stereoscopy (binocular
and vertical disparity,
da Vinci stereopsis)

Depth as identical input to
L.Itti's model

biological for color/luminance
processing, not for the depth

Zhang et
al.

Depth map
and motion
(t+k ;-
w<k<w)

Stereoscopy and dyna-
mic (motion)

Itti's model Op. + block based
optical �ow for temporal atten-
tion model + depth as dispa-
rity

empirical for depth processing
and integration

Park et al. Stereo
pair and
motion(t-
1)

Stereoscopy and dyna-
mic

simple SAD to have dispa-
rity, Double Opponent recep-
tive �eld for Motion

Biologically inspired for mo-
tion (DORF in MT Clark2004)
and texture(Itti's Model) but
arbitrary integration with
weights on each cue

Maki et al. Depth
map and
motion(t-
1)

Stereoscopy and dyna-
mic

stereo disparity calcula-
tion(stereo algorithm), motion
pursuing algo, depth-based
cue integration by a pur-
suit/saccade mode

biological for the integration
only

Fernandez
et al.

Stereo pair
+ shape
and motion
parameters

Stereoscopy and dyna-
mic(velocity and acce-
leration)

Dynamic stereo selective
attention : feature extrac-
tion/integration. Charge
disparity analysis and depth-
based segmentation

biological stereo attention fo-
cus and 2D charge map, inspi-
red by biological visual hemi-
�elds

Table 2.1 � Existing models of visual attention integrating depth

A relative low amount of article exists in the literature, considering the
depth as a cue that can provide essential information to model the behavior
of the Human Visual system in attentional tasks. Existing methods di�er in
the location, and the way the depth is processed, if it's based on biological
assumption or not, and if they also implement motion as an additional cue.

2.3.1 Depth and Motion extension to Saliency models

Itti based saliency models

Ouerhani et al [72] proposed to integrate the depth in an extension of
the Itti's saliency model, as a conspicuity map. To the n conspicuity map in
competition in the integration process, m additional maps coming from the
depth are proposed, but only the depth as binocular disparity information
is kept : n+1 maps are combined. Under empirical geometrical assumption,
mean curvature and depth gradient are considered but �nally not used. Mean
curvature is a surface feature providing information about the geometry of
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scene. It is underlined that preprocessing operations like smoothing could
overcome the inconvenient of the mean curvature noise sensitivity. Adding
such preprocessing operations to a computational depth cue could lead to
high inaccuracy and and remains highly content-dependent. (parameters, size
of smoothing operators). Depth gradient is presented as a feature vector ef-
�cient to underline depth changes in angles, but also in depth discontinuity.
Finally, experiments with color + depth as conspicuity maps shows �subjec-
tive� improvements in the resulting saliency maps.

S =
n+m∑
i=1

wiCi

with m=1, the depth map. w = (M−m)2, whereM is the maximum activity
of the conspicuity map and m is the average of all its local maxima. w mea-
sures how the most active locations di�er from the average. Thus, depth lo-
cations which stand out from their surrounding are promote, through a peak
response in depth feature which compete with color and is �nally propagate
to �nal saliency maps. These experimental results show the e�ectiveness of
channel competition that might e�ectively takes place in the di�erent depth
processing areas of the HVS.

Zhang et al. The stereoscopic visual attention model of [73] relies on the
same input characteristic for depth information but not on the same inte-
gration. Indeed the input disparity is taken as in [72] but is converted into
�perceive depth� map D to give more importance to close objects, as an hy-
pothesis. Still in di�erence with previous model, the depth is integrated with
other feature maps through a weighted coe�cient kD , that seems to be ma-
nually setted and not obtained by square di�erence between maxima and all
local maxima.

Another additional feature is integrated into the model : the motion, as
a major stimuli of attention. A block based optical �ow algorithm is used to
estimate motion between consecutive frames. To deal with camera motion,
motion maps of di�erent resolution are decomposed with Gaussian pyramids
of 9 levels, and center-surround di�erence is used to separate the �attentive
object� motion from background motion. This results in the motion saliency
map Sm.

The correlation between u and v channels is also empirically used and
weighted by minimum of either static and motion, static and depth, or motion
and depth feature maps. Finally, the Zhang stereoscopic visual attention
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model is de�ned as :

SSV A = Ψ

D ·
ksSs + kmSm + kDD −

∑
uv∈{sm,sD,mD}

euvCuv


The features maps after integration are multiplied again by depth map

to give more importance to the closer pixel value. The resulting images show
pertinent potential attention areas, but su�ers from an empirical integration
of features and especially of the depth (converted in �perceived depth� under
empirical assumption).

Figure 2.10 � Schematic diagram of the Park's model (from [74])

Park et al. Similarly, [74] presented an �automatic focusing attention mo-
del �for a stereo pair of image sequences�, integrating depth and motion.
The model estimates the depth from two left and right input views with a
standard SAD (Sum of Absolute Di�erence) stereo matching algorithm.

Based on psychological studies showing MT (middle temporal cortex) that
cells respond best to movement in its selective direction within its receptive
�eld, biological functions of �Double Opponent Receptive Field�(�gure 2.11)
and �Noise �ltration�(�gure 2.12) are implemented to calculate the motion
map. The response of a pixel is computed by :

The double opponent receptive �elds responds to a visual stimulus when
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Figure 2.11 � Park's model based on �Double Opponent Receptive Fiel-
d�(from [74])

a pair of surround motion directions is opposed, it is computed by

If |VC (θ)| 6= 0,

|R (θ)| =
∣∣∣∣−1

2
VS1(θ + π) + VC(θ)− 1

2
VS2(θ + π)

∣∣∣∣
else |R (θ)| =

∣∣∣∣−1

4
{VS1(θ + π) + VS2(θ + π)}

∣∣∣∣
where VC (θ) presents the motion vector of an observation point, VS1(θ + π)
and VS2(θ + π) the surrounding motion vector.

The noise �ltration function considered the case of a pair of cells selecti-
vely tuned to opposite directions. The MT cell's response is then very weak
in one of both direction.

Figure 2.12 � Park's model based on �Noise �ltration� (from [74])

If |VC (θ)| 6= 0, and |VS1(θ)− VS2(θ + π)| ≥ 0

|R (θ)| = |VS1(θ)− VS2(θ + π)|
else |R (θ)| = 0

These two oriented �lters are biological-inspired functions that might be
processed in MT brain area to obtain a kind of motion saliency map. Unfor-
tunately concerning the integration step, arbitrary weights are given to each
of these resulting features (5 for motion, 3 for color/illumination/orientation
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and 1 for depth), citing general studies showing that motion is more impor-
tant than color, which is itself more important than orientation, form, or
depth. So the �nal saliency map is computed in a heuristic way as :

S = 3 SS + 1 D + 5 SM

Experiments show an improvement in the detection of supposed salient re-
gions, with comparison to their previous spatiotemporal model without depth.
A comparison to other depth spatiotemporal models is not given.

Saccade/pursuit model

Maki et al.[75] proposed a computational model of preattentive cues pro-
cessing and latter depth-based integration, where the idea is to maintain
the attention to the closest moving object under biologically inspired me-
chanisms. Three parallel stages of stereo disparity, image �ow and motion
detection calculation are realized �rst. The cue integration guides the atten-
tion to the salient part, by combination of two independent pursuit and sac-
cade modes. As shown in both �gures below, the processes of pursuit (�gure
2.13) and saccade (�gure 2.14) is based on iterative disparity/�ow histogram
computation, logic operation and generation of iterative target masks. The

Figure 2.13 � Schematic �ow diagram of the attentional pursuit. Diamonds
indicate a one frame delay in the feedback, circles a logic AND operation
(from [75])

principle of this last mode is that an �interesting part� or distractor calculated
only from motion relative to the background trigger an attentional shift. This
newly detected moving target is carried in disparity histogram and �nally in
the target saccade mask. Under arbitrary depth-based criterion (the closer
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Figure 2.14 � Schematic �ow diagram of the attentional saccade mode (from
[75])

a target is, the higher priority it has), either pursuit mask or saccade mask
are selected to produce the �nal target mask. Results show approximative
target mask, especially on the border of close objects to segment, but model
bene�ts of simple iterative algorithms.

Charge map based model

The �dynamic stereoscopic selective visual attention� (DSSVA) model
from Fernandez et al.[76] is a stereoscopic extension of their previous model.
It is based on two biologically inspired methods : accumulative computation
and lateral inhibition.

The �rstDynamic Selective Visual Attention stages (DSVA), illus-
trated on �gure 2.15 consists of di�erent subtasks :

� an "Attention Building" is modelized with gray level images segmented
into a lower number of levels.

� then "feature extraction" and their "integration" output an Interest
map, and stores for each image pixel the result of the comparison with
three-discrepancy classes : active/inhibited/neutral, as a result of eva-
luating motion detection between two consecutive time instants and
the observers's guidelines.

� the "Working Memory" is obtained for each gray-level band in subtask
"Attention Building". In the same logic each pixel [x, y] can be active,
inhibited or neutral.

� The value of each pixel in WM is the max value of WMi at each gray-
level band.

� Lastly, monocular attention focus is obtained on a reinforcement basis :
Vactive pixels in WM reinforce attention in the MAF, Vinhibited ones
decrement the attention value.(eq 5) where D(MAF) and C(MAF) are
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Figure 2.15 � Schematic �ow diagram of the attentional saccade mode.

the discharge and charge constants.
� Segmented objects in focus are obtained through simple �ltering :

SOFl/r[x, y] =

{
GLBl/r [x, y, t] ifMAFl/r[x, y, t] > Chmin
0 else,

Secondly, the Visual Stereoscopy is obtained through 4 subtasks :
� Obtention of the 2D charge map inspired by the biological visual hemi-
�elds. Left and right motion charge memories are obtained by means
of AC PSM to provide info about movement.

� Charge disparity analysis : a 3D depth map or disparity map, shows
the depth of points in the scene where there has been movements. The
decision stands on the disparity with the greatest reliability, based on
epipolar, ordering and disparity restrictions.

� Obtention of Depth : left and right stereo working memories are calcu-
lated as in DSVA (Attention Building)

� 3D Attention Reinforcement : the couple of stereo attention foci is
obtained as for monocular attention foci. (Vactive vs Vinhibited)

The tests are done on synthetic stereo images sequences in low resolution
(320*240) with 2 con�gurations : one based on size and shape only, another
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on depth only. Even if the condition of experimentation are quite restricted,
it gives a global idea of the capacity of the method. A clear segmentation is
realized on object, but fails with turning motion of objects.

Conclusion

The di�erent models presented here introduce the use of depth and/or
motion as important, contributing and possible improving cues to classical
2D models. They introduced some considerations of motion (with DORF
[74]) and depth or stereoscopy (charge disparity analysis in[76]), but fails to
attribute quantitative motion and depth based on objective psychophysical
facts : arbitrary weighting are used instead.
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2.4 Conclusion

This section presented the previous studies regarding perceptual model-
ling in 2D and 3D and the visual attention modelling in 2D. These models are
conceived in order to optimize communication systems, for the assessment of
image quality, for coding applications, etc.
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Applications

Perceptual models can be incorporated in communication systems in or-
der to improve their performances and consequently the experience of the
user. This chapter focuses on the possible applications of perceptual models.
The �rst section introduces perception-based quality metrics, then the second
section addresses the coding �eld. Finally section 4 addresses super-resolution
and section 5 introduces motion sharpening.

3.1 Quality metrics

During acquisition, compression, transmission, and storage, digital images
su�er a wide variety of distortions that may cause visual degradations of the
image quality. So image quality needs to be assessed. There are two types of
quality assessments : subjective quality assessment, which refers to viewers
opinions about quality of an image over a display system, and objective
quality assessment, which is comes from objective quality metrics.

A visual quality metric is a tool that can optimize the performance of
digital imaging systems by taking into account the human perception of vi-
sual information and predicting automatically subjective ratings. Including a
visual quality metric within a compression scheme can reduce the visibility of
artefacts and increase the subjective quality, i.e. the quality perceived by the
viewer. Perceived video quality depends on many factors (viewing distance,
display size, resolution, contrast, brightness, sharpness, naturalness, etc.)

Feature-based quality metrics try to assess presence of visual artefacts
by evaluating features in images or video streams. Generally they are built
according to the same scenario : when the typical artefacts are identi�ed, a
database containing those artefacts is created and submitted to subjective
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quality experiments. The subjective assessments for each artefact are combi-
ned and balanced to create the prediction function that evaluates the impact
of the artefacts. The created prediction function should then be close to sub-
jective ratings. Consequently, the validation of an objective quality metric
depends on its closeness to subjective ratings.

Although feature-based quality metrics are e�cient, especially when a li-
mited number of artefacts are expected, they require a consistent database,
and a su�cient number of observers for the subjective quality tests that allow
their validation.

We can distinguish three kinds of metrics : the full-reference (FR) me-
trics, which need the entire reference data to process the comparison ; the
no-reference (NR) metrics, which do not need any reference and are gene-
rally based on blockiness estimation ; the reduced-reference (RR) metrics,
which extracts only some features of the reference for the comparison. In the
following subsection, metrics used for image and video sequences assessments
will be presented.

3.1.1 Overview of visual quality metrics

FR metrics

A widely used metrics is Peak Signal to Noise Ratio (PSNR), because of
its simplicity and mathematically easiness to deal with for optimization pur-
poses. Based on the logarithm of the inverse of Mean Square Error (MSE),
it is often considered as not suitable for perceptual assessments. This is due
to the fact that it does not take into account the temporal and spatial de-
pendencies between samples, it is a pixel-based metric. It is known that two
di�erent images can have the same PSNR while being widely perceptually
di�erent [77]. The MSE between two pictures I and Ĩ is de�ned as follows :

MSE = 1
XY

∑
l

∑
c[I(l, c)− Ĩ(l, c)]2

where XxY is the size of one image, I(l, c) is the value of one pixel in I. The
PSNR in decibels is de�ned as :

PSNR = 10log10( m2

MSE
)
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where m is the maximum value that a pixel can take ( 255 for 8-bit images).

In order to overcome these limitations, the Structural SIMilarity (SSIM)
was introduced. Based on the fact that human vision extracts and identi-
�es objects from a scene, SSIM metrics evaluates luminance, contrast and
structural comparisons. The SSIM between two signals x and y is de�ned as
follows :

SSIM(x, y) = (2µxµy+C1)(2σxy+C2)

(µ2x+µ2y+C1)(σ2
x+σ2

y+C2)

where, if the two signals x and y contain N samples, the statistical features
are :

� µx = x̄ = 1
N

∑N
i=1 xi

� µy = ȳ = 1
N

∑N
i=1 yi

� σ2
x = 1

N−1

∑N
i=1(xi − x̄)2

� σ2
y = 1

N−1

∑N
i=1(yi − ȳ)2

� σxy = 1
N−1

∑N
i=1(xi − x̄)(yi − ȳ)

� and the constants : C1 = (K1L)2, C2 = (K2L)2. L is the dynamic range
of the pixel values (for 8-bit images, L=255), K1 = 0.01, and K2 = 0.03

SSIM system can be seen on �gure 3.1.

Figure 3.1 � SSIM system
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Figure 3.2 � VSSIM system [78]

As an extension for video data, VSSIM was proposed [78]. It is not an
average of SSIM of both frames, but rather made of adjustments for weighted
SSIM (�gure 3.2 : for example dark regions that do not attract �xations
are assigned smaller weighting values). This metric is applied by moving a
window on the imageand calculating an SSIM map.

VSSIM measures the distorted video in three levels. The �rst level is the
local region level, where the measurement is applied on 8×8 windows of the
Y, Cr and Cb color planes. Let note SSIMY

ij , SSIM
Cb
ij and SSIMCr

ij the
SSIM index values of the Y, Cb and Cr components of the j-th sampling
window in the i-th video frame, the local quality index is de�ned as :

SSIMij = WY SSIM
Y
ij +WCbSSIM

Cb
ij +WCrSSIM

Cr
ij

where WY , WCb and WCr are the weights.
The second level is the frame level, where the local quality values are

combined into a frame-level quality index using :

Qi =
∑Rs
j=1 wijSSIMij∑Rs

j=1 wij

where Qi is the quality index measure of the i-th frame in the video sequence,
and wij is the weighting value given to the j-th sampling window in the i-th
frame. The third level is the sequence level that averages all the frames level
values to produce the overall quality of the video sequence by :
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Q =
∑F
i=1WiQi∑F
i=1Wi

where F is the number of frames in the video sequence and Wi is the weigh-
ting value assigned to the i-th frame. Weighting values are assigned according
to the local luminance, as explained in [78] A comparison [79] of objective me-
trics for video states that VSSIM is a computationally simple and consistent
method with human ratings, but does not address distortions such as vertical
distortions being more noticeable than horizontal distortions.

An interesting approach consists of determining whether the distortions
are below a threshold of visual detection. Visual Signal to Noise ratio (VSNR)
is based on [80]. If the distortions are suprathreshold, multiscale wavelet de-
composition is used and a Euclidean distance is performed in the distortion-
contrast space. Let E = Ĩ − I be the distortions contained in the distorted
image Ĩ, I be the original image, the VSNR is de�ned as :

V SNR = 10log10(C
2(I)
V D2 )

where C(I) denotes the Root Mean Square (RMS) of the original image I,
and VD is the visual distortion de�ned as :

V D = αdpc + (1− α)dgp√
2

the parameter α ∈ [0, 1], dgp is a measure of the extent to which global pre-
cedence has been disrupted, dpc denotes a measure of the perceived contrast
of the distortions.

Results show that it is generally competitive with current metrics of visual
�delity and has low computational complexity and low memory requirements.

Also, the Sarno� JND vision model should be mentioned [81]. It pre-
dicts the perceptual ratings that human subjects would assign to a degra-
ded image. It is based on di�erences between degraded image and origi-
nal image. Those di�erences are quanti�ed in units of the modelled human
just-noticeable di�erence (JND). Figure 3.3 illustrates the architecture : the
images of the pyramids are �ltered with a Gaussian �lter, then they norma-
lized. After calculating three contrast measures, a contrast energy mask is
processed. The algorithm ends with a pooling stage.

The DCT-based metric, called Digital Video Quality (DVQ) metric, has
performances similar to Sarno� JND model. The metric is described in [82] :
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Figure 3.3 � JND Model system

it contains spatial and temporal �ltering stages, a contrast masking stage
and a probability summation stage.

In [83], the proposed metric, Visual Information Fidelity (VIF), seems
to outperform Sarno�'s JND and SSIM, for the run tests. This metrics is
derived from a statistical model for natural scenes, a model for image distor-
tions, and a human visual system model.

RR metrics

Video Quality Metric (VQM)[84] is a standardized method of objectively
measuring video quality that closely predicts the subjective quality ratings.
It is based on the measure of the amount and orientation of activity in spatio-
temporal blocks from the sequence.

C4 [86] is a metric based on the comparison between structural informa-
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Figure 3.4 � C4 architecture [85]

tion extracted from the distorted and the original images (see �gure 3.4. It
relies on a model of the human visual system. In two steps, the perceptual
representation is �rst built for the original and the distorted image ; then
representations are compared to compute the quality score. However it is
a time-consuming method because it integrates a global contrast sensitivity
function.

3.1.2 Towards more 3D-adequate quality metrics

Perceived 3D image quality

Before evaluating image quality, it is essential to understand and know
the typical 3D-imaging distortions. Many distortions have been described in
the literature [87].

The keystone e�ect makes the image look like a trapezoid. It is due to
a converging camera con�guration where the left and right cameras are po-
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sitioned at an angle toward each other. It is more noticeable with increasing
camera base distance decreasing convergence distance, and decreasing lens
focal length and causes minimal eye strain.

The ghosting e�ect is also known as crosstalk. It is perceived as ghost,
shadow, or double contours due to imperfect image separation. But it can be
due to the display, which makes di�cult the task to elaborate a speci�c al-
gorithm. Crosstalk is suspected to be the main contributor to visual comfort
and image quality.

When depth is perceived as unnatural, that is to say the scene appears
to be divided into discrete depth planes, the distortion is called cardboard

e�ect. This is due to either image acquisition parameters, or compression
parameters resulting in a coarse quantization of disparity or depth values.
Along the same sequence, it can occur that an object or part of an object
is assigned to di�erent depth layers in time, which results in a �ickering

depth percept. Studies [88] have shown that in this case, a perceptual gain
can be obtained by reducing the depth resolution.

On multiview autostereoscopic display, the picket-fence e�ect is the
distortion that makes appear vertical banding in an image due to the black
mask between columns of pixels in the liquid crystal display (LCD).

In 3D video quality, we face the problem of binocular suppression [89].
This phenomenon is due to artefacts that cause contradictory depth cues to
be sent to each eye. Similarly to asymmetric video encoding (for instance
in stereoscopic encoding, one view can be encoded with higher quality than
the other) which results in the masking of the artefacts of the worse view,
the risk is to suppress the stereopsis because there is no combination of both
values.

Even though, it has been shown that image quality is important for visual
comfort, it is not the only factor of great 3D visual experience. New concepts
have to be considered such as presence (the feeling of being there and react,
investigated in [90], [91] and [92]), naturalness (i.e. perceptual realism, or
what observers perceive as a truthful representation of reality), and viewing
experience. Those concepts are widely studied in [93].
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Objective assessments

Because very complex concepts are involved in 3D visual experience, the
simple idea to apply 2D quality metrics to 3D video is hardly conceivable. In
fact, whereas 3D video aim is to provide a depth feeling, most used metrics
in the literature do not incorporate perceptual factors related to reproduced
depth, 3D image impairments, and visual comfort. In [93], the study investi-
gates whether 2D image quality models are su�ciently adequate to measure
3D quality, and which criterion is consistent for 3D video quality assessment.
Seven experiments show that image quality evaluation does not re�ect the
added value of depth (which has been neglected so far). A model of the ad-
ded value of 3D is proposed and incorporates image quality and perceived
depth : with a linear regression analysis, viewing experience and naturalness
were predicted and convincing �ts were found.

Figure 3.5 � Proposed metric in [94]

In [94], two 3D quality metrics are proposed and rely on both the use
of 2D metrics and depth information. SSIM or C4 are combined to a dispa-
rity distortion measure. Figure 3.5 shows one of the proposed systems : Q
designates the quality measure processed with SSIM. The quality measures
from 2D quality assessment performed to left and right images of a stereopair
(each pixel of the images has a SSIM measures, stored is an �Mmap�) is fused
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with the disparity distortion (measured locally). The �nal score is the mean
score of left and right distortions measures. The combination is calculated
using :

Ddl(p) = Mmap(p)(1−
√
Disp.Or(p)2−Disp.Dg(p)2

255
)

where p is the index of the current pixel, Mmap is the SSIM map obtained
from the reference and the distorted images (left or right images), Disp.Or is
the disparity of the reference stereopair and Disp.Dg is the disparity of the
degraded stereopair. Results show that combining the disparity distortion
measure with SSIM metric enhances performances, and the results are close
to perceptual objective metrics such as C4.

In [95], the proposed FR metric is composed of two components : stereo-
scopic quality (Qs) and monoscopic quality (Qm), as illustrated in �gure3.6.
This FR metric compares the initial stereo-frames, designated as Lref and
Rref , with the distorted stereo-frames, denoted as Ltest and Rtest. The pro-
posed metric should assess the amount of binocular cues preserved by compa-
ring the perceptual disparity maps. Perceptual disparity maps are generated
by applying a �block matching� based on a perceptual measure (SSIM in
the experiments). A stereo-similarity map is also generated from the SSIM
measures of the optimum disparity vectors found during the �block mat-
ching� process. Then, they multiply the two maps element-wise, and obtain
the stereoscopic quality. This is done for various scales of the stereopairs
and averaged to obtain the �nal Qs. Cyclopean images are made from the
reference pair and the distorted pair, as the human eye would see it as a
monoscopic image. Then, the two images are perceptually compared (using
SSIM). This process is done at di�erent scales, and the �nal Qm results in the
mean value. The relative importance of Qm and Qs for the overall stereosco-
pic quality is to be studied as future work, since it is di�erent from observer
to observer, depending on how much the observerï¿½s visual system relies on
binocular cues for depth perception. The metric is tested on distorted stereo
images and stereo video sequences. The aim is to build a perceptually-aware
feedback for a H.264 based stereo video encoder. The results show that Qs

and Qm follows the subjective opinion (MOS) better than SNR values.

In [96], the proposed metric can evaluate depth image based rendering
for video plus depth representation. It is based on Color and Sharpness of
Edge Distortion (CSED). Color distortion evaluates the luminance loss of
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Figure 3.6 � Proposed perceptual metric in [95]

the rendered image and the latter measures a depth-weighted proportion of
remaining edge to the original edge. So the originality of this metric is that it
also gives information about synthesis error. The metric follow the subjective
ratings. Color distorsion is measured according to :

S1(x, y) = 2µxµy+C

µ2x+µ2y+C

where C is a constant to take e�ect only when µ2
x+µ2

y is small, and µx and µy
are the mean luminance of a 5×5 window centered by x and y, respectively
the disoccluded pixel in rendering image and of the corresponding pixel in
reference.

Sharpness is measured using :

S2(x, y) =
∑
i∈δx

⋂
δy
Di∑

j∈δy Dj

where δx, δy are the edge pixels along the boundary position of the hole re-
gion in x and y respectively, and D is the intensity of corresponding pixel in
depth image.

In [38], an imaging process channel for feature-based 3D quality estima-
tion is proposed. It takes into account the binocular mechanisms. It is a FR
metric that �rst transform each channel into a perceptual color space such
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as S-CIELAB ; then the next stage estimates the visibilities of depth cues ;
�nally, the processed visual information of the test and reference video se-
quences are compared by a structural similarity metric (for CSF perceptual
salience estimation).

In [97], a perceptual metric for stereoscopic video, based on the human
visual system mechanisms, is proposed. It is based on the most relevant
properties of the human visual system, for stereo video, namely : contrast
sensitivity function, multi-channel and masking e�ect, and depth perception.
The metric consists of di�erent steps (�gure 3.7) :

� perceptual decomposition : after temporal decomposition, the output
is subject to spatial decomposition where the left and right views are
decomposed into several subsets of high frequencies and disparity in-
formation. This spatial decomposition is performed with a 3D wavelet
decomposition technology based on disparity compensation view �lte-
ring (DCVF) ;

� contrast conversion and masking : the perceptual response to contrast
rk,θ(x, y)and the perceptual response to depth rz are computed. They
are expressed as :

rk,θ(x, y) = Kscsfk
c2k,θ(x,y)

∆+
∑
θ ck,θ

where Ks is a gain factor, csfk is the contrast sensitivity of scale k,
ck,θ(x, y) is the contrast of the subset.
And the perceptual response to depth is as follows :

rz(x, y) = Kzdsfcz(x, y) + (1−Kz)dsf |H l
t(x, y) +Hv(x, y)−Hr

t (x, y)|

where cz(x, y) is the depth contrast, dsf is the depth sensitivity func-
tion, H l

t(x, y), Hr
t (x, y) are the high frequency band after temporal

�ltering, Kz is the weight coe�cient and Hv is the high frequency band
after �ltering.

� pooling and quality mapping : the two kinds of responses are computed
for left and right views and the overall distortion e between the refe-
rence video and the distorted video sequences, for frame i is :

ei =
∑

k Ak(
∑

θ,x,y |rrk,θ(x, y)− rdk,θ(x, y)|4)
1
4

+Bz(
∑

x,y |rrz(x, y)− rdz(x, y)|4)
1
4

where Ak and Bz are weight coe�cients determined experimentally,
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rrk,θ(x, y), rrz(x, y) and rdk,θ(x, y), rdz(x, y) are the responses of the refe-
rence sequence and the distorted sequence respectively.

The multi-channel vision model proposed is based on 3D wavelet decomposi-
tion. Results show that the proposed method is more perceptually consistent
with human ratings than currently used pixel-to-pixel based method such as
PSNR and MSE.

Figure 3.7 � Proposed perceptual metric in [97]
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The complete mechanisms involved in human visual system are not enti-
rely understood but are dedicated to various studies currently. The new 3D
quality metrics that will assess 3D content (images and video sequences) seem
to require the knowledge, a modelling tool or the incorporation of such me-
chanisms. The previously presented studies seem to outperform pixel-based
metrics, as they integrate more appropriately perceptual concepts. It is a
fairly new research area but the studies already show that 2D inspired me-
trics are no longer su�cient in the 3D domain because not every dimensions
are considered in those priors metrics.

Most of the presented metrics are applied on stereoscopic images or vi-
deo sequences (only texture sequences are processed) but we may want to
apply them on multiview video (MVV) data, or multiview video plus depth
(MVD) data. A conventional monoscopic video quality metric (say VSSIM)
can be used as a quality measure for video plus depth data by measuring
the quality of virtual views that are rendered from the distorted color and
depth sequences. The reference view is then the virtual view rendered from
undistorted texture and depth maps. This could be extended to MVD. An
extension to MVD data can be imagined for [96].

It is worth underlining the fact that since nor disparity neither depth
maps are natural images, it is non-sense applying perceptual-based distor-
tion metrics. Evaluating the perceptual quality of a 3D content seems to
require considering the global rendering of the content. In a freeviewpoint
context, direct intervention, or comparison between two depth or disparity
maps is a controversial subject because we do not know exactly the relation-
ship between depth and texture, i.e. we do not know exactly which artefact
in the depth map will end up in which artefact in the rendered view. It is
then di�cult to quantify the quality of a depth map, in a perceptual context.
So it may be helpful studying the interactions between depth, texture and
rendered views, in the case of the use of multiview video plus depth data.
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3.2 Coding

As digital images and video products are designed for human viewing,
human visual system (HVS) models are meant to faithfuily reproduce per-
ceptually important infomation and eliminate the infomation that the visual
system cannot perceive. Perceptually lossless compression method aimed to
achieve this. In the meantime, another problem is the assessment question :
because of the lack of standardization in the �eld of objective quality as-
sessment, and the lack of reliable comparisons of the performance of the
di�erent state-of-the-art metrics, it is often di�cult to evaluate the codecs
performances.

Concerning perceptually lossless methods, the challenge remains either to
preserve the best the image quality at a �xed bit rate, or to reduce the rate
required for a given quality. In [98], a perceptually based fractal image com-
pression is proposed. It is based on the assumption that all real-world images
are rich in a�ne redundancy. The proposed method uses a human visual
(HVS) model that improves the encoding �delity. The fractal compression
is believed to be best suited for textures and natural images, relying on the
basic assumption of redundancy. Also, fractal compression can achieve high
coding e�ciency and good perceptual quality levels. Typical artifacts are
blocking artifacts and image blurring.

Wu and al., in [99], used an advanced human vision model to identify
and to remove psycho-visual redundancy. The proposed coder is built on the
JPEG2000 framework. Instead of embedding the vision model into a post-
compression rate-distortion optimization stage, they proposed to embed it
into a "visual pruning function". For each frequency level, at each orienta-
tion and location, a reference coe�cient and a set of distorted coe�cients
are generated, by applying a progressive bit-plane truncation from the least
signi�cant bit. Then, comparing the reference coe�cient and each distorted
coe�cient using their vision model generates perceptual distortion measures,
and a set of percentage responses. Finally the set of distortion measure, and
the set of percentage reponses are gathered. Coe�cient are then truncated to
a perceptually optimal bit-plane level according to predetermined thersholds.
Results shown higher compression ratio gains comparing to lossless methods,
without any visible distortion.

In [100], the author proposed a saliency model that is used to realize a
saliency-based compression. The quantization varies according to the mea-
sure of salience. Fine quantizaztion is applied on high saliency regions while,
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coarser quantization is applied on low saliency regions. The experiments the
author presents are JPEG-based. The results show that the saliency-based
compressed images are more pleasant to look at but, because of the losses,
its SNR scores are worst than JPEG for the same compression ratio.

Video compression quality was improved by using a saliency map estima-
tor in [101]. A ROI-based video compression setup and low bit-rate MPEG-4
video encoding were used. This saliency-based model for visual attention ope-
rates both top-down and bottom-up information. It creates a skin conspicuity
map and orientation, intensity and color conspicuity maps within a wavelet
subband analysis.

Based on the fact that human vision is sensitive to spatial frequencies and
as well to moving velocities, a visual measure was proposed to be included
in video compression methods, in [102]. Three visual factors are involved :
motion attention model, unconstrained eye-movement incorporated spatio-
velocity visual sensitivity model, and visual masking model. Quantization
parameters at macroblock level for video coding are adjusted on the basis
of the combined measure the three factors, i.e. of the measure of motion
attention of the current macroblock, the estimated spatiovelocity and the
spatiotemporal distortion masking measure.

Research e�orts on foveation techniques led to more e�cient image and
video coding systems in [103]. It is based on the phenomenon of point of
�xation : it removes high frequency information redundancy from the re-
gions away from the �xation point. The fovea is the region of highest visual
acuity (see Figure 1.1) because of its high concentration of cones. The point a
human observer gazes at is called a �xation point or foveation point because
it is projected on the fovea. The visual sensitivity decreases dramatically
with distance from the �xation point. As a result, removing redundancy is
the major motivation of this technique since the bandwidth can be reduced.
Foveation techniques are used in many other application �elds such as image
quality assessment, image segmentation, stereo 3D scene perception and vo-
lume data visualization.
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3.3 Super-resolution

Sadaka et al. proposed a Perceptually Attentive Super-Resolution (PASR)
method [104]. In this method, a perceptual model based on just noticeable
distortion thresholds is utilized to select the active pixels which need to be
processed by the Super-resolution algorithm. These active pixels are iterated
upon until the desired visual quality is reached. After that, a visual attention
model is used to get the attended regions in which the active pixels are proces-
sed at a higher accuracy by the SR algorithm compared with the pixels lying
in other regions. By using the visual attention model, the proposed method
signi�cantly reduce the computational complexity of the super-resolution al-
gorithm without loss of the desired perceptual quality.

Super-resolution (SR) methods are widely utilized to get High-Resolution
(HR) images, which are unaliased and sharp/deblurred, by combining infor-
mation from multiple Low-Resolution (LR) frames of the same scene. Howe-
ver, the SR techniques always su�er from high computational complexity.

On the other hand, Perceptual Quality Metrics (PQM) is usually utili-
zed to imitate the human visual system perception of distortions in order
to improve the assessment of image/video quality. Due to the human visual
attention, artifacts in salient regions are likely to be more annoying to the
observer than artifacts in less salient regions. Thus, the visual attention ba-
sed PQM can be e�ectively used to assess the visual quality of images.

In this Perceptually Attentive Super-Resolution method, Sadaka et al.
�rst utilize the visual attention model purposed by Itti et al. to detect atten-
ded regions. This model is a bottom-up approach based on neural receptive
�eld stimuli of low-level image features of contrast in intensity and orien-
tation. Besides the visual attention model, the PASR method used a Just
Noticeable Di�erence model proposed by Ferzli et al to measure the contrast
sensitivity threshold.

The MAP-based SR framework proposed by Hardie et al is used to es-
timate the HR image. Being di�erent from the original framework, only a
subset of pixels, referred to as active pixels, are updated at each iteration
in PASR. The selection of active pixels is based on comparisons with locally
computed Just Noticeable Di�erence threshold. The existence of active pixels
and iteration will not stop until the threshold is reached.

The PASR method also divides the image into a foreground and a back-
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ground based on the result of visual attention computational model. The
threshold to the foreground region has a lower threshold compared to the
background region. Therefore, the subset of active pixels in the salient fo-
reground region is treated with a higher accuracy. On the other hand, the
algorithm continues iterating on a smaller subset of active pixels belonging
to the visual salient areas, so the number of pixels that need to be proces-
sed is signi�cantly reduced without a visually perceived loss in quality. The
numbers of active pixels per iteration are shown in �gure 3.9.

The performance of this Perceptually Attentive Super-Resolution, a Super-
resolution algorithm combing the perceptual model and visual attention mo-
del, is shown in �gure 3.8. Figure 3.10 shows the performance.

Figure 3.8 � Visual performance results for the 256x256 CLOCK image with
a resolution enhancement factor 4, number LR images = 4, and additive
Gaussian noise variance = 4, regularization operator = 150. (a) Original
image. (b) Bilinearly interpolated LR image with 3 VA regions. (c) MAP SR
method [4], ε = 0.0001. (d)SELP SR method [3], ε = 0.0001. (e) Proposed
PASR, ε = 0.0001, >=15, VA regions = 3.

Figure 3.9 � Active Pixels per Iteration.
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Figure 3.10 � PSNR and Percentage Pixel Savings Result

3.4 Adaptive 3D rendering

Another application of the perceptual modeling of human visual system
and visual attention is an adaptive 3d Rendering method based on Region-
of-Interest proposed by Chamaret et al [105].

This paper proposed a post-processing method to improve the Quality of
Experience (QoE) of 3DTV by utilizing visual attention model. It is widely
accepted that the mismatch of accommodation and vergence of 3D video
causes the visual strain. This kind of mismatch is especially serious when
objects pop out from the screen (i.e. be with a positive parallax value). This
causes most visual strain. However, this kind of mismatch does not exist at
the zero parallax plane (i.e. the screen).

Therefore, if people looks at the objects in front of the screen for a long
time, or the distance between the object and the screen is too large, the
visual strain increases and the QoE declines. Consequently, to improve the
QoE, it is possible to limit the visual strain by moving the areas with a large
parallax value to the zero parallax plane.

To solve the problem, it is necessary to : (1) �nd the ROI which attracts
observers' attention ; (2)move this area to the zero parallax plane ; (3)keep
observers' attention on the ROI. The diagram is shown in �gure 3.11 :

3.5 Motion Sharpening

The studies plan to extend to the temporal domain the characterization of
the HVS, exactly the idea is to extend the spatial CSF to the spatio-temporal
domain. The simpler way consists in computing the spatio-temporal CSF,
as the product of the spatial CSF by the temporal CSF. But this decoupled
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Figure 3.11 � Overview block diagram

model is not appropriate, in particular at low frequencies, because the spatial
and temporal proprieties are very linked[106, 107].

Some works have also demonstrated the importance of the motion for the
contrast perception (with the increase of the thresholds for the detection[108]).
Other works[109] have showed that the motion is able to modify the percep-
tion of the blur. In this context we address the phenomenon known as the
"motion sharpening" (MS).

Indeed the motion can improve the visual quality : some static and blurred
images can be perceived sharper when they are animated (note : the "motion
blurring" is the opposite e�ect, when the motion blurs the perception of
objects that are sharp when they are static).

The MS have been studied in the literature using natural images[110, 111]
or synthetic stimuli[112, 113, 114, 115, 116, 117, 118, 119]. Only few papers
aims at modeling the MS. [117]have showed that the perception of the blur is
inversely proportional to the motion of the moving objects. [120] have showed
that the perceived sharpness decreases when the number of objects increases
in the sequence. [111] have showed that if the sequence contains only moving
objects with a low saliency, the perceived sharpness is low because these ob-
jects don't belong to a region of interest. [114, 115, 116] wanted at �nding
the parameters that characterized the MS, he showed that the ability of the
HVS to discriminate "patterns" decreases with the motion. [118] have also
demonstrated that the motion can decrease the discrimination of the blur.
[113, 121] have showed the independence between the MS and the contrast.

Some works aims at exploiting the MS for video coding applications. As
example we can cite[111] who proposed to use a (spatio-temporal) lowpass
�lter to smooth the sequence before its coding. They explained that 40% of
the information can be reduced using this method. [122, 123] proposed to �l-
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ter some images of the sequence (a sort of temporal sub-sampling) before the
coding. The �ltering takes into account of the characteristics that in�uence
the MS. Using a H.264 coder, from 9.13% to 14,51% of the bit-rate have been
saved without visible distortions.
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3.6 Conclusion

This section presented many applications for perceptual models. Concer-
ning the quality metrics, as much as it has been widely explored for 2D
applications, 3D is still under investigation. For coding applications, even
though HVS-based systems are thought to be more likely respectful towards
human perception, it is di�cult to evaluate the codecs. This section also in-
troduced the super-resolution technique that allows to embed the accuracy
in some speci�c regions ; the adaptive 3D rendering to improve the quality of
experience of 3DTV ; and motion sharpening that can be exploited for coding
applications by taking into account the motion in a sequence.
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