K. Carlson, J. Andresen, and H. Orr, Emerging pathogenic pathways in the spinocerebellar ataxias, Current Opinion in Genetics & Development, vol.19, issue.3, pp.247-53, 2009.
DOI : 10.1016/j.gde.2009.02.009

L. Schols, P. Bauer, T. Schmidt, T. Schulte, and O. Riess, Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis, The Lancet Neurology, vol.3, issue.5, pp.291-304, 2004.
DOI : 10.1016/S1474-4422(04)00737-9

D. Chen, Z. Brkanac, C. Verlinde, X. Tan, L. Bylenok et al., Missense Mutations in the Regulatory Domain of PKC??: A New Mechanism for Dominant Nonepisodic Cerebellar Ataxia, The American Journal of Human Genetics, vol.72, issue.4, pp.839-888, 2003.
DOI : 10.1086/373883

Y. Ikeda, K. Dick, M. Weatherspoon, D. Gincel, K. Armbrust et al., Spectrin mutations cause spinocerebellar ataxia type 5, Nature Genetics, vol.86, issue.2, pp.184-90, 2006.
DOI : 10.1038/ng1728

M. Waters, N. Minassian, G. Stevanin, K. Figueroa, J. Bannister et al., Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes, Nature Genetics, vol.273, issue.4, pp.447-51, 2006.
DOI : 10.1038/ng1758

K. Hara, A. Shiga, H. Nozaki, J. Mitsui, Y. Takahashi et al., Total deletion and a missense mutation of ITPR1 in Japanese SCA15 families, Neurology, vol.71, issue.8, pp.547-51, 2008.
DOI : 10.1212/01.wnl.0000311277.71046.a0

M. Knight, D. Hernandez, S. Diede, H. Dauwerse, I. Rafferty et al., A duplication at chromosome 11q12.2-11q12.3 is associated with spinocerebellar ataxia type 20, Human Molecular Genetics, vol.17, issue.24, pp.3847-53, 2008.
DOI : 10.1093/hmg/ddn283

J. Van-swieten, E. Brusse, B. De-graaf, E. Krieger, G. Van-de et al., A Mutation in the Fibroblast Growth Factor 14 Gene Is Associated with Autosomal Dominant Cerebral Ataxia, The American Journal of Human Genetics, vol.72, issue.1, pp.191-200, 2003.
DOI : 10.1086/345488

B. Van-de-warrenburg, R. Sinke, C. Verschuuren-bemelmans, H. Scheffer, E. Brunt et al., Spinocerebellar ataxias in the Netherlands: Prevalence and age at onset variance analysis, Neurology, vol.58, issue.5, pp.702-710, 2002.
DOI : 10.1212/WNL.58.5.702

L. Schols, G. Amoiridis, T. Buttner, H. Przuntek, J. Epplen et al., Autosomal dominant cerebellar ataxia: Phenotypic differences in genetically defined subtypes?, Annals of Neurology, vol.87, issue.6
DOI : 10.1002/ana.410420615

G. Stevanin, A. Durr, C. Dussert, C. Penet, and A. Brice, Mutations in the FGF14 gene are not a major cause of spinocerebellar ataxia in Caucasians, Neurology, vol.63, issue.5, p.936, 2004.
DOI : 10.1212/01.WNL.0000137020.30604.1E

H. Houlden, J. Johnson, C. Gardner-thorpe, T. Lashley, D. Hernandez et al., Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11, Nature Genetics, vol.143, issue.12, pp.1434-1440, 2007.
DOI : 10.1093/hmg/ddl067

S. Klebe, A. Durr, A. Rentschler, V. Hahn-barma, M. Abele et al., New mutations in protein kinase C?? associated with spinocerebellar ataxia type 14, Annals of Neurology, vol.119, issue.5, pp.720-729, 2005.
DOI : 10.1002/ana.20628

C. Cagnoli, A. Brussino, D. Gregorio, E. Brusco, A. Stevanin et al., The (???16C > T) substitution in thePLEKHG4 gene is not present among European ADCA patients, Movement Disorders, vol.61, issue.5, pp.752-755, 2007.
DOI : 10.1002/mds.21389

A. Harding, THE CLINICAL FEATURES AND CLASSIFICATION OF THE LATE ONSET AUTOSOMAL DOMINANT CEREBELLAR ATAXIAS, Brain, vol.105, issue.1, pp.1-28, 1982.
DOI : 10.1093/brain/105.1.1

C. Beetz, A. Nygren, J. Schickel, M. Uer-grumbach, K. Burk et al., High frequency of partial SPAST deletions in autosomal dominant hereditary spastic paraplegia, Neurology, vol.67, issue.11, pp.1926-1956, 2006.
DOI : 10.1212/01.wnl.0000244413.49258.f5

A. Durr, G. Stevanin, S. Forlani, C. Cazeneuve, C. Cagnoli et al., Conventional mutations are associated with a different phenotype than polyglutamine expansions in spinocerebellar ataxias, Eur.J.Hum.Genet, vol.17, issue.2, p.335, 2009.

G. Yeo and C. B. Burge, Maximum Entropy Modeling of Short Sequence Motifs with Applications to RNA Splicing Signals, Journal of Computational Biology, vol.11, issue.2-3, pp.377-394, 2004.
DOI : 10.1089/1066527041410418