From Hermite polynomials to multifractional processes

Renaud Marty

To cite this version:

HAL Id: hal-00559859
https://hal.archives-ouvertes.fr/hal-00559859
Submitted on 26 Jan 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
From Hermite polynomials to multifractional processes

Renaud Marty

Key-words: Multifractional processes, Hermite polynomials, limit theorems, sample path properties.

AMS classification (2010): 60F17, 60G17, 60G22

Abstract

We establish an invariance principle where the limit process is a Hermite-type process. We also prove that this limit process is multifractional. Our main result is a generalization of results from [6] and [11] to a multifractional setting. It also generalizes the main result of [3] to a non-Gaussian framework.

1 Introduction

Hermite processes have attracted a lot of attention for many years because they have nice properties as they generalize fractional Brownian motion [6, 11]. Let \(m \in \mathbb{N}^* \) and \(H \in (1/2, 1) \). The Hermite process \(W_{m,H} \) of order \(m \) and Hurst index \(H \) can be defined for instance in terms of Dobrushin-Wiener-Itô integrals [5] as, for every \(t \in [0, \infty) \),

\[
W_{m,H}(t) = \int_{\mathbb{R}^m} f_{m,H}(x_1, \ldots, x_m, t)d\hat{B}_{x_1} \cdots d\hat{B}_{x_m}
\]

with

\[
f_{m,H}(x_1, \ldots, x_m, t) = C(m, H) \frac{\exp(it(x_1 + \cdots + x_m)) - 1}{i(x_1 + \cdots + x_m)|x_1 \cdots x_m|^{(2H-2+m)/2m}}
\]

where \(C(m, H) \) is a normalizing constant and \(d\hat{B} \) is the complex random measure corresponding to a standard Brownian motion \(B \). Notice that for \(m = 1 \), the Hermite process \(W_{1,H} \) is the fractional Brownian motion with Hurst index \(H \).

An important property of Hermite processes is the invariance principle [4, 6, 10, 11], which can be stated as follows. Let \(X = \{X_j\}_{j \in \mathbb{N}} \) be a Gaussian stationary sequence of centered random variables with \(\mathbb{E}[X_0^2] = 1 \) and satisfying the property

\[
\mathbb{E}[X_0X_j] \sim cj^{2(H-1)/m} \quad \text{as } j \to \infty
\]

where \(c \) is a positive real number. Notice that (2) is a long range property. We consider a function \(\phi \in L^2(e^{-x^2/2}dx) \) with Hermite rank equal to \(m \), and define the partial sum \(S_{\phi,H}^N(t) \) for every \(N \in \mathbb{N} \) and \(t \in [0, \infty) \) as

\[
S_{\phi,H}^N(t) = \frac{1}{N^m} \sum_{j=1}^{[Nt]} \phi(X_j).
\]

The invariance principle establishes that the finite-dimensional distributions of \(S_{\phi,H}^N \) converge, as \(N \) goes to infinity, to the Hermite process \(W_{m,H} \) with a suitable constant \(C(m, H) \).

*Institut Elie Cartan de Nancy, Nancy-Université, CNRS, INRIA, B.P. 239, F-54506 Vandoeuvre-lès-Nancy Cedex, France. email : renaud.marty@iecn.u-nancy.fr
As fractional Brownian motion, Hermite processes of index H are $H-$self-similar and H'–Hölder-continuous if and only if $H' < H$. As other fractional processes, a drawback of Hermite processes lies in the strong homogeneity of their properties, which are governed by the Hurst index H. In order to generalize fractional processes to less homogeneous processes, multifractional processes have been introduced, as for instance the class of multifractional Brownian motions [2, 8]. Multifractional processes have locally, but not globally, the same properties as fractional processes. These properties are governed by a function h that substitute for the constant H.

As for fractional Brownian motion and other Hermite processes, some nontrivial multifractional Gaussian processes satisfy invariance principle. Indeed, it is proven in [3] the following result. Let a Gaussian field $\{X_j(H)\}_{j,h\in\mathbb{R}\times(1/2,1)}$ satisfying some long-range assumptions and a continuous function h taking its values in $(1/2,1)$. Then, the finite-dimensional distributions of the process

$$t \to S_h^n(t) = \sum_{j=1}^{[Nt]} \frac{X_j(h(j/N))}{N^{1/2}} \tag{4}$$

converge to those of a centered Gaussian process S_h with covariance given for $t, s \geq 0$ by:

$$\mathbb{E}[S_h(t)S_h(s)] = \int_0^t d\theta \int_0^s d\sigma R(h(\theta), h(\sigma))|\theta - \sigma|^{h(\theta)+h(\sigma)-2} \tag{5}$$

where R is a continuous function and derived from long-range assumptions of the field $\{X_j(H)\}_{j,h\in\mathbb{R}\times(1/2,1)}$. The process S_h is multifractional. If the function h is constant, then the process S_h is a fractional Brownian motion. The result above is then a generalization of classical invariance principle [9].

In this work, we generalize invariance principles presented above. We study the asymptotic behavior of a sequence generalizing both (3) and (4). In particular, this sequence is defined from a Gaussian field $\{X_j(H)\}_{j,h\in\mathbb{R}\times(1/2,1)}$ satisfying long-range properties, a function $\phi \in L^2(e^{-x^2/2}dx)$ with Hermite rank equal to m and a Hurst function h. We get as a limit a multifractional process $S_{m,h}$ that depends on the integer m and the function h. If the function is a constant H, then the limit process is the Hermite process with Hurst index H and Hermite order m. If the integer m is equal to 1, then the limit process corresponds to a Gaussian multifractional process of the class obtained in [3].

The paper is organized as follows. In Section 2 we recall some definitions and preliminary results about Hermite polynomials and multiple stochastic integrals, which are used throughout the paper. In Section 3 we establish the main result of the paper. Section 4 is devoted to the proof of the main result.

2 Preliminaries

In this section we give some definitions and recall some results we use throughout this paper.

For each positive integer $m \in \mathbb{N}$, the mth Hermite polynomial P_m of is defined as, for every $x \in \mathbb{R}$,

$$P_m(x) = (-1)^m e^{x^2/2} \frac{d^m}{dx^m} e^{-x^2/2}.$$

The family of the Hermite polynomials $\{P_m, m \in \mathbb{N}\}$ is an orthogonal basis of the space $L^2(e^{-x^2/2}dx)$ defined by

$$L^2(e^{-x^2/2}dx) = \left\{ \phi : \mathbb{R} \to \mathbb{C}, \phi \text{ measurable and } \int_{\mathbb{R}} |\phi(x)|^2 e^{-x^2/2}dx < \infty \right\}$$

with the inner product $\langle \cdot, \cdot \rangle$ defined as, for every ϕ_1 and ϕ_2 in $L^2(e^{-x^2/2}dx)$,

$$\langle \phi_1, \phi_2 \rangle = \int_{\mathbb{R}} \phi_1(x) \overline{\phi_2(x)} e^{-x^2/2} \frac{dx}{\sqrt{2\pi}}$$

2
and whose the corresponding norm will be denoted as $\| \cdot \|$. For every function $\phi \in L^2(e^{-x^2/2}dx)$, there exists an integer m_ϕ such that $\langle \phi, P_{m_\phi} \rangle \neq 0$ and $\langle \phi, P_m \rangle = 0$ for every $m = 0, \ldots, m_\phi - 1$. The integer m_ϕ is called the Hermite index of the function ϕ. Hence, for every $\phi \in L^2(e^{-x^2/2}dx)$,

$$\phi = \sum_{m=0}^{\infty} \frac{\langle \phi, P_m \rangle}{m!} P_m = \sum_{m=m_\phi}^{\infty} \frac{\langle \phi, P_m \rangle}{m!} P_m$$ \hspace{1cm} (6)

where the convergence of the series holds for the norm $\| \cdot \|$. If X and Y are two Gaussian random variables $\mathcal{N}(0, 1)$, then, for every j and k in \mathbb{N}^*,

$$E[P_j(X)P_k(Y)] = \begin{cases} k!E[XY]^j & \text{if } k = j, \\ 0 & \text{if } k \neq j. \end{cases}$$ \hspace{1cm} (7)

As a consequence, for every $\phi \in L^2(e^{-x^2/2}dx)$ and $X \sim \mathcal{N}(0, 1)$,

$$E[|\phi(X)|^2] = \sum_{m=0}^{\infty} \frac{\langle \phi, P_m \rangle^2}{m!} < \infty$$ \hspace{1cm} (8)

Other objects we strongly use in this paper are multiple Wiener-Itô integrals [5, 7]. Many notions of multiple Wiener-Itô integrals with respect to Brownian motion exist and are used to define processes as Hermite processes [6, 11]. Here we have chosen to use the so-called Dobrushin-Wiener-Itô integrals introduced in [5]. Let $d \in \mathbb{N}^*$, $f : \mathbb{R}^d \to \mathbb{C}$ be a square-integrable function, and $B = \{B_t\}_{t \in \mathbb{R}}$ be a standard Brownian motion in \mathbb{R}. In this paper, the Dobrushin-Wiener-Itô integral of f is denoted $\int_{\mathbb{R}^d} f \, d\hat{B}^{\otimes d}$ or

$$\int_{\mathbb{R}^d} f(x_1, \ldots, x_d) d\hat{B}_{x_1} \cdots d\hat{B}_{x_d}.$$

It is well-defined if f is even and symmetric, that is, if f satisfies, for every $(x_1, \ldots, x_d) \in \mathbb{R}^d$,

$$f(x_1, \ldots, x_d) = f(-x_1, \ldots, -x_d),$$

and for every permutation ς on $\{1, \ldots, d\}$,

$$f(x_1, \ldots, x_d) = f(x_{\varsigma(1)}, \ldots, x_{\varsigma(d)}).$$

We refer the reader to [5] for the precise definition of $\int_{\mathbb{R}^d} f \, d\hat{B}^{\otimes d}$. Here we only recall some properties that we use in the proof of the main result. The integral $\int_{\mathbb{R}^d} f \, d\hat{B}^{\otimes d}$ is Gaussian if and only if $d = 1$. In any case, it is a centered random variable and we can express its variance as

$$\mathbb{E} \left[\left(\int_{\mathbb{R}^d} f \, d\hat{B}^{\otimes d} \right)^2 \right] = d! \int_{\mathbb{R}^d} |f(x_1, \ldots, x_d)|^2dx_1 \cdots dx_d.$$

We have a substitution formula for multiple integrals, using the self-similarity of the Brownian motion. For every $a > 0$, we have the equality in distribution

$$\int_{\mathbb{R}^d} f(x_1, \ldots, x_d) d\hat{B}_{x_1} \cdots d\hat{B}_{x_d} \overset{\text{dist}}{=} a^{d/2} \int_{\mathbb{R}^d} f(ax_1, \ldots, ax_d) d\hat{B}_{x_1} \cdots d\hat{B}_{x_d}.$$ \hspace{1cm} (9)

Another formula for change of variables is applied in this paper and is a consequence of Proposition 4.2 of [5]. Let $z : \mathbb{R} \to \mathbb{C}$ be a bounded and measurable function satisfying $z(x) = z(-x)$ and $|z(x)| = 1$ for every $x \in \mathbb{R}$. Then, we have the equality in distribution

$$\int_{\mathbb{R}^d} f(x_1, \ldots, x_d) d\hat{B}_{x_1} \cdots d\hat{B}_{x_d} \overset{\text{dist}}{=} \int_{\mathbb{R}^d} f(x_1, \ldots, x_d) z(x_1) \cdots z(x_d) d\hat{B}_{x_1} \cdots d\hat{B}_{x_d}.$$ \hspace{1cm} (10)

By linearity of the integral and the bounded convergence theorem, we can prove the following convergence lemma.
Lemma 1. Let \(\{f_N\}_N \) be a sequence of even and symmetric functions in \(L^2(\mathbb{R}^d, \mathbb{C}) \). We assume that there exist two even and symmetric functions \(f \) and \(f^* \) in \(L^2(\mathbb{R}^d, \mathbb{C}) \) such that, for a.e. \(x \in \mathbb{R}^d \), \(\lim_{N \to \infty} f_N(x) = f(x) \) and \(\sup_N |f_N(x)| \leq f^*(x) \). Then,

\[
\lim_{N \to \infty} \mathbb{E} \left[\left| \int_{\mathbb{R}^d} f_N \, d\hat{B}^\otimes d - \int_{\mathbb{R}^d} f \, d\hat{B}^\otimes d \right|^2 \right] = 0.
\]

To conclude this section, we mention a result that relate Hermite polynomials to multiple integrals. Let \(\psi \) be an even and symmetric function in \(L^2(\mathbb{R}, \mathbb{C}) \), \(m \) be a positive integer and \(P_m \) be the \(m \)th Hermite polynomial defined as previously. The random integral \(\int_{\mathbb{R}} \psi(\xi)d\hat{B}_\xi \) defines a centered Gaussian variable. If \(\mathbb{E} \left[\int_{\mathbb{R}} |\psi(\xi)|^2 d\xi \right] = 1 \) then we have almost surely

\[
P_m \left(\int_{\mathbb{R}} \psi(x) d\hat{B}_x \right) = \int_{\mathbb{R}^m} \psi(x_1) \cdots \psi(x_m) d\hat{B}_{x_1} \cdots d\hat{B}_{x_m}.
\]

3 Main result

We let \(m \in \mathbb{N}^* \) and define

\[
b_m = 1 - \frac{1}{2m}.
\]

We consider the Gaussian field \(X = \{X_n(H), n \in \mathbb{N}, H \in (b_m, 1)\} \) defined as, for every \(n \geq 0 \) and \(H \in (b_m, 1) \),

\[
X_n(H) = \int_{-\pi}^{\pi} \exp(\imath nx)g(H, x)|x|^{1/2-H} d\hat{B}_x
\]

where \(B \) is a standard Brownian motion and \(g : (b_m, 1) \times (-\pi, \pi) \to \mathbb{C} \) is a measurable function satisfying the following properties.

- For every \((H, x) \in (b_m, 1) \times [-\pi, \pi] \), \(g(H, x) = \overline{g(H, -x)} \). This property ensures that the field \(X \) is real.

- For every \(H \in (b_m, 1) \),

\[
\int_{-\pi}^{\pi} |g(H, x)|^2 |x|^{1-2H} dx = 1
\]

so that \(\mathbb{E}[X_n(H)^2] = 1 \).

- The function \(g \) is twice continuously differentiable on \((b_m, 1) \times (-\pi, \pi) \). We then define, for every \((H, x) \in (b_m, 1) \times (-\pi, \pi) \), \(g_0(H) = g(H, 0) \) and \(g_1(H, x) = \int_{0}^{\pi} (\partial g/\partial \xi)(H, \xi) d\xi \) so that \(g = g_0 + g_1 \) and, for every compact set \(K \) of \((b_m, 1) \),

\[
\lim_{x \to 0} \sup_{H \in K} \left(|g_1(H, x)| + \left| \frac{\partial g_1}{\partial H}(H, x) \right| \right) = 0.
\]

The assumptions above ensure that the covariance function satisfies the uniform long-range property of [3]. In particular, for every compact set \(K \subset (b_m, 1) \), we have

\[
\lim_{j-k \to \infty} \sup_{(H_1, H_2) \in K^2} \left| (j-k)^{2-H_1-H_2} \mathbb{E}[X_j(H_1)X_k(H_2)] - R(H_1, H_2) \right| = 0
\]

where

\[
R(H_1, H_2) = g_0(H_1)g_0(H_2) \int_{\mathbb{R}} \exp(\imath x)|x|^{1-H_1-H_2} dx
\]

for every \((H_1, H_2) \in (b_m, 1) \).
We consider a continuously differentiable function \(h : [0, \infty) \to (1/2, 1) \) and a function \(\phi \in L^2(e^{-\xi^2}/dx) \) with Hermite rank equal to \(m \in \mathbb{N}^* \). We let
\[
\tilde{h} := 1 + \frac{h - 1}{m} : [0, \infty) \to (b_m, 1).
\]
We define for every \(t \geq 0 \) and \(N > 0 \)
\[
S_{\phi,h}^N(t) := \sum_{j=1}^{[Nt]} \phi(X_j(h_j^N)) \tag{16}
\]
with
\[
h_j^N := 1 + \frac{h(j/N) - 1}{m} = \tilde{h}(j/N).
\]
Now we can state the main result of this paper.

Theorem 1. As \(N \to \infty \), the finite-dimensional distributions of \(S_{\phi,h}^N \) converge to those of \(S_{m,h} \) defined for every \(t \geq 0 \) as
\[
S_{m,h}(t) := \int_{\mathbb{R}^m} f_{m,h}(x_1, \ldots, x_m, t) d\tilde{B}_{x_1} \cdots d\tilde{B}_{x_m} \tag{17}
\]
with, for every \((x_1, \ldots, x_m, t) \in \mathbb{R}^m \times [0, \infty) \),
\[
f_{m,h}(x_1, \ldots, x_m, t) = \int_0^t \exp \left(i\theta \sum_{l=1}^m x_l \right) \tilde{g}(\theta) \left| x_1 \cdots x_m \right|^{1/2 - \tilde{h}(\theta)} d\theta
\]
where
\[
\tilde{g} = \frac{\langle \phi, P_m \rangle}{m!} (g_0 \circ \tilde{h})^m.
\]
The process \(S_{m,h} \) is continuous (up to a modification) and locally self-similar: for every \(t \geq 0 \),
\[
\lim_{\varepsilon \to 0^+} \text{dist.} \left\{ S_{m,h}(t + \varepsilon u) - S_{m,h}(t) \right\}_{u \geq 0} = \{ T_{m,h,t}(u) \}_{u \geq 0}
\]
where \(\lim_{\varepsilon \to 0^+} \) stands for the limit in distribution in the space of continuous functions endowed with the uniform norm on every compact set and, for every \(u \geq 0 \),
\[
T_{m,h,t}(u) = \tilde{g}(t) \int_{\mathbb{R}^m} \frac{\exp (iu \sum_{l=1}^m x_l) - 1}{i \sum_{l=1}^m x_l} \left| x_1 \cdots x_m \right|^{1/2 - \tilde{h}(t)} d\tilde{B}_{x_1} \cdots d\tilde{B}_{x_m}.
\]

Theorem 1 establishes that sequences of processes defined as (16), in particular from a Hurst function \(h \), converge to multifractional processes with Hurst function \(h \). This has been observed in [3] in the particular case \(\phi \equiv 1 \) where the limit process is \(S_{1,h} \), which is a centered Gaussian process of covariance
\[
(t, s) \mapsto \mathbb{E} [S_{1,h}(t)S_{1,h}(s)] = \int_0^t \int_0^s d\theta d\sigma R(h(\theta), h(\sigma)) \tag{18}
\]
with \(R \) defined by (15). Theorem 1 is then an extension of the main result of [3], which assumes \(\phi \equiv 1 \), to any case where \(\phi \in L^2(e^{-\xi^2}/dx) \).

If we assume that \(h \equiv H \in (b_m, 1) \), then Theorem 1 is the main result of [6, 11]. In particular, the limit process \(S_{m,h} \) can be written as \(W_{m,H} \) in (1) with the constant
\[
C(m, H) = \frac{\langle \phi, P_m \rangle}{m!} \left(g_0 \left(\tilde{H} \right) \right)^m = \frac{\langle \phi, P_m \rangle}{m!} \left(\frac{R \left(\tilde{H}, \tilde{H} \right)}{\int_\mathbb{R} e^{\xi^2/2} |\tilde{H}|^{-1 - 2H} d\xi} \right)^{m/2}
\]
where
\[
\tilde{H} := 1 + \frac{H - 1}{m} \in (b_m, 1).
\]
4 Proof of Theorem 1

The proof of Theorem 1 is organized as follows. In Subsection 4.1 we establish a technical lemma we then use throughout the proof of Theorem 1. We prove the convergence of $S_{\phi,h}^N$ in Subsection 4.2 and the regularity properties of $S_{m,h}$ in Subsection 4.3.

4.1 Technical lemma

In the following lemma, we prove for every $T > 0$ the existence of a function \tilde{f}_T that is useful in the sequel of the proof to establish uniform bounds.

Lemma 2. For every $T > 0$, there exists a function $\tilde{f}_T \in L^2(\mathbb{R}^m, \mathbb{R})$ so that, for almost every $x \in \mathbb{R}^m$ and for every $t \in [0, T]$ and $H \in [\min \hat{h}, \max \hat{h}]$,

$$\left| \frac{e^{it \sum_{i=1}^m x_i} - 1}{|x_1 \cdots x_m|^{H+1/2} \sum_{i=1}^m x_i} \right| (1 + |\ln |x_1 \cdots x_m||) \leq \tilde{f}_T(x),$$

Proof. For every $(x_1, \ldots, x_m) \in \mathbb{R}^m$ we define

$$L(x_1, \ldots, x_m) = (1 + |\ln |x_1 \cdots x_m||)^2$$

and

$$\tilde{f}_T(x_1, \ldots, x_m) = \max_{H \in [\min \hat{h}, \max \hat{h}]} L(x_1, \ldots, x_m)$$

We fix $T > 0$. For every $t \in [0, T]$, we can write

$$\left| \frac{e^{it \sum_{i=1}^m x_i} - 1}{\sum_{i=1}^m x_i} \right|^2 \leq \tilde{f}_T(x_1, \ldots, x_m)^2.$$

It is then enough to prove that, for $H \in [\min \hat{h}, \max \hat{h}]$, the function

$$(x_1, \ldots, x_m) \mapsto \frac{T^2 \sum_{i=1}^m x_i |x_i|^{-1} |x_i|^{-2} L(x_1, \ldots, x_m)}{|x_1 \cdots x_m|^{2H+1}}$$

is integrable. We successively make the substitutions $y_j = x_1 + \cdots + x_j$ for every $j \in \{1, \ldots, m\}$, $z_k = y_{k'}/y_{k'+1}$ for every $k \in \{1, \ldots, m-1\}$ and $z_m = y_m$ to get

$$\int_{\mathbb{R}^m} \frac{T^2 \sum_{i=1}^m x_i |x_i|^{-1} |x_i|^{-2} L(x_1, \ldots, x_m)}{|x_1 \cdots x_m|^{2H+1}} dx_1 \cdots dx_m$$

$$= \int_{\mathbb{R}^m} \frac{T^2 \sum_{i=1}^m x_i |x_i|^{-1} |x_i|^{-2} L(y_1, y_2, \ldots, y_m)}{|y_1|^{2H+1}} dy_1 \cdots dy_m$$

$$= \int_{\mathbb{R}^m} \frac{T^2 \sum_{i=1}^m x_i |x_i|^{-1} |x_i|^{-2} L(z_1, z_2, \ldots, z_m)}{|z_m|^{2m(H+1)+1}} dz_m \int_{\mathbb{R}} \frac{dy_1 \cdots dy_m}{|1 - z_{m-1}|^{2H+1} |z_{m-1}|^{2m-1}(H+1)+1} \times \cdots$$

$$\cdots \times \int_{\mathbb{R}} \frac{dy_1 |z_1|^{2H+1} L(\prod_{k=1}^m z_k, (1-z_1) \prod_{k=2}^m z_k, \ldots, (1-z_{m-1})z_m)}{|1 - z_{m-1}|^{2H+1} |z_{m-1}|^{2m-1}(H+1)+1} \times \cdots$$

The right-hand side above can be bounded by a finite sum of terms of the form

$$\int_{\mathbb{R}^m} \frac{T^2 |z_{m-1}|^{2m(H+1)+1} dz_m}{|z_m|^{2m(H+1)+1}} \int_{\mathbb{R}} \frac{dz_{m-1}}{|1 - z_{m-1}|^{2H+1} |z_{m-1}|^{2m-1}(H+1)+1} \times \cdots$$

$$\cdots \times \int_{\mathbb{R}} \frac{dy_1 |z_1|^{2H+1} L(\prod_{k=1}^m z_k, |z_1|^{2H+1})}{|1 - z_{m-1}|^{2H+1} |z_{m-1}|^{2m-1}(H+1)+1} \times \cdots$$

where k, j, μ and ν are integer. The terms of the form (19) are finite since $H \in (1-1/(2m), 1)$ and Bertrand’s test. This concludes the proof. □
4.2 Convergence of $S_{\varphi,h}^N$

We first deal with the study of $S_{P_{m,h}}^N$ defined for every $t \geq 0$ by

$$S_{P_{m,h}}^N(t) = \sum_{j=1}^{\lfloor Nt \rfloor} P_m(X_j(h_j^N)) / N^{h_j/N}.$$

From now on, we denote $\prod_{i=1}^{m} d\tilde{B}_{x_i}$ by $d\tilde{B}_x^\otimes_m$ when $x = (x_1, \cdots, x_d)$.

Lemma 3. The process $S_{P_{m,h}}^N$ is equal in distribution to the process $\tilde{S}_{m,h}^N$ defined for every $t \geq 0$ by

$$\tilde{S}_{m,h}^N(t) = \int_{(-N\pi,N\pi)^m} d\tilde{B}_x^\otimes_m \frac{1}{N} \sum_{j=1}^{\lfloor Nt \rfloor} \prod_{i=1}^{m} \exp(i j x_i / N) g(h_j^N, x_i / N) |x_i|^{1/2-h_j^N}.$$

Proof. Using (11) we obtain, almost surely,

$$P_m(X_j(h_j^N)) = \int_{(-\pi,\pi)^m} \prod_{i=1}^{m} \exp(i j x_i) g(h_j^N, x_i) |x_i|^{1/2-h_j^N} d\tilde{B}_x.$$

We then have

$$S_{P_{m,h}}^N(t) = \sum_{j=1}^{\lfloor Nt \rfloor} \frac{1}{N^{1-m/2}} \int_{(-\pi,\pi)^m} d\tilde{B}_x^\otimes_m \prod_{i=1}^{m} \exp(i j x_i) g(h_j^N, x_i) |x_i|^{1/2-h_j^N}. $$

Making the substitution $x \rightarrow x/N$ and using (9) we get

$$S_{P_{m,h}}^N \equiv t \sum_{j=1}^{\lfloor Nt \rfloor} \frac{1}{N} \int_{(-\pi,\pi)^m} d\tilde{B}_x^\otimes_m \prod_{i=1}^{m} \exp(i j x_i / N) g(h_j^N, x_i / N) |x_i|^{1/2-h_j^N}. $$

This concludes the proof by linearity of the multiple integral. \(\square\)

Now we aim to prove the convergence of $\tilde{S}_{m,h}^N(t)$ in $L^2(\Omega, \mathbb{R})$ for every t. To this goal, we introduce the functions

$$f^N : [0, \infty) \times \mathbb{R}^m \rightarrow \mathbb{C}$$

$$(t, x) \mapsto 1_{(-\pi,\pi)^m}(x) \frac{1}{N} \sum_{j=1}^{\lfloor Nt \rfloor} \prod_{i=1}^{m} \exp(i j x_i / N) g(h_j^N, x_i / N) / |x_i|^{h_j^N - 1/2}$$

and we state the following lemma.

Lemma 4. For every $t \geq 0$, there exists a function $f_t^* \in L^2(\mathbb{R}^m, \mathbb{R})$ so that, for every $x \in \mathbb{R}^m$ and $N \in \mathbb{N}$,

$$|f^N(t, x)| \leq f_t^*(x).$$

Proof. We have

$$f^N(t, x) = 1_{(-\pi,\pi)^m}(x) \frac{i \sum_{i=1}^{m} x_i / N}{1 - e^{-1} \sum_{i=1}^{m} x_i / N} \sum_{j=1}^{\lfloor Nt \rfloor} \frac{e^{ij \sum_{i=1}^{m} x_i / N} - e^{i(j-1) \sum_{i=1}^{m} x_i / N} i \sum_{i=1}^{m} x_i / N}{i \sum_{i=1}^{m} x_i / N} G_j^N(x)$$

where

$$G_j^N(x) = \prod_{i=1}^{m} g(h_j^N, x_i / N) / |x_i|^{h_j^N - 1/2}.$$
We write

\[f^N(t, x) = f^{N,1}(t, x) - f^{N,2}(t, x) \]

with

\[
\begin{align*}
\frac{f^{N,1}(t, x)}{1 - e^{-\sum_{l=1}^m x_l / N}} & \left| i \sum_{l=1}^m x_l / N \right| \sum_{j=1}^{[Nt]} \frac{1}{\sum_{l=1}^m x_l} \\
& \times \left(G_j^N(x) \left(e^{i(\sum_{l=1}^m x_l / N - 1)} - G_{j-1}^N(x) \left(e^{i(j-1)\sum_{l=1}^m x_l / N} - 1 \right) \right) \right) \\
= & \sum_{j=1}^{[Nt]} \frac{e^{i(j-1)\sum_{l=1}^m x_l / N} - 1}{i \sum_{l=1}^m x_l} \left(G_j^N(x) - G_{j-1}^N(x) \right).
\end{align*}
\]

We first deal with \(f^{N,1} \). Because \(g \) is bounded, there exists \(M_1 > 0 \) such that for every \(x \) and \(N \)

\[
\left| f^{N,1}(t, x) \right| \leq M_1 \left| e^{i[Nt] \sum_{l=1}^m x_l / N} - 1 \right| \left| \sum_{l=1}^m x_l / N \right|.
\]

Then, by Lemma 2, there exists a function \(\tilde{f}_{1,1} \in L^2(\mathbb{R}^m, \mathbb{R}) \) so that for every \(x \) and \(N \),

\[
\left| e^{i[Nt] \sum_{l=1}^m x_l / N} - 1 \right| \left| \sum_{l=1}^m x_l / N \right| \leq \tilde{f}_{1,1}(x),
\]

so that we get

\[
\left| f^{N,1}(t, x) \right| \leq M_1 \tilde{f}_{1,1}(x). \tag{20}
\]

Now we deal with \(f^{N,2} \). By using Taylor formula we obtain, for almost every \(x \),

\[
\left| G_j^N(x) - G_{j-1}^N(x) \right| \leq \frac{\max \left| h \right|}{N} \max_{H \in [\min h, \max h]} \left| h_{[Nt]}^{-1} \sum_{l=1}^m \frac{x_l}{N} \right| \left| \prod_{l=1}^m g \left(H, \frac{x_l}{N} \right) \right| \left| \prod_{l=1}^m g \left(H, \frac{x_l}{N} \right) \right|.
\]

Since \(g \) and \(\frac{\partial g}{\partial H} \) are bounded, there exists a constant \(M_2 > 0 \), which depends only on \(h \) and \(g \), such that for almost every \(x \) and every \(N \)

\[
\left| f^{N,2}(t, x) \right| \leq \frac{M_2}{N} \sum_{j=1}^{[Nt]} \left| e^{i(j-1)\sum_{l=1}^m x_l / N} - 1 \right| \max_{H \in [\min h, \max h]} \left| \prod_{l=1}^m g \left(H, \frac{x_l}{N} \right) \right|.
\]

As for \(f^{N,2} \), by Lemma 2, there exists a function \(\tilde{f}_{1,2} \in L^2(\mathbb{R}^m, \mathbb{R}) \) so that for almost every \(x \) and every \(N \) and \(j \),

\[
\left| e^{i(j-1)\sum_{l=1}^m x_l / N} - 1 \right| \left| \prod_{l=1}^m g \left(H, \frac{x_l}{N} \right) \right| \leq \tilde{f}_{1,2}(x),
\]

8
so that we get

$$|f^{N,2}(t, x)| \leq M_2 \tilde{f}_{2, t}(x).$$

(21)

Hence, taking $\tilde{f}_t = M_1 \tilde{f}_{1, t} + M_2 \tilde{f}_{2, t}$ and combining (20) and (21) we conclude the proof.

The convergence of $\tilde{S}^N_{m,h}$ can now be established.

Lemma 5. For every $t \geq 0$, as $N \to \infty$, $\tilde{S}^N_{m,h}(t)$ converges in $L^2(\Omega, \mathbb{R})$ to $\tilde{S}_{m,h}(t)$ given by

$$\tilde{S}_{m,h}(t) = \int_{\mathbb{R}^m} d\tilde{B}_x \int_0^t \exp \left(i\theta \sum_{l=1}^m x_l \right) g_0(\tilde{h}(\theta))^m |x_1 \cdots x_m|^{1/2-\tilde{h}(\theta)} d\theta.$$

Proof. Because of Lemmas 1 and 4, it suffices to prove that the function $f^N(t, x)$ converges for almost every x to $f^\infty(t, x)$ defined by

$$f^\infty(t, x) := \int_0^t \exp \left(i\theta \sum_{l=1}^m x_l \right) g_0(\tilde{h}(\theta))^m |x_1 \cdots x_m|^{1/2-\tilde{h}(\theta)} d\theta.$$

We let

$$G^N_{j,0}(x) = g_0(h_j^N)^m |x_1 \cdots x_m|^{1/2-h_j^N} \quad \text{and} \quad G^N_{j,1}(x) = G^N_{j}(x) - G^N_{j,0}(x)$$

where $G^N_{j}(x)$ is defined as in the proof of Lemma 4. We also consider the same decomposition $f^N = f^{N,1} - f^{N,2}$ as in the proof of Lemma 4 and we let

$$f^{N,1} = f^{N,1,0} - f^{N,1,1} \quad \text{and} \quad f^{N,2} = f^{N,2,0} - f^{N,2,1}$$

where, for $\kappa \in \{0, 1\}$,

$$f^{N,1,\kappa}(t, x) = \mathbb{I}_{(-N\pi, N\pi)}(x) \frac{i \sum_{l=1}^m x_l / N}{1 - e^{-i \sum_{l=1}^m x_l / N}} G^N_{\left[N\kappa\right],\kappa}(x) \frac{e^{i t \sum_{l=1}^m x_l / N} - 1}{i \sum_{l=1}^m x_l}$$

and

$$f^{N,2,\kappa}(t, x) = \mathbb{I}_{(-N\pi, N\pi)}(x) \frac{i \sum_{l=1}^m x_l / N}{1 - e^{-i \sum_{l=1}^m x_l / N}} \times \sum_{j=1}^{\left[N\kappa\right]} G^N_{j,\kappa}(x) - G^N_{j-1,\kappa}(x).$$

Because h and g_0 are continuously differentiable we get, for almost every x,

$$\lim_{N \to \infty} f^{N,1,0}(t, x) = g_0(\tilde{h}(t))^m \frac{e^{i t \sum_{l=1}^m x_l} - 1}{i |x_1 \cdots x_m|^{h(t)-1/2} \sum_{l=1}^m x_l}$$

and

$$\lim_{N \to \infty} f^{N,2,0}(t, x) = \int_0^t e^{i \theta \sum_{l=1}^m x_l - 1} \tilde{h}'(\theta) \frac{\partial}{\partial H} \left(\frac{g_0(H)^m}{|x_1 \cdots x_m|^{H-1/2}} \right) \bigg|_{H=\tilde{h}(\theta)} d\theta,$$

so that

$$\lim_{N \to \infty} (f^{N,1,0}(t, x) - f^{N,2,0}(t, x)) = f^\infty(t, x).$$

Now we deal with $f^{N,1}$ and $f^{N,2}$. We remark that we can express $G^N_{j,1}(x)$ as

$$G^N_{j,1}(x) = |x_1 \cdots x_m|^{1/2-h_j^N} \sum_{k=1}^m g_1 \left(h_j^N, \frac{x_k}{N} \right) g_0(h_j^N)^{k-1} \prod_{l=k+1}^m g\left(h_j^N, \frac{x_l}{N} \right).$$
Then, because of Lemma 2 and the boundedness of \(g_0\) and \(g\), there exist a constant \(M_3 > 0\) and a function \(\tilde{f}_{1,3} \in L^2(\mathbb{R}^n, \mathbb{R})\) such that for almost every \(x\),

\[
|f^{N,1,1}(t,x)| \leq M_3 \tilde{f}_{1,3}(x) \sum_{k=1}^{m} \sup_{H \in [\min h, \max h]} |g_1 \left(H, \frac{H_k}{N} \right)|,
\]

so that \(\lim_{N \to \infty} f^{N,1,1}(t,x) = 0\). Similarly, using Lemma 2, there exist a constant \(M_4 > 0\) and a function \(\tilde{f}_{1,4} \in L^2(\mathbb{R}^n, \mathbb{R})\) such that for almost every \(x\),

\[
|f^{N,2,1}(t,x)| \leq M_4 \tilde{f}_{1,4}(x) \sum_{k=1}^{m} \sup_{H \in [\min h, \max h]} \left(|g_1 \left(H, \frac{H_k}{N} \right)| + \left| \frac{\partial g_1}{\partial H} \left(H, \frac{H_k}{N} \right) \right| \right),
\]

so that \(\lim_{N \to \infty} f^{N,2,1}(t,x) = 0\) and then

\[
\lim_{N \to \infty} \left(f^{N,2,1}(t,x) - f^{N,2,1}(t,x) \right) = 0,
\]

which concludes the proof. \(\square\)

The following lemma establishes that the convergence of \(S_{\phi,h}^N\) can be reduced to the one of \(S_{P_{m,h}}^N\) and, as a consequence of Lemma 3, to the one of \(\hat{S}_{m,h}^N\).

Lemma 6. For every \(t \geq 0\), we have

\[
\lim_{N \to \infty} \mathbb{E} \left[\left(S_{\phi,h}^N(t) - \frac{\langle \phi, P_m \rangle}{m!} S_{P_{m,h}}^N(t) \right)^2 \right] = 0.
\]

Proof. Since (6) we have

\[
\mathbb{E} \left[\left(S_{\phi,h}^N(t) - \frac{\langle \phi, P_m \rangle}{m!} S_{P_{m,h}}^N(t) \right)^2 \right] = \mathbb{E} \left[\left(\sum_{j=1}^{[Nt]} \frac{1}{N^{h(j/N)}} \sum_{n=m+1}^{N^{h(j/N)+k(N)}} \frac{\langle \phi, P_n \rangle}{n!} P_n(\phi_n(h_j^N)) \right)^2 \right] = \sum_{j=1}^{[Nt]} \sum_{k=1}^{[Nt]} \frac{\langle \phi, P_n \rangle^2}{n!} \mathbb{E}[P_n(X_j(h_j^N))P_n(X_k(h_k^N))].
\]

Because of (7) and (13) we get, for every \(n \geq m + 1\),

\[
\mathbb{E}[P_n(X_j(h_j^N))P_n(X_k(h_k^N))] = n!E[X_j(h_j^N)X_k(h_k^N)]^n \leq n! \mathbb{E}[X_j(h_j^N)X_k(h_k^N)]^m,
\]

so that

\[
\mathbb{E} \left[\left(S_{\phi,h}^N(t) - \frac{\langle \phi, P_m \rangle}{m!} S_{P_{m,h}}^N(t) \right)^2 \right] \leq \left(\sum_{n=m+1}^{[Nt]} \frac{\langle \phi, P_n \rangle^2}{n!} \right) \sum_{j=1}^{[Nt]} \sum_{k=1}^{[Nt]} \frac{\mathbb{E}[X_j(h_j^N)X_k(h_k^N)]}{N^{h(j/N)+h(k/N)}}^m.
\]

Let \(\eta > 0\). Using the representation of the field \(X\), there exists \(N_\eta \in \mathbb{N}^*\) such that, for \(|j - k| > N_\eta\) and \(N \in \mathbb{N}^*\), \(\mathbb{E}[X_j(h_j^N)X_k(h_k^N)] \leq \eta\), so that

\[
\sum_{j=1}^{[Nt]} \sum_{k=1}^{[Nt]} \frac{\mathbb{E}[X_j(h_j^N)X_k(h_k^N)]}{N^{h(j/N)+h(k/N)}}^m \leq \sum_{j=1}^{[Nt]} \sum_{k=1}^{[Nt]} \frac{1_{|j-k| \leq N_\eta}}{N^{h(j/N)+h(k/N)}} + \eta \sum_{j=1}^{[Nt]} \sum_{k=1}^{[Nt]} 1_{|j-k| \geq 1} \frac{\mathbb{E}[X_j(h_j^N)X_k(h_k^N)]}{N^{h(j/N)+h(k/N)}}.
\]

10
There exists $C_1(\eta) > 0$ such that

$$
\sum_{j=1}^{[Nt]} \sum_{k=1}^{[Nt]} \frac{1_{|j-k|\leq N_n}}{N^{k(j/N)+k(k/N)}} \leq \frac{C_\eta}{N^{2 \min h - 1}}.
$$

Moreover, because of the assumptions on X, there exists a constant $C_2 > 0$, which is independent on η, such that, for every j, k and N,

$$
|E[X_j(h_j^N)X_k(h_k^N)]| \leq C_2 |j - k|^{h_j^N + h_k^N - 2}.
$$

We then obtain

$$
\sum_{j=1}^{[Nt]} \sum_{k=1}^{[Nt]} \frac{|E[X_j(h_j^N)X_k(h_k^N)]|^{m+1}}{N^{h(j/N)+k(k/N)}} \leq \frac{C_\eta}{N^{2 \min h - 1}} + \frac{\eta C_2}{N^2} \sum_{j=1}^{[Nt]} \sum_{k=1}^{[Nt]} 1_{|j-k|\geq 1} \frac{|j - k|^{m(h_j^N + h_k^N - 2)}}{N}.
$$

Hence, for every $\eta > 0$

$$
\limsup_{N \to \infty} E \left[\left(\frac{S_{\phi,h}^N(t)}{m!} - \frac{\langle \phi, P_m \rangle}{m!} S_{\phi,h}^N(t) \right)^2 \right] \leq \eta C_2 \left(\sum_{n=m+1}^{\infty} \frac{\langle \phi, P_n \rangle^2}{n!} \right) \int_0^t \int_0^t |\theta - \sigma|^{h(\theta) + h(\sigma) - 2} d\theta d\sigma.
$$

The constants $\sum_{n=m+1}^{\infty} \langle \phi, P_n \rangle^2 / n!$ and $\int_0^t \int_0^t |\theta - \sigma|^{h(\theta) + h(\sigma) - 2} d\theta d\sigma$ are finite since (8) and $h > 1/2$ respectively. This concludes the proof. \qed

Now we conclude this subsection by the following lemma.

Lemma 7. As $N \to \infty$, the finite-dimensional distributions of $S_{\phi,h}^N$ converge to those of $S_{m,h}$, which can be defined for every $t \geq 0$ as:

$$
S_{m,h}(t) := \frac{\langle \phi, P_m \rangle}{m!} \int_{\mathbb{R}^m} f^{\infty}(t, x_1, \ldots, x_m) d\hat{B}_{x_1} \cdots d\hat{B}_{x_m}.
$$

Proof. We fix $n \in \mathbb{N}$, $(t_1, \ldots, t_n) \in [0, \infty)^n$ and a Lipschitz bounded function $\Psi : \mathbb{R}^n \to \mathbb{R}$. We define $\phi_m = \langle \phi, P_m \rangle / m!$. We have

$$
|E[\Psi(S_{\phi,h}^N(t_1), \ldots, S_{\phi,h}^N(t_n))] - E[\Psi(S_{m,h}(t_1), \ldots, S_{m,h}(t_n))]| \leq E_1^N + E_2^N
$$

where

$$
E_1^N = |E[\Psi(S_{\phi,h}^N(t_1), \ldots, S_{\phi,h}^N(t_n)) - \Psi(\phi_m S_{P_m,h}^N(t_1), \ldots, \phi_m S_{P_m,h}^N(t_n))]|
$$

and

$$
E_2^N = |E[\Psi(\phi_m S_{P_m,h}^N(t_1), \ldots, \phi_m S_{P_m,h}^N(t_n)) - E[\Psi(S_{m,h}(t_1), \ldots, S_{m,h}(t_n))]|.
$$

Because Ψ is Lipschitz and using Cauchy-Schwartz inequality, there exists $C_1 > 0$ so that, for every N,

$$
E_1^N \leq C_1 \sum_{j=1}^{n} \sqrt{E \left[\left(S_{\phi,h}^N(t_j) - \phi_m S_{P_m,h}^N(t_j) \right)^2 \right]}.
$$

11
Thus, as for x almost every C with family where with the proof of the local self-similarity property in the space of continuous functions.

By an integration by part, we have

$$E_2^N = \left| E \left[\phi_m \check{S}_{m,h}(t_1), \ldots, \phi_m \check{S}_{m,h}(t_n) \right] - \Psi(S_{m,h}(t_1), \ldots, S_{m,h}(t_n)) \right|.\]

Thus, as for E_1^N, because Ψ is Lipschitz and using Cauchy-Schwartz inequality, there exists $C_2 > 0$ so that, for every N,

$$E_2^N \leq C_2 \sum_{j=1}^n \sqrt{E \left[\left(\phi_m \check{S}_{m,h}(t_j) - S_{m,h}(t_j) \right)^2 \right]}.$$

As a consequence, from Lemma 5,

$$\lim_{N \to \infty} E_2^N = 0.\]

We conclude the proof by combining (23), (24) and (25).

\[\square\]

4.3 Continuity and local self-similarity of $S_{m,h}$

We first prove the local self-similarity in the sense of the finite-dimensional distributions. Then we prove the continuity of $S_{m,h}$. Finally, we establish a tightness property for the family $\{ \varepsilon^{-h(t)}(S_{\phi,h}(t + \varepsilon u) - S_{\phi,h}(t)) \}_{u \geq 0}$ using Kolmogorov lemma [1] to conclude with the proof of the local self-similarity property in the space of continuous functions.

By making the substitution $\theta \to \varepsilon \theta + t$, we get

$$S_{m,h}(t + \varepsilon u) - S_{m,h}(t) = \int \exp \left(it \sum_{l=1}^m x_l \right) \hat{f}_1(t, u, x, \varepsilon) d\hat{B}_{x_1} \cdots d\hat{B}_{x_m},$$

where

$$\hat{f}_1(t, u, x, \varepsilon) = \varepsilon^{-h(t)} \int_0^u \exp \left(i \theta \sum_{l=1}^m x_l \right) \tilde{g}(\varepsilon \theta + t) |x_1 \cdots x_m|^{1/2 - \hat{h}(\varepsilon \theta + t)} d\theta.$$

Since (10) and (9) we have

$$\left\{ S_{m,h}(t + \varepsilon u) - S_{m,h}(t) \right\}_{u \geq 0} \sim \text{dist} \left\{ \int \hat{f}_2(t, u, x, \varepsilon) d\hat{B}_{x_1} \cdots d\hat{B}_{x_m} \right\}_{u \geq 0}$$

with

$$\hat{f}_2(t, u, x, \varepsilon) = \int_0^u \varepsilon^{m(\hat{h}(\varepsilon \theta + t) - \hat{h}(t))} \exp \left(i \theta \sum_{l=1}^m x_l \right) \tilde{g}(\varepsilon \theta + t) |x_1 \cdots x_m|^{1/2 - \hat{h}(\varepsilon \theta + t)} d\theta.$$

For almost every $x \in \mathbb{R}^m$, every u and t,

$$\lim_{\varepsilon \to 0} \hat{f}_2(t, u, x, \varepsilon) = \tilde{g}(t) \frac{\exp (iu \sum_{l=1}^m x_l) - 1}{i(\sum_{l=1}^m x_l)|x_1 \cdots x_m|^{\hat{h}(t) - 1/2}}.$$

By an integration by part, we have

$$\hat{f}_2(t, u, x, \varepsilon) = \varepsilon^{m(\hat{h}(\varepsilon u + t) - \hat{h}(t))} \tilde{g}(\varepsilon u + t) \frac{\exp (iu \sum_{l=1}^m x_l) - 1}{i(\sum_{l=1}^m x_l)|x_1 \cdots x_m|^{\hat{h}(\varepsilon u + t) - 1/2}}$$

$$+ \varepsilon \int_0^u \varepsilon^{m(\hat{h}(\varepsilon \theta + t) - \hat{h}(t))} \frac{\exp (i \theta \sum_{l=1}^m x_l) - 1}{i(\sum_{l=1}^m x_l)|x_1 \cdots x_m|^{\hat{h}(\varepsilon \theta + t) - 1/2}}$$

$$\times \left\{ \tilde{g}(\varepsilon \theta + t) + \hat{h}'(\varepsilon \theta + t) \tilde{g}(\varepsilon \theta + t)(\ln (\varepsilon^m) - \ln |x_1 \cdots x_m|) \right\} d\theta.$$
We fix $T > 0$ and $U > 0$. As a consequence of the identity above and because of the
regularity of \hat{h} and \hat{g}, there exists a constant $M_{T,U} > 0$ such that, for every $u \in [0,U]$, $t \in [0,T]$, $\varepsilon \in (0,1]$ and $x \in \mathbb{R}^m$,
\[
|f_2(t, u, x, \varepsilon)| \leq M_{T,U} \tilde{f}_{T+U,2}(x)
\]
(26)
where $\tilde{f}_{T+U,2}(x)$ is defined in Lemma 2. Since $\tilde{f}_{T+U,2}$ is square integrable and because of
Lemma 1, this proves the local self-similarity of $S_{m,h}$ in the sense of the finite-dimensional
distributions.

To prove the continuity of the $S_{m,h}$ we use Kolmogorov lemma. By making the same
calculations as above we have, for every $t > s > 0$,
\[
\mathbb{E} \left[(S_{\phi,h}(t) - S_{\phi,h}(s))^2 \right] = m!(t-s)^{2h(s)} \int_{\mathbb{R}^m} \left(\tilde{f}_2(s, 1, x, t-s) \right)^2 dx_1 \cdots dx_m
\]
If $t - s < 1$, because of (26) we then have
\[
\mathbb{E} \left[(S_{\phi,h}(t) - S_{\phi,h}(s))^2 \right] \leq m!M_{1,1}(t-s)^{2h(s)} \int_{\mathbb{R}^m} \tilde{f}_{2,2}(x)^2 dx_1 \cdots dx_m,
\]
which concludes the proof of the continuity of $S_{\phi,h}$.

Finally, in a similar way as just previously there exists a constant $C > 0$ such that, for
every u and v satisfying $|u - v| < 1$,
\[
\mathbb{E} \left[\left(\frac{S_{\phi,h}(t + \varepsilon u) - S_{\phi,h}(t + \varepsilon v)}{\varepsilon^{h(t)}} \right)^2 \right] \leq C|u - v|^{2h(t)},
\]
This prove the tightness of the family $\left\{ \{ \varepsilon^{-h(t)}(S_{\phi,h}(t + \varepsilon u) - S_{\phi,h}(t)) \}_{u \geq 0} \right\}_{\varepsilon > 0}$ thanks to
Kolmogorov lemma [1], and then the local self-similarity property of $S_{\phi,h}$.

Acknowledgments
I would like to thank Céline Lacaux for many fruitful discussions about multifractional pro-
cesses.

References
(2008), 475-489.
(1970)

