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Abstract. We develop a general framework for the specification and
implementation of systems whose executions are words, or partial or-
ders, over an infinite alphabet. As a model of an implementation, we in-
troduce class register automata, a one-way automata model over words
with multiple data values. Our model combines register automata and
class memory automata. It has natural interpretations. In particular, it
captures communicating automata with an unbounded number of pro-
cesses, whose semantics can be described as a set of (dynamic) message
sequence charts. On the specification side, we provide a local existential
monadic second-order logic that does not impose any restriction on the
number of variables. We study the realizability problem and show that
every formula from that logic can be effectively, and in elementary time,
translated into an equivalent class register automaton.

1 Introduction

A recent research stream, motivated by models from XML database theory,
considers data words, i.e., strings over an infinite alphabet [2,10,14,21,23]. The
alphabet is the cartesian product of a finite supply of labels and an infinite supply
of data values. While labels may represent, e.g., an XML tag or reveal the type of
an action that a system performs, data values can be used to model time stamps
[10, 11, 15], process identifiers [6, 25], or text contents in XML documents [4].

We will consider data words as behavioral models of concurrent systems. In
this regard, it is natural to look at suitable logics and automata. Logical formulas
may serve as specifications, and automata as system models or tools for deciding
logical theories. This viewpoint raises the following classical problems/tasks:
satisfiability (does a given logical formula have a model ?), model checking (do
all executions of an automaton satisfy a given formula ?), and realizability (given
a formula, construct a system model in terms of an automaton whose executions
are precisely the models of the formula). Much work has indeed gone into defining
logics and automata for data words, with a focus on satisfiability [5, 13].

One of the first logical approaches to data words is due to [10]. Since then, a
two-variable logic has become a commonly accepted yardstick wrt. expressivity
and decidability [5]. The logic contains a predicate to compare data values of
two positions for equality. Its satisfiability problem is decidable, indeed, but sup-
posedly of very high complexity. An elementary upper bound has been obtained



only for weaker fragments [5, 13]. For specification of communicating systems,
however, two-variable logic is of limited use: it cannot express properties like
“whenever a process Pid1 spawns some Pid2, then this is followed by a message
from Pid2 to Pid1”. Actually, the logic was studied for words with only one
data value at each each position, which is not enough to encode executions of
message-passing systems. But three-variable logics as well as extensions to two
data values lead to undecidability. To put it bluntly, any “interesting” logic for
dynamic communicating systems has an undecidable satisfiability problem.

Instead of satisfiability or model checking, we therefore consider realizabil-
ity. A system model that realizes a given formula can be considered correct by
construction. Realizability questions for data words have, so far, been neglected.
One reason may be that there is actually no automaton that could serve as a
realistic system model. Though data words naturally reflect executions of sys-
tems with an unbounded number of threads, existing automata fail to model
distributed computation. Three features are minimum requirements for a suit-
able system model. First, the automaton should be a one-way device, i.e., read
an execution once, processing it “from left to right” (unlike data automata [5],
class automata [3], two-way register automata, and pebble automata [21]). Sec-
ond, it should be non-deterministic (unlike alternating automata [14,21]). Third,
it should reflect paradigms that are used in concurrent programming languages
such as process creation and message passing. Two known models match the first
two properties: register automata [17,18,25] and class memory automata [2]; but
they clearly do not fulfill the last requirement.

Contribution. We provide an existential MSO logic over data words, denoted
rEMSO, which does not impose any restriction on the number of variables. The
logic is strictly more expressive than the two-variable logic from [5] and suitable
to express interesting properties of dynamic communicating systems.

We then define class register automata as a system model. They are a mix of
register automata [17,18,25] and class memory automata [2]. A class register au-
tomaton is a non-deterministic one-way device. Like a class memory automaton,
it can access certain configurations in the past. However, we extend the notion
of a configuration, which is no longer a simple state but composed of a state and
some data values that are stored in registers. This is common in concurrent pro-
gramming languages and can be interpreted as “read current state of a process”
or “send process identity from one to another process”. Moreover, it is in the
spirit of communicating finite-state machines [12] or nested-word automata [1],
where more than one resource (state, channel, stack, etc.) can be accessed at a
time. Actually, our automata run over directed acyclic graphs rather than words.
To our knowledge, they are the first automata model of true concurrency that
deals with structures over infinite alphabets.

We study the realizability problem and show that, for every rEMSO formula,
we can compute, in elementary time, an equivalent class register automaton.
The effective translation is based on Hanf’s locality theorem [16] and properly
generalizes [7, 9] to a dynamic setting with unbounded process creation.
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Outline. Sections 2 and 3 introduce data words and their logics. In Section 4,
we define the new automata model. Section 5 is devoted to the realizability
problem and states our main result. In Section 6, we give translations from
automata back to logic. An extension of our main result to infinite data words
is discussed in Section 7. We conclude in Section 8.

2 Data Words

Let N = {0, 1, 2, . . .} denote the set of natural numbers. For m ∈ N, we denote
by [m] the set {1, . . . ,m}. A boolean formula over a (possibly infinite) set A of
atoms is a finite object generated by the grammar β ::= true | false | a ∈ A |
¬β | β ∨β | β ∧β. For an assignment of truth values to elements of A, a boolean
formula β is evaluated to true or false as usual. Its size |β| is the number of
vertices of its syntax tree. Moreover, |A| ∈ N ∪ {∞} denotes the size of a set
A. The symbol ∼= will be used to denote isomorphism of two structures. For a
partial function f , the domain of f is denoted by dom(f).

We fix an infinite set D of data values. Note that D can be any infinite
set. For examples, however, we usually choose D = N. In a data word, every
position will carry m ≥ 0 data values. It will also carry a label from a non-
empty finite alphabet Σ. Thus, a data word is a finite sequence over Σ × D

m

(over Σ if m = 0). Given a data word w = (a1, d1) . . . (an, dn) with ai ∈ Σ and
di = (d1i , . . . , d

m
i ) ∈ D

m, we let ℓ(i) refer to label ai and dk(i) to data value dki .
Classical words without data come with natural relations on word positions

such as the direct successor relation ≺+1 and its transitive closure <. In the
context of data words with one data value (i.e., m = 1), it is natural to consider
also a relation ≺∼ for successive positions with identical data values [5]. As, in
the present paper, we deal with multiple data values, we generalize these notions
in terms of a signature. A signature S is a pair (σ, I). It consists of a finite set σ of
binary relation symbols and an interpretation I. The latter associates, with every
⊳ ∈ σ and every data word w = w1 . . . wn ∈ (Σ×D

m)∗, a relation ⊳w ⊆ [n]× [n]
such that the following hold, for all word positions i, j, i′, j′ ∈ [n]:

(1) i⊳w j implies i < j
(2) there is at most one k such that i⊳w k
(3) there is at most one k such that k ⊳w i
(4) if i⊳w j and i′ ⊳w j′ and wi = wi′ and wj = wj′ , then i < i′ iff j < j′

In other words, we require that ⊳w (1) complies with <, (2) has out-degree at
most one, (3) has in-degree at most one, and (4) is monotone. Our translation
from logic into automata will be symbolic and independent of I, but its applica-
bility and correctness rely upon the above conditions. However, several examples
will demonstrate that the framework is quite flexible and allows us to capture
existing logics and automata for data words. Note that ⊳w can indeed be any
relation satisfying (1)–(4). It could even assume an order on D.

As the interpretation I is mostly understood, we may identify S with σ and
write ⊳ ∈ S instead of ⊳ ∈ σ, or |S| to denote |σ|. If not stated otherwise, we
let in the following S be any signature.
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Fig. 2. Data word over S
2
dyn

Example 1. Typical examples of relation symbols include ≺+1 and ≺k
∼ relating

direct successors and, respectively, successive positions with the same k-th data
value: For w = w1 . . . wn, we let ≺w

+1 = {(i, i + 1) | i ∈ {1, . . . , n − 1}} and
(≺k

∼)
w = {(i, j) | 1 ≤ i < j ≤ n, dk(i) = dk(j), and there is no i < i′ < j

such that dk(i) = dk(i′)}. When m = 1, we write ≺∼ instead of ≺1
∼. Automata

and logic have been well studied in the presence of one single data value (m =
1) and for signature S

1
+1,∼ = {≺+1 , ≺∼} with the above interpretation [2, 5].

Here, and in the following, we adopt the convention that the upper index of a
signature denotes the number m of data values. Figure 1 depicts a data word
over Σ = {r, a} (request/acknowledgment) and D = N as well as the relations
≺+1 (straight arrows) and ≺∼ (curved arrows) imposed by S

1
+1,∼. ♦

Example 2. We develop a framework for message-passing systems with dynamic
process creation. Each process has a unique identifier from D = N. Process c ∈ N
can execute an action f(c, d), which forks a new process with identity d. This
action is eventually followed by n(d, c), indicating that d is new (created by c) and
begins its execution. Processes can exchange messages. When c executes !(c, d), it
sends a message through an unbounded first-in-first-out (FIFO) channel c→ d.
Process d may execute ?(d, c) to receive the message. Elements from Σdyn =
{f, n , ! , ?} reveal the nature of an action, which requires two identities so that
we choosem = 2. When a process performs an action, it should access the current
state of (i) its own, (ii) the spawning process if a new-action is executed, and
(iii) the sending process if a receive is executed (message contents are encoded in
states). To this aim, we define a signature S

2
dyn = {≺proc , ≺fork , ≺msg} with the

following interpretation. Assume w = w1 . . . wn ∈ (Σdyn×N×N)∗ and consider,
for a, b ∈ Σdyn and i, j ∈ [n], the property

P(a,b)(i, j) = (ℓ(i) = a ∧ ℓ(j) = b ∧ d1(i) = d2(j) ∧ d2(i) = d1(j)) .

We set ≺w
proc = (≺1

∼)
w, which relates successive positions with the same executing

process. Moreover, let i ≺w
fork j if i < j, P(f,n)(i, j), and there is no i < k < j such

that P(f,n)(i, k) or P(f,n)(k, j). Finally, we set i ≺w
msg j if i < j, P(!,?)(i, j), and

|{i′ < i | P(!,?)(i
′, j) }| = |{j′ < j | P(!,?)(i, j

′) }| .

This models FIFO communication. An example data word is given in Figure 2,
which also depicts the relations induced by S

2
dyn. Horizontal arrows reflect ≺proc,

vertical arrows either ≺fork or ≺msg, depending on the labels. Note that n(2, 2) is
executed by “root process” 2, which was not spawned by some other process. ♦
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Graph Abstraction. Note that the graph induced by the data word from
Figure 2 does not resemble a word anymore, as the direct successor relation on
word positions is abandoned. Actually, we can see data words from a different
angle. A signature S determines a class of data graphs G with (Σ ×D

m)-labeled
nodes and S-labeled edges. A data graph is contained in G if it can be “squeezed”
into a word w such that nodes that are connected by a ⊳-labeled edge turn
into word positions that are related by ⊳w. In other words, we consider directed
acyclic graphs such that at least one linearization (extension to a total order)
matches the requirements imposed by the signature.

Our principal proof technique relies on a graph abstraction of data words
where data values are classified into equivalence classes. Let Part(m) be the
set of all partitions of [m]. An S-graph is a (node- and edge-labeled) graph
G = (V, (⊳G)⊳∈S, λ, ν). Here, V is the finite set of nodes, λ : V → Σ and
ν : V → Part(m) are node-labeling functions, and each ⊳G ⊆ V × V is a set
of edges such that, for all i ∈ V , there is at most one j ∈ V with i ⊳G j, and
there is at most one j ∈ V with j ⊳G i. We represent ⊳G and (⊳G)−1 as partial
functions and set nextG

⊳
(i) = j if i ⊳G j, and prevG

⊳
(i) = j if j ⊳G i.

Local graph patterns, so-called spheres, will also play a key role. For nodes
i, j ∈ V , we denote by distG(i, j) the distance between i and j, i.e., the length of
the shortest path from i to j in the undirected graph (V ,

⋃

⊳∈S
⊳G ∪ (⊳G)−1)

(if such a path exists). In particular, distG(i, i) = 0. For some radius B ∈ N,
the B-sphere of G around i, denoted by B-SphG(i), is the substructure of G
induced by {j ∈ V | distG(i, j) ≤ B}. In addition, it contains the distinguished
element i as a constant, called sphere center.

These notions naturally transfer to data words: With word w of length n,
we associate the graph G(w) = ([n], (⊳w)⊳∈S, λ, ν) where λ maps i to ℓ(i) and
ν maps i to {{l ∈ [m] | dk(i) = dl(i)} | k ∈ [m]}. Thus, K ∈ ν(i) contains
indices with the same data value at position i. Now, nextw

⊳
, prevw

⊳
, distw, and

B-Sphw(i) are defined with reference to the graph G(w). We hereby assume that
S is understood. We might also omit the index w if it is clear from the context.

Data words u and v are called (S-)equivalent if G(u) ∼= G(v). For a language
L, we let [L]S denote the set of words that are equivalent to some word in L.

Given the data word w from Figure 1, we have distw(1, 8) = 3. The picture

r r a a

on the right shows 1-Sphw(4). The sphere center is framed by a
rectangle; node labelings of the form {{1}} are omitted.

3 Logic

We consider monadic second-order logic to specify properties of data words. Let
us fix countably infinite supplies of first-order variables {x, y, . . .} and second-
order variables {X,Y, . . .}.

The set MSO(S) of monadic second-order formulas is given by the grammar

ϕ ::= ℓ(x) = a | dk(x) = dl(y) | x⊳ y | x = y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃xϕ | ∃X ϕ
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where a ∈ Σ, k, l ∈ [m], ⊳ ∈ S, x and y are first-order variables, and X is a
second-order variable. The size |ϕ| of ϕ is the number of nodes of its syntax tree.

Important fragments of MSO(S) are FO(S), the set of first-order formulas,
which do not use any second-order quantifier, and EMSO(S), the set of formulas
of the form ∃X1 . . .∃Xn ϕ with ϕ ∈ FO(S).

The models of a formula are data words. First-order variables are interpreted
as word positions and second-order variables as sets of positions. Formula ℓ(x) =
a holds in data word w if position x carries an a, and formula dk(x) = dl(y)
holds if the k-th data value at position x equals the l-th data value at position
y. Moreover, x ⊳ y is satisfied if x ⊳w y. The atomic formulas x = y and x ∈ X

as well as quantification and boolean connectives are interpreted as usual.

For realizability, we will actually consider a restricted, more “local” logic: let
rMSO(S) denote the fragment of MSO(S) where we can only use dk(x) = dl(x)
instead of the more general dk(x) = dl(y). Thus, data values of distinct positions
can only be compared via x ⊳ y. This implies that rMSO(S) cannot distinguish
between words u and v such that G(u) ∼= G(v). The fragments rFO(S) and
rEMSO(S) of rMSO(S) are defined as expected.

In the case of one data value (m = 1), we will also refer to the logic
EMSO2(S

1
+1,∼ ∪ {<}) that was considered in [5] and restricts EMSO logic to

two first-order variables. The predicate < is interpreted as the strict linear or-
der on word positions (strictly speaking, it is not part of a signature as we
defined it). We shall later see that rEMSO(S1+1,∼) is strictly more expressive
than EMSO2(S

1
+1,∼ ∪ {<}), though the latter involves the non-local predicates

d1(x) = d1(y) and <. This gain in expressiveness comes at the price of an unde-
cidable satisfiability problem.

A sentence is a formula without free variables. The language defined by
sentence ϕ, i.e., the set of its models, is denoted by L(ϕ). By MSO(S), rMSO(S),
rEMSO(S), etc., we refer to the corresponding language classes.

Example 3. Think of a server that can receive requests (r) from an unbounded
number of processes, and acknowledge (a) them. We let Σ = {r, a}, D = N,
and m = 1. A data value from D is used to model the process identity of the
requesting and acknowledged process. We present three properties formulated in
rFO(S1+1,∼). Formula ϕ1 = ∃x∃y (ℓ(x) = r ∧ ℓ(y) = a ∧ x ≺∼ y) expresses that
there is a request that is acknowledged. Dually, ϕ2 = ∀x∃y (ℓ(x) = r → ℓ(y) =
a ∧ x ≺∼ y) says that every request is acknowledged before the same process
sends another request. A last formula guarantees that two successive requests
are acknowledged in the order they were received:

ϕ3 = ∀x, y

(

ℓ(x) = r ∧ ℓ(y) = r ∧ x ≺+1 y

→ ∃x′, y′
(

ℓ(x′) = a ∧ ℓ(y′) = a ∧ x ≺∼ x′ ≺+1 y
′ ∧ y ≺∼ y′

)

)

This is not expressible in EMSO2(S
1
+1,∼ ∪ {<}). We will see that ϕ1, ϕ2, ϕ3 form

a hierarchy of languages that correspond to different automata models, our new
model capturing ϕ3. ♦
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Example 4. We pursue Example 2 and consider Σdyn with signature S
2
dyn. Recall

that we wish to model systems where an unbounded number of processes com-
municate via message-passing through unbounded FIFO channels. Obviously,
not every data word represents an execution of such a system. Therefore, we
identify some well formed data words, which have to satisfy ϕ1 ∧ ϕ2 ∧ ϕ3 ∈
rFO(S2dyn) given as follows. We require that there is exactly one root process:

ϕ1 = ∃x
(

ℓ(x) = n ∧ d1(x) = d2(x) ∧ ∀y (d1(y) = d2(y) → x = y)
)

. Next, we
assume that every fork is followed by a corresponding new-action, the first ac-
tion of a process is a new-event, and every new process was forked by some other
process:

ϕ2 = ∀x





ℓ(x) = f → ∃y (x ≺fork y)
∧ ℓ(x) = n ↔ ¬∃y (y ≺proc x)
∧ ℓ(x) = n →

(

d1(x) = d2(x) ∨ ∃y (y ≺fork x)
)





Finally, every send should be followed by a receive, and a receive be preceded
by a send action: ϕ3 = ∀x

(

ℓ(x) ∈ { ! , ? } → ∃y (x ≺msg y ∨ y ≺msg x)
)

. This for-
mula actually ensures that, for every c, d ∈ N, there are as many symbols !(c, d)
as ?(d, c), the N -th send symbol being matched with the N -th receive symbol.
We call a data word over Σdyn and S

2
dyn a message sequence chart (MSC, for

short) if it satisfies ϕ1 ∧ ϕ2 ∧ ϕ3. Figure 2 shows an MSC and the induced rela-
tions. When we restrict to MSCs, our logic corresponds to that from [20]. Note
that model checking rMSO(S2dyn) specifications against fork-and-join grammars,
which can generate infinite sets of MSCs, is decidable [20].

A last rFO(S2dyn)-formula (which is not satisfied by all MSCs) specifies that,
whenever a process c forks some d, then this is followed by a message from d to
c: ∀x1, y1 (x1 ≺fork y1 → ∃x2, y2 (x1 ≺proc x2 ∧ y1 ≺proc y2 ≺msg x2)). ♦

4 Class Register Automata

In this section, we define class register automata, a non-deterministic one-way au-
tomata model that captures rEMSO logic. It combines register automata [17,18]
and class memory automata [2]. When processing a data word, data values from
the current position can be stored in registers. The automaton reads the data
word from left to right but can look back on certain states and register contents
from the past (e.g., at the last position that is executed by the same process).
Positions that can be accessed in this way are determined by the signature S.
Their register entries can be compared with one another, or with current values
from the input. Moreover, when taking a transition, registers can be updated by
either a current value, an old register entry, or a guessed value.

Definition 1. A class register automaton (over signature S) is a tuple A =
(Q,R,∆, (F⊳)⊳∈S

, Φ) where

– Q is a finite set of states,

– R is a finite set of registers,
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– the F⊳ ⊆ Q are sets of local final states,

– Φ is the global acceptance condition: a boolean formula over { ‘q ≤ N ’ | q ∈
Q and N ∈ N}, and

– ∆ is a finite set of transitions of the form

(p, g)
a

−→ (q, f) .

Here, p : S ⇀ Q is a partial mapping representing the source states. More-
over, g is a guard, i.e., a boolean formula over { ‘θ1 = θ2’ | θ1, θ2 ∈ [m] ∪
(dom(p) × R)} to perform comparisons of values that are are currently read
and those that are stored in registers. Finally, a ∈ Σ is the current label,
q ∈ Q is the target state, and f : R ⇀ (dom(p)×R) ∪ ([m]×N) is a partial
mapping to update registers.

In the following, we write p⊳ instead of p(⊳). Transition (p, g)
a

−→ (q, f)
can be executed at position i of a data word if the state at position prev

⊳
(i) is

p⊳ (for all ⊳ ∈ dom(p)) and, for a register guard (⊳1, r1) = (⊳2, r2), the entry
of register r1 at prev

⊳1
(i) equals that of r2 at prev

⊳2
(i). The automaton then

reads the label a together with a tuple of data values that also passes the test
given by g, and goes to q. Moreover, register r obtains a new value according
to f(r): if f(r) = (⊳, r′) ∈ dom(p) × R, then the new value of r is the value
of r′ at position prev

⊳
(i); if f(r) = (k,B) ∈ [m] × N, then r obtains any k-th

data value in the B-sphere around i. In particular, f(r) = (k, 0) assigns to r the
(unique) k-th data value of the current position. To some extent, f(r) = (k,B)
calls an oracle to guess a data value. The guess is local and, therefore, weaker
than [18], where a non-deterministic reassignment allows one to write any data
value into a register. This latter approach can indeed simulate our local version
(this is not immediately clear, but can be shown using the sphere automaton
from Section 5).

Let us be more precise. A configuration of A is a pair (q, ρ) where q ∈ Q

is the current state and ρ : R ⇀ D is a partial mapping denoting the current
register contents. If ρ(r) is undefined, then there is no entry in r. Let w =
w1 . . . wn ∈ (Σ×D

m)∗ be a data word and ξ = (q1, ρ1) . . . (qn, ρn) be a sequence
of configurations. For i ∈ [n], k ∈ [m], and B ∈ N, let D

k
B(i) = {dk(j) | j ∈ [n]

such that distw(i, j) ≤ B}. We call ξ a run of A on w if, for every position

i ∈ [n], there is a transition (pi, gi)
ℓ(i)
−→ (qi, fi) such that the following hold:

(1) dom(pi) = {⊳ ∈ S | prev
⊳
(i) is defined}

(2) for all ⊳ ∈ dom(pi) : (pi)⊳ = qprev
⊳
(i)

(3) gi is evaluated to true on the basis of its atomic subformulas: θ1 = θ2 is true iff
val i(θ1) = val i(θ2) ∈ D where val i(k) = dk(i) and val i((⊳, r)) = ρprev

⊳
(i)(r)

(the latter might be undefined and, therefore, not be in D)

(4) for all r ∈ R :











ρi(r) = ρprev
⊳
(i)(r

′) if fi(r) = (⊳, r′) ∈ dom(p)×R

ρi(r) ∈ D
k
B(i) if fi(r) = (k,B) ∈ [m]×N

ρi(r) undefined if fi(r) undefined
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Run ξ is accepting if qi ∈ F⊳ for all i ∈ [n] and ⊳ ∈ S such that next⊳(i) is
undefined. Moreover, we require that the global condition Φ is met. Hereby, an
atomic constraint q ≤ N is satisfied by ξ if |{ i ∈ [n] | qi = q}| ≤ N . The language
L(A) ⊆ (Σ ×D

m)∗ of A is defined in the obvious manner. The corresponding
language class is denoted by CRA(S).

The acceptance conditions are inspired by Björklund and Schwentick [2], who
also distinguish between local and global acceptance. Local final states can be
motivated as follows. When data values model process identities, a ≺∼-maximal
position of a data word is the last position of some process and must give rise to
a local final state. Moreover, in the context of S2dyn, a sending position that does
not lead to a local final state in F≺msg

requires a matching receive event. Thus,
local final states can be used to model “communication requests”. The global
acceptance condition of class register automata is more general than that of [2]
to cope with all possible signatures. However, in the special case of S1+1,∼, there
is some global control in terms of ≺+1. We could then perform some counting
up to a finite threshold and restrict, like [2], to a set of global final states.

We can classify many of the non-deterministic one-way models from the lit-
erature (most of them defined for m = 1) in our unifying framework:

– A class memory automaton [2] is a class register automaton where, in all
transitions (p, g)

a
−→ (q, f), the update function f is undefined everywhere.

The corresponding language class is denoted by CMA(S).

– As an intermediary subclass of class register automata, we consider non-
guessing class register automata: for all transitions (p, g)

a
−→ (q, f) and

registers r, one requires f(r) ∈ (dom(p) ×R) ∪ ([m] × {0}). We denote the
corresponding language class by CRA−(S).

– A register automaton [14,17] is a non-guessing class register automaton over
S
m
+1 = {≺+1}. Moreover, non-guessing class register automata over S

1
+1,∼

capture fresh-register automata [25], which can dynamically generate data
values that do not occur in the history of a run. Actually, this feature is
also present in dynamic communicating automata [6] and in class memory
automata over S

1
+1,∼ where a fresh data value is guaranteed by a transition

(p, g)
a

−→ (q, f) such that p≺∼
is undefined.

– Class register automata are a model of distributed computation: considered
over Σdyn and S

2
dyn, they subsume dynamic communicating automata [6]. In

particular, they can handle unbounded process creation and message passing.
Updates of the form f(r) = (≺fork, r

′) and f(r) = (≺msg, r
′) correspond to

receiving a process identity from the spawning/sending process. Moreover,
when a process requests a message from the thread whose identity is stored
in register r, a corresponding transition is guarded by (≺proc, r) = (≺msg, r0)
where we assume that every process keeps its identity in some register r0.

Example 5. Let us give a concrete example. Suppose Σ = {r, a} and D = N.
We pursue Example 3 and build a non-guessing class register automaton A over
S
1
+1,∼ for L = [{(r, 1) . . . (r, n)(a, 1) . . . (a, n) | n ≥ 1}]S1

+1,∼
. Roughly speaking,
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Transitions Run

source (p) guard (g) input q update (f) input state r1 r2

≺∼
≺+1

1 (r, d) q1 r1 := d (r, 8) q1 8 ⊥

2 q1 (r, d) q1
r1 := d

r2 := (≺+1, r1)
(r, 5) q1 5 8

3 q1 q1 (≺∼, r2) = ⊥ (a, d) q2 r1 := d (a, 8) q2 8 ⊥

4 q1 q2 (≺∼, r2) = (≺+1, r1) (a, d) q2 r1 := d (a, 5) q2 5 ⊥

Fig. 3. A non-guessing class register automaton over S
1
+1,∼ and a run

there is a request phase followed by an acknowledgment phase, and requests
are acknowledged in the order they are received. Figure 3 presents A and an
accepting run on (r, 8)(r, 5)(a, 8)(a, 5). The states of A are q1 and q2. State q1 is
assigned to request positions (first phase), state q2 to acknowledgments (second
phase). Moreover, A is equipped with registers r1 and r2. During the first phase,
r1 always contains the data value of the current position, and r2 the data value
of the ≺+1-predecessor (unless we deal with the very first position, where r2 is
undefined, denoted ⊥). These invariants are ensured by transitions 1 and 2. In
the second phase, by transition 3, position n+1 carries the same data value as the
first position, which is the only request with undefined r2. Guard (≺∼, r2) = ⊥
is actually an abbreviation for ¬((≺∼, r2) = (≺∼, r2)). By transition 4, position
n+ i with i ≥ 2 has to match the request position whose r2-contents equals r1
at n+ i− 1. Finally, F≺∼

= {q2}, F≺+1
= {q2}, and Φ = ¬(q1 ≤ 0). ♦

For the language L from Example 5, one can show L 6∈ CMA(S1+1,∼), using
an easy pumping argument. Next, we will see that non-guessing class register
automata, though more expressive than class memory automata, are not yet
enough to capture rEMSO logic. Thus, dropping just one feature such as registers
or guessing data values makes class register automata incomparable to the logic.
Assume m = 2 and consider S

2
∼ = {≺1

∼ , ≺
2
∼} (cf. Example 1).

Lemma 1. rFO(S2∼) 6⊆ CRA−(S2∼).

Proof. We determine a formula ϕ ∈ rFO(S2∼) and show, by contradiction, that
every non-guessing class register automaton capturing L = L(ϕ) will necessarily
accept a data word outside L. Roughly speaking, L consists of words where every
position belongs to a pattern that is depicted in Figure 4 and captured by the for-
mula pattern(x1, . . . , x4) = x1 ≺1

∼ x3 ∧ x1 ≺2
∼ x4 ∧ x2 ≺2

∼ x3 ∧ x2 ≺1
∼ x4. With

this, ϕ = ∀x∃x1, . . . , x4 (x ∈ {x1, . . . , x4} ∧ pattern(x1, . . . , x4)) ∈ rFO(S2∼) is
the formula for L. Suppose that there is a non-guessing class register automaton
A over S

2
∼ recognizing L. We build a data word w = (a, d1) . . . (a, dn) ∈ L with

n ∈ 4N and {d11, . . . , d
1
n} ∩ {d21, . . . , d

2
n} = ∅ by nesting disjoint patterns as de-

picted in Figure 4: we first create i1, . . . , i4, then add j1, . . . , j4; the next pattern
is to be inserted at n1, . . . , n4, etc. We assume that the data values of distinct
patterns are disjoint. If we choose n large enough, then there are an accepting
run ξ = (q1, ρ1) . . . (qn, ρn) of A on w (with transition ti = (pi, gi)

a
−→ (qi, fi) at

10



j1 j2 j3 j4i1 i2 i3 i4n1 n2 n3 n4

≺1
∼

≺2
∼

Fig. 4. Nested patterns

j1 j2 j3 j4i1 i2 i3 i4

Fig. 5. Merging patterns

position i) and positions i1, . . . , i4, j1, . . . , j4 of w such that j1 < i1, i1, . . . , i4 and
j1, . . . , j4 form two (disjoint) patterns, and ti1 = tj1 , . . . , ti4 = tj4 . Now, consider
the data word w′ that we obtain from w when we swap the second data values
of positions i1 and j1. Thus, the data part of w′ is

d1 . . . dj1−1 (d
1
j1
, d2i1) dj1+1 . . . di1−1 (d

1
i1
, d2j1) di1+1 . . . dn .

We have the situation depicted in Figure 5. In particular, i1, . . . , i4 do not form
a single closed cycle. This violates ϕ, as x = i1 implies x1 ∈ {i1, i2}. Thus,
w′ 6∈ L. However, applying transitions t1, . . . , tn still yields an accepting run
ξ′ = (q1, ρ

′
1) . . . (qn, ρ

′
n) of A on w′. For i ∈ [n], ρ′i is then given as follows:

ρ′i(r) =























d2i1 if ρi(r) = d2j1 and i ∈ {j1, j3}

d2j1 if ρi(r) = d2i1 and i ∈ {i1, i3}

d1i1 if ρi(r) = d1j1 and i = j4

d1j1 if ρi(r) = d1i1 and i = i4
ρi(r) otherwise

One can verify that ξ′ is indeed an accepting run on w′. ⊓⊔

The proof of Lemma 1 can be adapted to show rFO(S2dyn) 6⊆ CRA−(S2dyn). It
reveals that non-guessing class register automata can in general not detect cycles.
However, this is needed to capture rFO logic [16]. In Section 5, we show that full
class register automata capture rFO and, as they are closed under projection,
also rEMSO logic. Closure under projection is meant in the following sense. Let
Γ be a non-empty finite alphabet. Given S = (σ, I), we define another signature
SΓ for data words over (Σ×Γ )×D

m. Its set of relation symbols is {⊳Γ | ⊳ ∈ S}.
For w ∈ ((Σ×Γ )×D

m)∗, we set i ⊳w
Γ j iff i ⊳projΣ(w) j. Hereby, the projection

11



projΣ just removes the Γ component while keeping Σ and the data values. For
C ∈ {CRA,CRA−,CMA}, we say that C(S) is closed under projection if, for
every Γ and L ⊆ ((Σ × Γ )×D

m)∗, L ∈ C(SΓ ) implies projΣ(L) ∈ C(S).

Lemma 2. For every signature S, CRA(S), CRA−(S), and CMA(S) are closed
under union, intersection, and projection. They are, in general, not closed under
complementation.

Proof. Closure under union and intersection follows standard automata-theoretic
constructions. Closure under projection holds since projection preserves the
graph structure of a data word. For non-complementability, we can rely on the
corresponding result for communicating automata [9]. Roughly speaking, a com-
municating automaton is a dynamic communicating automaton with a fixed
set of at least two processes Proc. It can be identified as a special case of our
framework: We let m = 0, since the number of processes is fixed. Moreover,
Σ = { !(c, d) , ?(c, d) | c, d ∈ Proc such that c 6= d } is the set of actions. Finally,
we define the signature S

0
Proc = {≺proc , ≺msg} as the straightforward restriction

of S2dyn (cf. Example 2) to this bounded case. Speaking in terms of our frame-
work, [9] indeed shows that class register automata (or, as m = 0, class memory
automata) over S

0
Proc are not closed under complementation. ⊓⊔

5 Realizability of EMSO Specifications

In this section, we solve the realizability problem for rEMSO specifications:

Theorem 1. For all signatures S, rEMSO(S) ⊆ CRA(S). An automaton can be
computed in elementary time and is of elementary size.

Classical procedures that translate formulas into automata follow an induc-
tive approach, use two-way mechanisms and tools such as pebbles, or rely on
reductions to existing translations. There is no obvious way to apply any of
these techniques to prove our theorem.

We therefore follow a technique from [9], which is based on ideas from [22,24].
We first transform the first-order kernel of the formula at hand into a normal
form due to Hanf [16]. According to that normal form, satisfaction of a first-
order formula wrt. data word w only depends on the spheres that occur in
G(w), and on how often they occur, counted up to a threshold. The size of a
sphere is bounded by a radius that depends on the formula. The threshold can
be computed from the radius and |S|. We can indeed apply Hanf’s Theorem, as
the structures that we consider have bounded degree: every node/word position
has at most |S| incoming and at most |S| outgoing edges. In a second step, we
transform the formula in normal form into a class register automaton.

Recall that B-SphG(i) denotes the B-sphere of graph/data word G around i
(cf. Section 2). Its size (number of nodes) is bounded by maxSize := (2|S|+2)B.
Let B-SpheresS = {B-SphG(i) | G = (V, . . .) is an S-graph and i ∈ V }. We do
not distinguish between isomorphic structures so that B-Spheres

S
is finite.
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Theorem 2 (cf. [8, 16]). Let ϕ ∈ rFO(S). One can compute, in elementary
time, B ∈ N and a boolean formula β over { ‘S ≤ N ’ | S ∈ B-SpheresS and
N ∈ N} such that L(ϕ) is the set of data words that satisfy β. Here, we say that
w = w1 . . . wn satisfies atom S ≤ N iff |{i ∈ [n] | B-Sphw(i) ∼= S}| ≤ N . The
radius B and the size of β and its constants N are elementary in |ϕ| and |S|.

Proof. A simple but crucial observation is that there exists a first-order sentence
that is equivalent to ϕ but talks about G(w) rather than w. We simply write
λ(x) = a instead of ℓ(x) = a, and

∨

η∈P ν(x) = η instead of dk(x) = dl(x) where
P ⊆ Part(m) is the set of partitions of [m] such that k and l occur in the same
set. As rMSO(S)-formulas cannot distinguish between data words that induce the
same graph, the boolean formula β in normal form exists due to [16]. Actually,
β can be computed in triply exponential time [8]. ⊓⊔

By Theorem 2, it will be useful to have a class register automaton that,
when reading a position i of data word w, outputs the sphere of w around i. Its
construction is actually the main difficulty in the proof of Theorem 1, as spheres
have to be computed “in one go”, i.e., reading the word from left to right, while
accessing only certain configurations from the past.

Proposition 1. Let B ∈ N. One can compute, in elementary time, a class reg-
ister automaton AB = (Q,R,∆, (F⊳)⊳∈S

, true) over S, as well as a mapping
π : Q → B-SpheresS such that L(AB) = (Σ × D

m)∗ and, for every data word
w = w1 . . . wn, every accepting run (q1, ρ1) . . . (qn, ρn) of AB on w, and every
i ∈ [n], π(qi) ∼= B-Sphw(i). Moreover, |Q| and |R| are elementary in B and |S|.

The proposition is proved below. Let us first show how we can use it, together
with Theorem 2, to translate an rEMSO formula into a class register automaton.

Proof (of Theorem 1). Let ϕ = ∃X1 . . . ∃Xn ψ ∈ rEMSO(S) be a sentence with
ψ ∈ rFO(S) (we also assume n ≥ 1). Since Theorem 2 applies to first-order for-
mulas only, we extend Σ to Σ × Γ where Γ = 2{1,...,n}. Consider the extended
signature SΓ (cf. Section 4). From ψ, we obtain a formula ψΓ ∈ rFO(SΓ ) by re-
placing ℓ(x) = a with

∨

M∈Γ ℓ(x) = (a,M) and x ∈ Xj with
∨

a∈Σ,M∈Γ ℓ(x) =
(a,M ∪ {j}). Consider the radius B ∈ N and the normal form βΓ for ψΓ due to
Theorem 2. Let AB = (Q,R,∆, (F⊳)⊳∈SΓ

, true) be the class register automaton
over SΓ from Proposition 1 and π be the associated mapping. The global accep-
tance condition of AB is obtained from βΓ by replacing every atom S ≤ N with
π−1(S) ≤ N (which can be expressed as a suitable boolean formula). We hold
A′

B, a class register automaton satisfying L(A′
B) = L(ψΓ ). Exploiting closure

under projection (Lemma 2), we obtain a class register automaton over S that
recognizes L(ϕ) = projΣ(L(ψΓ )). ⊓⊔

The Sphere Automaton. In the remainder of this section, we construct the
class register automaton AB = (Q,R,∆, (F⊳)⊳∈S

, true) from Proposition 1,
together with π : Q → B-SpheresS. The idea is that, at each position i in the
data word w at hand, AB guesses the B-sphere S of w around i. To verify that
the guess is correct, i.e., S ∼= B-Sphw(i), S is passed to each position that is
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connected to i by an edge in G(w). That new position locally checks label and
data equalities imposed by S, then also forwards S to its neighbors, and so on.
Thus, at any time, several local patterns have to be validated simultaneously
so that a state q ∈ Q is actually a set of spheres. In fact, we consider extended
spheres E = (S, α, col ) where S = (U, (⊳E)⊳∈S, λ, ν, γ) is a sphere (with universe
U and sphere center γ), α ∈ U is the active node, and col is a color from a finite
set, which will be specified later. The active node α indicates the current context,
i.e., it corresponds to the position currently read.

Let B-eSpheresS denote the set of extended spheres, which is finite up to
isomorphism. For E = (S, α, col ) ∈ B-eSpheresS, S = (U, (⊳E)⊳∈S, λ, ν, γ), and
j ∈ U , we let E[j] refer to the extended sphere (S, j, col ) where the active node α
has been replaced with j. Now suppose that the state q of AB that is reached after
reading position i of data word w contains E = (S, α, col ). Roughly speaking,
this means that the neighborhood of i in w shall look like the neighborhood of
α in S. Thus, if S contains j′ such that α⊳E j′, then we must find i′ such that
i ⊳w i′ in the data word. Local final states will guarantee that i′ indeed exists.
Moreover, the state assigned to i′ in a run of AB will contain the new proof
obligation E[j′] and so forth. Similarly, an edge in (the graph of) w has to be
present in spheres, unless it is beyond their scope, which is limited by B. All
this is reflected below, in conditions T2–T6 of a transition.

We are still facing two major difficulties. Several isomorphic spheres have
to be verified simultaneously, i.e., a state must be allowed to include isomor-
phic spheres in different contexts. A solution to this problem is provided by
the additional coloring col . It makes sure that centers of overlapping isomorphic
spheres with different colors refer to distinct nodes in the input word. To put
it differently, for a given position i in data word w, there may be i′ such that
0 < distw(i, i′) ≤ 2B+1 and B-Sphw(i) ∼= B-Sphw(i′). Fortunately, there cannot
be more than (2|S|+1) ·maxSize2 such positions. As a consequence, the coloring
col can be restricted to the set {1, . . . , (2|S|+ 1) ·maxSize2 + 1}.

Implementing these ideas alone would do without registers and yield a class
memory automaton. But this cannot work due to Lemma 1. Indeed, a faithful
simulation of cycles in spheres has to make use of data values. They need to be
anticipated, stored in registers, and locally compared with current data values
from the input word. We introduce a register (E, k) for every extended sphere
E and k ∈ [m]. To get the idea behind this, consider a run (q1, ρ1) . . . (qn, ρn)
of AB on w = (a1, d1) . . . (an, dn). Pick a position i of w and suppose that
E = (U, (⊳E)⊳∈S, λ, ν, γ, α, col) ∈ qi. If α is minimal in E, then there is no
pending requirement to check. Now, as α shall correspond to the current position
i of w, we write, for every k ∈ [m], dki into register (E, k) (first case of T8 below).
For all j ∈ U \ {α}, on the other hand, we anticipate data values and store them
in (E[j], k) (also first case of T8). They will be forwarded (second case of T8)
and checked later against both the guesses made at other minimal nodes of E
(guard g3 of T7) and the actual data values in w (guard g2). This procedure
makes sure that the values that we carry along within an accepting run agree
with the actual data values of w.
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Now, as prevw
⊳

and nextw
⊳

are monotone wrt. positions with identical labels
and data values, two isomorphic cycles cannot be “merged” into one larger one,
unlike in non-guessing class register automata where different parts may act
erroneously on the assumption of inconsistent data values (cf. Lemma 1). As a
consequence, spheres are correctly simulated by the input word.

Let us formalize AB = (Q,R,∆, (F⊳)⊳∈S
, true) and the mapping π : Q →

B-SpheresS, following the above ideas. The set of registers is R = B-eSpheresS×
[m]. A state from Q is a non-empty set q ⊆ B-eSpheresS such that

(i) there is a unique E = (U, (⊳E)⊳∈S, λ, ν, γ, α, col) ∈ q such that γ = α (we
set π(q) = (U, (⊳E)⊳∈S, λ, ν, γ) to obtain the mapping required by Prop. 1),

(ii) there are a ∈ Σ and η ∈ Part(m) such that, for all E = (. . . , λ, ν, . . .) ∈ q,
we have λ(α) = a and ν(α) = η (we let label (q) = a and data(q) = η), and

(iii) for every (S, α, col ), (S, α′, col) ∈ q, we have α = α′.

Before we turn to the transitions, we introduce some notation. Below, E will
always denote (S, α, col) with S = (U, (⊳E)⊳∈S, λ, ν, γ); in particular, α refers
to the active node of E. The mappings nextE

⊳
, prevE

⊳
, and distE are defined for

extended spheres in the obvious manner. For j ∈ U , we set type−(j) = {⊳ ∈ S |
prevE

⊳
(j) is defined}. Let us fix, for all E ∈ B-eSpheresS such that type−(α) 6= ∅,

some arbitrary ⊳E ∈ type−(α). Finally, for state q and k1, k2 ∈ [m], we write
k1 ∼q k2 if there is K ∈ data(q) such that {k1, k2} ⊆ K.

We have a transition (p, g)
a

−→ (q, f) iff the following hold:

T1 label (q) = a

T2 for all ⊳ ∈ S, E ∈ q : ⊳ 6∈ dom(p) =⇒ prevE
⊳
(α) is undefined

T3 for all ⊳ ∈ dom(p), E ∈ q, j ∈ U : j ⊳E α ⇐⇒ E[j] ∈ p⊳

T4 for all ⊳ ∈ dom(p), E ∈ p⊳, j ∈ U : α⊳E j ⇐⇒ E[j] ∈ q

T5 for all ⊳ ∈ dom(p), E ∈ q : prevE
⊳
(α) undefined =⇒ distE(γ, α) = B

T6 for all ⊳ ∈ dom(p), E ∈ p⊳: nextE
⊳
(α) undefined =⇒ distE(γ, α) = B

T7 g = g1 ∧ g2 ∧ g3 where

g1 =
∧

k1,k2∈[m]
k1 ∼q k2

k1 = k2 ∧
∧

k1,k2∈[m]
k1 6∼q k2

¬ (k1 = k2) g2 =
∧

k∈[m] E ∈ q

⊳∈type−(α)

k = (⊳, (E, k))

g3 =
∧

k∈[m] E ∈ q j ∈U

⊳1,⊳2∈type−(α)

(⊳1, (E[j], k)) = (⊳2, (E[j], k))

T8 for all k ∈ [m] and E ∈ B-eSpheresS :

f((E, k)) =







(k, distE(j, α)) if ∃j ∈ U : E[j] ∈ q and type−(j) = ∅
(⊳E[j], (E, k)) if ∃j ∈ U : E[j] ∈ q and type−(j) 6= ∅
undefined otherwise
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For every ⊳ ∈ S, the local acceptance condition is given by F⊳ = {q ∈ Q |
for all E ∈ q, nextE

⊳
(α) is undefined}. Recall that the global one is true.

As the maximal size of a sphere is exponential in B and polynomial in |S|,
the numbers |Q| and |R| are elementary in B and |S|. Note that AB can actually
be constructed in elementary time.

In the appendix, we show that the construction of AB and π is correct in the
sense of Proposition 1.

6 From Automata to Logic

Next, we give translations from automata back to logic. Note that rEMSO(S1+1) $
CRA(S1+1), as rEMSO(S1+1) cannot reason about data values. However, we show
that the behavior of a class register automaton is always MSO definable and,
in a sense, “regular”. There are natural finite-state automata that do not share
this property: two-way register automata (even deterministic ones) over one-
dimensional data words are incomparable to MSO(S1+1,∼) [21].

Theorem 3. For every signature S, we have CRA(S) ⊆ MSO(S).

Proof. As usual, second-order variables are used to encode an assignment of
positions to transitions, which is then checked for being an accepting run. To
simulate register contents, we extend a technique from [21]. Let us describe how
a class register automaton A = (Q,R,∆, (F⊳)⊳∈S

, Φ) over S is translated into
an MSO(S)-sentence ϕA such that L(ϕA) = L(A). Suppose B is the maximum

of all B for which there is a transition (p, g)
a

−→ (q, f) ∈ ∆ with f(r) = (k,B),
for some r and k.

We assume a second-order variable Xδ for every transition δ ∈ ∆. Moreover,
we assume a variable Xβ

r,B for each r ∈ R, B ∈ {1, . . . ,B}, and each formula
β(xu, xv) ∈ rFO(S), with free variables xu and xv, that is of the form

β(xu, xv) = ∃x1, . . . , xB (xu ⊲⊳1 x1 ⊲⊳2 . . . ⊲⊳B xB = xv)

where ⊲⊳i ∈ {= , ⊳ , ⊳−1 | ⊳ ∈ S}. The intuition of these variables is as follows.

If a position x is contained in Xδ with δ = (p, g)
a

−→ (q, f) and f(r) = (k,B),

then x will also be contained in some Xβ
r,B, meaning that x executes δ and the

new data value of r is the k-th data value at the unique y such that β(x, y) is
satisfied.

The formula ϕA will be of the form ∃(Xδ)δ ∃(X
β
r,B)r,B,β

(ψ1 ∧ ψ2). Here, ψ1 ∈
rFO(S) checks whether the following hold:

– each position x is contained in exactly one set Xδ

– for all x and r ∈ R, x is contained in at most one set of the form X
β
r,B

– if x ∈ Xδ with δ = (p, g)
a

−→ (q, f) and f(r) = (k,B), then x ∈ X
β
r,B for

some β
– the label at position x ∈ Xδ corresponds to the label of δ
– conditions (1) and (2) in the definition of a run are met
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MSO(S1
+1,∼) = rMSO(S1

+1,∼)

CRA(S1
+1,∼)

CRA−(S1
+1,∼)

EMSO(S1
+1,∼)

rEMSO(S1
+1,∼)

EMSO2(S
1
+1,∼ ∪ {<}) = CMA(S1

+1,∼)

CRA(S1
+1) = CRA−(S1

+1)

Thm. 1

[2]

[2,5]

Fig. 6. A hierarchy of automata and logics over one-dimensional data words

– the (potential) run is accepting, i.e., F⊳ and Φ are respected

It remains to define ψ2 ∈ MSO(S) to check property (3) of a run. This can
be done by means of formulas ψg(x), one for each atomic guard g ∈ { θ1 = θ2 |
θ1, θ2 ∈ [m] ∪ (S × R)}. We restrict here to g = ((⊳, r) = l) with l ∈ [m]. The
other cases are similar. Formula ψg(x) checks if the contents of r at position
prev

⊳
(x) equals the l-th data value at x. It will be of the form ∃X ∃(Xr)r∈R χg.

The idea is that the positions in X describe a path x1 ⊳1 x2 ⊳2 . . . ⊳n−1

xn ⊳ x that “transports” the data value dl(x). We suppose that every position
xi is contained in precisely one set Xri meaning that register ri is updated by
the contents of ri−1 at position xi−1. More precisely, we require that, for all
i ∈ {2, . . . , n}, there is a transition δ with register-update mapping f such that
xi ∈ Xδ and f(ri) = (⊳i−1, ri−1). The last update should concern r, i.e., we
require xn ∈ Xr. So suppose x1 ∈ Xr1 . It remains to ensure that register r1, at
x1, obtains the value dl(x). More precisely, there should be a transition δ with
update mapping f , as well as k,B, β and a position x0 such that β(x1, x0) holds,

f(r1) = (k,B), x1 ∈ Xδ ∩ X
β
r1,B

and dk(x0) = dl(x).
Note that χg can be defined as an FO(S)-formula and ψg(x) holds iff the

register contents of r at prev
⊳
(x) equals dl(x). ⊓⊔

In the proof, the non-local predicate dk(x) = dl(y) is indeed essential to simulate
register assignments, as we need to compare data values at positions where
registers are updated. For one-dimensional data words, however, the predicate
can be easily defined in rMSO(S1+1,∼). The following theorem is dedicated to
this classical setting over S1+1,∼.

Theorem 4. We have the inclusions depicted in Figure 6. Here, −→ means
‘strictly included’ and 99K means ‘included’.

Proof. The inclusion rEMSO(S1+1,∼) ⊆ CRA(S1+1,∼) is due to Theorem 1, and
CRA(S1+1,∼) ⊆ MSO(S1+1,∼) is due to Theorem 3. The equality MSO(S1+1,∼) =
rMSO(S1+1,∼) is obvious.
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CMA(S1+1,∼) $ rEMSO(S1+1,∼) : Consider a class memory automaton A.
As A is completely state-based and does not make use of any register, it is
standard to define a sentence ψ ∈ rEMSO(S1+1,∼) such that L(ψ) = L(A). It
remains to show strictness of the inclusion.1 Suppose Σ = {r, a} and D = N,
and let L = [{(r, 1) . . . (r, n)(a, 1) . . . (a, n) | n ≥ 1}]S1

+1,∼
(note that the proof

also works if Σ is a singleton). Towards a contradiction, suppose L is recog-
nized by class memory automaton A. As A has no access to registers, a run
of A on (r, 1) . . . (r, n)(a, 1) . . . (a, n) is actually a sequence of states q1 . . . q2n. If
n is large enough, there are positions 1 ≤ i < j ≤ n such that qi = qj . Now,
we can simply exchange the data values at positions i and j without affect-
ing acceptance. More precisely, q1 . . . q2n is also an accepting run on the data
word (r, 1) . . . (r, i−1)(r, j)(r, i+1) . . . (r, j−1)(r, i)(r, j+1) . . . (r, n)(a, 1) . . . (a, n),
which is not contained in L, a contradiction. On the other hand, L is the con-
junction ϕ1 ∧ ϕ2 of the following rFO(S1+1,∼)-sentences:

– ϕ1 = ∃x true ∧ ∀x∃=1y

(

x ≺∼ y ∧ ℓ(x) = r ∧ ℓ(y) = a

∨ y ≺∼ x ∧ ℓ(y) = r ∧ ℓ(x) = a

)

– ϕ2 = ∀x, y





x ≺+1 y ∧ ¬(ℓ(x) = r ∧ ℓ(y) = a)

→ ∃x′, y′
(

x ≺∼ x′ ≺+1 y
′ ∧ y ≺∼ y′

∨ x′ ≺+1 y
′ ≺∼ y ∧ x′ ≺∼ x

)





The first formula expresses that the word has positive length and each ∼ equiv-
alence class has size two. The second formula ensures the FIFO structure of a
data word.

CMA(S1+1,∼) $ CRA−(S1+1,∼) : Consider the language L from the previous
paragraph. It is not in CMA(S1+1,∼). However, Example 5 demonstrates that
there is a non-guessing class register automaton recognizing L.

rMSO(S1+1,∼) 6⊆ CRA(S1+1,∼) : We encode grids into data words. An (i, j)-
grid is a graph that has a height i ∈ N and a width j ∈ N meaning that it has i
rows and j columns that are connected by a horizontal and a vertical immediate
successor relation. Nodes are labeled by elements from Σ = {a, b, c}. We encode
an (i, j)-grid as the data word

(a11, 1) . . . (ai1, i)(a12, 1) . . . (ai2, i) . . . . . . (a1j , 1) . . . (aij , i)

where akl ∈ Σ is the labeling of the grid node (k, l). Hereby, each subword
(a1k, 1) . . . (aik, i) constitutes a column. Then, moving down in the grid corre-
sponds to a ≺+1-step in the data word, moving right corresponds to a ≺∼-step.
These steps are rFO(S1+1,∼)-definable.

Consider the set L of grids of the form H1.C.H2 where C is a single column
of c-labeled nodes, and H1 and H2 are grids with labels from {a, b} such that
the sets of different column words (over {a, b}) in H1 and H2 coincide. We know

1 Note that satisfiability of rEMSO(S1
+1,∼) is undecidable, whereas emptiness of class

memory automata over S
1
+1,∼ is decidable [5]. This already implies that there is no

effective translation of automata into formulas.
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that L is MSO-definable in the signature of a grid. Therefore, the encoding L of
L into data words is rMSO(S1+1,∼)-definable. Using an argument from [24], we
show that L 6∈ CRA(S1+1,∼). First observe that the number of distinct sets of
columns words over {a, b} of length n is 22

n

. Suppose, towards a contradiction,
that there is a class register automaton A = (Q,R,∆, (F⊳)⊳∈S

, Φ) such that
L(A) = L. Without loss of generality, we assume that Φ is given in terms of a
simple set of global final states. In a run of A on the data-word encoding of grid
H1.C.H2 of height n, all the information that A has about H1 must be encoded
in the n configurations that are taken while reading the c-labeled positions. The
number of tuples of n configurations that A can distinguish is bounded by

N = |Q|n · 2(|R|·n)2 · (n+ 1)|R|·n .

Here, the second factor is an upper bound on the number of equivalence classes
on the set {1, . . . , |R| · n}, which captures guessed values, and the third factor
is the number of registers assignments. Now, as Q and R are fixed, N does not
grow sufficiently fast so that A will accept a data word outside L.

CRA(S1+1) ⊆ CRA−(S1+1) : Note first that class register automata over S
1
+1

are a variant of the register automata with non-deterministic reassignment from
[18]. The crucial difference is that the “look-ahead” of CRA(S1+1) is bounded,
while the automata from [18] can guess any arbitrary data value. As a conse-
quence, the latter capture the set of data words such that all data values (except
the last one) are different from the last data value. We will show that, on the
other hand, class register automata over S

1
+1 are no more expressive than clas-

sical register automata, which cannot recognize that language.
Let A = (Q,R,∆, (F⊳)⊳∈S

, Φ) be a class register automaton over S
1
+1.

We sketch the construction of a non-guessing class register automaton A′ =
(Q′, R′, ∆′, (F ′

⊳
)
⊳∈S

, Φ′) over S
1
+1 such that L(A) = L(A′). Let B be the maxi-

mal value B such that an update of A is of the form f(r) = (k,B). Without loss
of generality, we assume that B ≥ 1 exists. The idea is that A′ keeps track of
the register contents of the last B positions, and of the last B data values read.
To this aim, we set R′ = {−B, . . . ,−1} × (R ⊎ {current}). Register (−i, current)
contains the i-th last input data value (wrt. the next position to read), and reg-
ister (−i, r) simulates register assignments of A for r. In particular, this allows
us to access every input data value from the last B ≤ B positions. In order to
anticipate data values, a state of A′ contains, apart from a state of A, an equiv-
alence relation over both the new set of registers R′ and the next B positions.
Thus, a state of A′ is a pair (q,∼) where q ∈ Q and ∼ is an equivalence relation
over R′ × {1, . . . ,B}.

To simulate an update f(r) = (k,B) of A with B ≥ 1, A′ either writes the
current value or one of the values stored in (−B, current), . . . , (−1, current) into
r, or goes into a state in which r and at least one of the next B positions are
considered equivalent. Of course, the equivalence has to be globally consistent
and locally consistent meaning that two equivalent registers should contain the
same data value. Moreover, when A′ is in a state where the next position and a
defined register r are considered equivalent, then the next symbol to read is the
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contents of r. If, in contrast, the next position is not equivalent to some defined
register, then A′ should read a data value that is currently not stored, and store
it in r (unless another update for r applies). This finally ensures that a suitable
data value in terms of an equivalence relation has been guessed when performing
an update of the form f(r) = (k,B). ⊓⊔

The remaining (strict) inclusions are left open. When there are no data values,
we have expressive equivalence of EMSO logic and class register automata (which
then reduce to class memory automata). The translation from automata to logic
follows the standard approach. The following theorem is a proper generalization
of the main result of [9].

Theorem 5. Suppose m = 0. For every signature S, EMSO(S) = CRA(S).

7 Infinite Data Words

In the realm of reactive systems, it is appropriate to consider infinite data words,
i.e., sequences from the set (Σ ×D

m)ω . Note that all the notions that we intro-
duced in Section 2 carry over to the new domain. In particular, a formula from
rMSO(S) is interpreted over an infinite word w without modifying the definition.
However, its fragment rEMSO(S) now appears limited. In terms of S2dyn, one can-
not express “some process sends infinitely many messages during an execution”,
as can be shown using Hanf’s Theorem. We therefore introduce a first-order
quantifier ∃∞. Formula ∃∞xϕ is satisfied by w = w1w2 . . . ∈ (Σ×D

m)ω if there
are infinitely many positions i ≥ 1 such that ϕ is satisfied when x is interpreted
as i. We obtain the logics rFO∞(S) and rEMSO∞(S) as well as the language class
rEMSO∞(S). Now, a translation from logic into automata requires an extension
of class register automata. We define an ω-class register automaton (over S) to
be a tuple A = (Q,R,∆, (F⊳)⊳∈S

, Φ) where Q,R,∆, (F⊳)⊳∈S
are as in class

register automata, and Φ is henceforth a boolean formula over { ‘q = ∞’ | q ∈
Q} ∪ { ‘q ≤ N ’ | q ∈ Q and N ∈ N}. Infnite runs (q1, ρ1)(q2, ρ2) . . . and satis-
faction of the new global acceptance condition are defined as one would expect.
In particular, atom q = ∞ is satisfied if |{i ≥ 1 | qi = q}| = ∞. The class
of languages recognized by ω-class register automata is denoted by ω-CRA(S).
Theorems 1 and 5 extend to infinite words.

Theorem 6. For all S, we have rEMSO∞(S) ⊆ ω-CRA(S). The size of the
automaton is elementary in the size of the formula and |S|. If m = 0, then
rEMSO∞(S) = ω-CRA(S).

Proof. The crucial observation is that Proposition 1 still holds. We actually take
the same automaton AB and run it on infinite words. The argument that makes
the construction work relies on the fact that the past of any word position
is finite. Moreover, it was shown in [7] that Theorem 2 has a counterpart for
formulas with infinity quantifier. The proof is based on Vinner’s extension of
Ehrenfeucht-Fraïssé games [26]. Thus, for ϕ ∈ rFO∞(S), there are B ∈ N and a
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boolean formula β over {‘S = ∞’ , ‘S ≤ N ’ | S ∈ B-Spheres
S

and N ∈ N} such
that L(ϕ) is the set of data words that satisfy β. With this, the constructions
from Section 5 can be adapted to translate an rEMSO∞(S)-sentence into an
ω-class register automaton over S. ⊓⊔

We remark that the proof of Theorem 6 is not effective. Unlike the proof of
Theorem 1, it does not rely on [8, 16]. We do not know if there is an effective
alternative.

8 Conclusion

We studied the realizability problem for data-word languages. A particular case
of this general framework constitutes a first step towards a logically motivated
automata theory for dynamic message-passing systems. In light of this, it would
be desirable to synthesize smaller and deadlock-free automata from logical or
algebraic specifications. A good starting point for those studies may be temporal
logic [14, 19].

Our approach to modeling systems over infinite alphabets may also lead to
meaningful model-checking questions. It would be interesting to extend [20],
whose logic corresponds to ours in the case of S2dyn, to general data words.
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A. Correctness of sphere automaton

We will show that the class register automaton AB = (Q,R,∆, (F⊳)⊳∈S
, Φ) over

S and the mapping π : Q→ B-SpheresS are correct in the sense of Proposition 1:
L(AB) = (Σ × D

m)∗ and, for every data word w = w1 . . . wn (where wi =
(ai, di)), every accepting run (q1, ρ1) . . . (qn, ρn) of AB on w, and every position
i ∈ [n], π(qi) ∼= B-Sphw(i).

Every data word is accepted. Let us first show L(AB) = (Σ ×D
m)∗, i.e.,

that every data word is accepted by AB. Let w = (a1, d1) . . . (an, dn) ∈ (Σ ×
D

m)∗ be any data word and let G(w) = ([n], (⊳w)⊳∈S, λ̂, ν̂) be its associated
graph. We have to show w ∈ L(AB). A key issue is the assignment of colors to
word positions in w such that overlapping spheres can be verified simultaneously.
Let i, i′ ∈ [n]. We say that i and i′ have a B-overlap in w if both B-Sphw(i) ∼=
B-Sphw(i′) and distw(i, i′) ≤ 2B + 1.

Lemma 3. There is a mapping Φ : [n] → {1, . . . , (2|S|+1) ·maxSize2 +1} such
that Φ(i) 6= Φ(i′) whenever i and i′ are distinct and have a B-overlap.

Proof. We obtain Φ as a coloring of the undirected graph ([n],Arcs) where two
nodes are connected iff they are distinct and have a B-overlap. The graph has
degree at most (2|S|+1) ·maxSize2 so that it can be ((2|S|+1) ·maxSize2 +1)-
colored by some mapping Φ, i.e., Φ(i) 6= Φ(i′) for every edge {i, i′}. ⊓⊔

We now define a sequence ξ = (q1, ρ1) . . . (qn, ρn) of configurations of AB and
show that ξ is an accepting run of AB on w. Let i ∈ [n]. We set

qi = { (B-Sphw(ic), i, Φ(ic)) | ic ∈ [n] such that distw(ic, i) ≤ B } .

Suppose E = (S, α, col ), S = (U, (⊳E)⊳∈S, λ, ν, γ), and k ∈ [m]. We define
ρi((E, k)) as follows. If there are positions ic, i

′ ∈ [n] such that distw(ic, i) ≤
B, distw(ic, i

′) ≤ B, (S, α) ∼= (B-Sphw(ic), i
′), and col = Φ(ic), then we set

ρi((E, k)) = dk(i′). Otherwise, we let ρi((E, k)) be undefined. Note that ρi((E, k))
is well defined, as there is at most one pair ic, i

′ satisfying the above properties.

We check that qi is a state. Let E = (S, α, col) ∈ qi and E′ = (E′, α′, col ′) ∈ qi
with S = (U, (⊳E)⊳∈S, λ, ν, γ) and S′ = (U ′, (⊳E′

)⊳∈S, λ
′, ν′, γ′).

(i) Assume γ = α and γ′ = α′. Then, (S, γ) ∼= (B-Sphw(i), i) and (S′, γ′) ∼=
(B-Sphw(i), i). Thus, (S, γ) ∼= (S′, γ′). Moreover, col = col ′ = Φ(i).

(ii) Clearly, we have λ(α) = λ′(α′) and ν(α) = ν′(α′).

(iii) Suppose S ∼= S′ (S = S′, for simplicity) and col = col ′. According to the
definition of qi, there are positions i1, i2 of w such that distw(i, i1) ≤ B,
distw(i, i2) ≤ B, (S, α) ∼= (B-Sphw(i1), i), (S, α′) ∼= (B-Sphw(i2), i), and
col = Φ(i1) = Φ(i2). We have (B-Sphw(i1), i) ∼= (B-Sphw(i2), i). As i1 and
i2 have a B-overlap, we also have, by Lemma 3, i1 = i2. We deduce α = α′.
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Next, we define a tuple ti = (pi, gi)
ai−→ (qi, fi) for all i ∈ [n]. We let (pi)⊳ =

qprevw
⊳
(i) (which might be undefined). Moreover, let gi and fi be uniquely given by

conditions T7 and T8 where we replace q with qi. Before we check that conditions
(1)–(4) of a run are satisfied, we verify that ti is indeed a transition. In the
following, we let E always refer to E = (S, α, col ) with S = (U, (⊳E)⊳∈S, λ, ν, γ).

T1 Obviously, we have label (qi) = ai.

T2 Let ⊳ ∈ S\dom(pi) (which implies that prevw
⊳
(i) is undefined) andE ∈ qi. We

have (S, α) ∼= (B-Sphw(ic), i) for some ic with distw(ic, i) ≤ B. As prevw
⊳
(i)

is undefined, we conclude that prevE
⊳
(α) is undefined, too.

T3 Let ⊳ ∈ dom(pi), E ∈ qi, j ∈ U , and i⊳ = prevw
⊳
(i).

Suppose j ⊳E α. We need to show E[j] ∈ qi⊳ . As E ∈ qi, there is ic ∈ [n]
such that distw(ic, i) ≤ B, (S, α) ∼= (B-Sphw(ic), i), and col = Φ(ic). Since
distE(γ, j) ≤ B implies distw(ic, i⊳) ≤ B, and since (S, j) ∼= (B-Sphw(ic), i⊳)
and col = Φ(ic), we deduce E[j] = (S, j, col ) ∈ qi⊳ .

Conversely, suppose E[j] ∈ qi⊳ . We shall show j ⊳E α. There are positions
ic, i

′
c ∈ [n] such that we have distw(ic, i) ≤ B, distw(i′c, i⊳) ≤ B, (S, α) ∼=

(B-Sphw(ic), i), (S, j) ∼= (B-Sphw(i′c), i⊳), and col = Φ(ic) = Φ(i′c). Note
that ic and i′c have a B-overlap. By Lemma 3, ic = i′c. As, then, (S, j) ∼=
(B-Sphw(i′c), i⊳), (S, α)

∼= (B-Sphw(i′c), i), and i⊳⊳
wi, we can deduce j⊳Eα.

T4 is shown similarly to T3.

T5 Let ⊳ ∈ dom(pi) and E ∈ qi such that prevE
⊳
(α) is undefined. There is ic ∈

[n] such that distw(ic, i) ≤ B and (S, α) ∼= (B-Sphw(ic), i). Now, suppose
distE(γ, α) < B. But then, we also have distw(ic, i) < B and prevE

⊳
(α) is

defined, a contradiction. We deduce that distE(γ, α) = B.

T6 is shown similarly to T5.

T7 and T8 are immediate.

So far, we know that ti is a transition. Now, let us check the run conditions.

(1) and (2) are readily verified.

(3) Consider guard gi = g1 ∧ g2 ∧ g3. We first check subformula g1. For k1, k2 ∈
[m], by the definition of ∼qi and G(w), k1 ∼qi k2 iff dk1

i = dk2

i . Now, consider
g2 and an atomic subformula k = (⊳, (E, k)) where k ∈ [m], E ∈ q, and ⊳ ∈
type−(α). Set i⊳ = prevw

⊳
(i), which must indeed exist (by T2). As E ∈ qi,

there is ic ∈ [n] such that distw(ic, i) ≤ B, (S, α) ∼= (B-Sphw(ic), i), and
col = Φ(ic). This implies distw(ic, i⊳) ≤ B, and we obtain ρi⊳((E, k)) = dki
so that g2 also holds. Finally, we have to check g3. Consider its subformula
(⊳1, (E[j], k)) = (⊳2, (E[j], k)) where k ∈ [m], E ∈ qi, j ∈ U , and ⊳1,⊳2 ∈
type−(α). Let i1 = prevw

⊳1
(i) and i2 = prevw

⊳2
(i) (they both exist). Moreover,

let j1 = prevE
⊳1

(α) and j2 = prevE
⊳2

(α). As E ∈ qi, there is ic ∈ [n] such
that distw(ic, i) ≤ B, (S, α) ∼= (B-Sphw(ic), i), and col = Φ(ic). Due to
the isomorphism, there is a unique i′ ∈ [n] such that distw(ic, i

′) ≤ B and
(S, j) ∼= (B-Sphw(ic), i

′). Moreover, we have (S, j1) ∼= (B-Sphw(ic), i1) and
(S, j2) ∼= (B-Sphw(ic), i2). In particular, distw(ic, i1) ≤ B and distw(ic, i2) ≤
B. We deduce ρi1((E[j], k)) = ρi2((E[j], k)) = dki′ . Thus, g3 is satisfied.
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(4) Let (E, k) ∈ R. We distinguish three cases.

• If there is j ∈ U such that E[j] ∈ qi, and type−(j) 6= ∅, then we have
fi((E, k)) = (⊳, (E, k)) with ⊳ = ⊳E[j]. Since E[j] ∈ qi, there is a
position ic ∈ [n] such that distw(ic, i) ≤ B, (S, j) ∼= (B-Sphw(ic), i),
and col = Φ(ic). Moreover, there is a unique position i′ ∈ [n] such that
distw(ic, i

′) ≤ B and (S, α) ∼= (B-Sphw(ic), i
′). As j⊳ = prevE

⊳
(j) is de-

fined, i⊳ = prevw
⊳
(i) is defined, too. Note that (S, j⊳) ∼= (B-Sphw(ic), i⊳)

and distw(ic, i⊳) ≤ B. We obtain ρi((E, k)) = dki′ = ρi⊳((E, k)).

• If there is j ∈ U such that E[j] ∈ qi and type−(j) = ∅, then fi((E, k)) =
(k, distE(α, j)). We show ρi((E, k)) ∈ D

k
B′(i) where B′ = distE(α, j).

As E[j] ∈ qi, there is ic ∈ [n] such that distw(ic, i) ≤ B, (S, j) ∼=
(B-Sphw(ic), i), and col = Φ(ic). Thus, there is a unique position i′ ∈
[n] such that distw(ic, i

′) ≤ B and (S, α) ∼= (B-Sphw(ic), i
′). We have

distw(i′, i) ≤ distE(α, j), and we can deduce ρi((E, k)) = dki′ ∈ D
k
B′(i).

• If there is no j ∈ U such that E[j] ∈ qi, then fi((E, k)) is undefined.
Therefore, ρi((E, k)) should be undefined, too. Suppose, towards a con-
tradiction, that ρi((E, k)) ∈ D. Then, there are ic, i

′ ∈ [n] such that
we have distw(ic, i) ≤ B, distw(ic, i

′) ≤ B, (S, α) ∼= (B-Sphw(ic), i
′),

and col = Φ(ic), But then, there is a unique j ∈ U such that (S, j) ∼=
(B-Sphw(ic), i) so that E[j] ∈ qi, which is a contradiction.

We conclude that ξ is a run. Let us quickly verify that it is accepting. Trivially,
Φ = true is satisfied. Now suppose ⊳ ∈ S and consider any position i ∈ [n] such
that nextw

⊳
(i) is undefined. We have to show that qi is contained in F⊳, i.e.,

nextE
⊳
(α) is undefined for all E ∈ qi. So suppose E ∈ qi. There is ic ∈ [n] such

that distw(ic, i) ≤ B and (S, α) ∼= (B-Sphw(ic), i). As nextw
⊳
(i) is undefined,

nextE
⊳
(α) must be undefined, too.

Every run keeps track of spheres. In this part of the proof, we show that
we can infer, from every accepting run of AB on data word w, the spheres that
occur in G(w).

Let w = (a1, d1) . . . (an, dn) ∈ (Σ × D
m)∗ be a data word and G(w) =

([n], (⊳w)⊳∈S, λ̂, ν̂) its graph. Suppose ξ = (q1, ρ1) . . . (qn, ρn) is an accepting

run of AB on w with corresponding transitions t1, . . . , tn where ti = (pi, gi)
ai−→

(qi, fi).

The following claim states that an arbitrarily long path of an extended sphere
E that starts in its active node is faithfully simulated by w. It will turn out to
be crucial that, hereby, the data values in registers of the form (E[j], k) are
invariant during that simulation.

Lemma 4. Let i ∈ [n] be some position, e ≥ 0, and E = (S, α, col ) ∈ qi with
S = (U, (⊳E)⊳∈S, λ, ν, γ). Suppose there are j0, . . . , je ∈ U and ⊳1 . . . ,⊳e ∈ S

such that α = j0 and, for all z ∈ {0, . . . , e − 1}, jz ⊳E
z+1 jz+1 or jz+1 ⊳E

z+1 jz.
Then, there is a unique sequence i = i0, . . . , ie ∈ [n] such that the following hold:
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– for each z ∈ {0, . . . , e−1}, jz ⊳E
z+1 jz+1 implies iz ⊳w

z+1 iz+1 and jz+1 ⊳E
z+1

jz implies iz+1 ⊳w
z+1 iz

– for each z ∈ {0, . . . , e}, we have E[jz] ∈ qiz , λ(jz) = aiz , and ν(jz) = ν̂(iz)

– for each z ∈ {1, . . . , e}, k ∈ [m], and j ∈ U , we have ρi0((E[j], k)) =
ρiz ((E[j], k))

– for each z ∈ {0, . . . , e} and k ∈ [m], we have that ρiz ((E[jz ], k)) = dkiz

Proof. We proceed by induction on e. Suppose e = 0. By T1 and guard g1
of T7, λ(α) = ai and ν(α) = ν̂(i). Let k ∈ [m] and suppose type−(α) 6=
∅. Then, fi((E, k)) = (⊳, (E, k)) where we let ⊳ = ⊳E . Thus, ρi((E, k)) =
ρprevw

⊳
(i)((E, k)). By guard g2 of T7, we have ρi((E, k)) = dki . If type−(α) = ∅,

then ρi((E, k)) = dki is due to the update fi((E, k)) = (k, 0) (T8).
So let e ≥ 0, j0, . . . , je, je+1 ∈ U , and ⊳1, . . . ,⊳e,⊳e+1 ∈ S such that α = j0

and, for every z ∈ {0, . . . , e}, jz ⊳E
z+1 jz+1 or jz+1 ⊳E

z+1 jz. Let i0, . . . , ie ∈ [n]
be the unique corresponding sequence with the required properties. We consider
two cases:

– Assume je ⊳
E
e+1 je+1. Then, qie 6∈ F⊳e+1

so that nextw
⊳e+1

(ie) is defined. We
set ie+1 = nextw

⊳e+1
(ie).

Due to T4, we have E[je+1] ∈ qie+1
. By T1 and guard g1 of T7, we obtain

λ(je+1) = aie+1
, and ν(je+1) = ν̂(ie+1).

Let k ∈ [m] and j ∈ U . Due to condition T8, E[je+1] ∈ qie+1
implies that

fie+1
((E[j], k)) = (⊳, (E[j], k)) for some ⊳ ∈ S. Due to guard g3 of condi-

tion T7, we have ρprevw
⊳
(ie+1)((E[j], k)) = ρie((E[j], k)). We can now deduce

ρie((E[j], k)) = ρie+1
((E[j], k)).

Finally, let k ∈ [m]. We have fie+1
((E[je+1], k)) = (⊳, (E[je+1], k)) where we

let ⊳ = ⊳E[je+1]. Thus, ρie+1
((E[je+1], k)) = ρprevw

⊳
(ie+1)((E[je+1], k)). By

guard g2 of T7, we obtain ρie+1
((E[je+1], k)) = dkie+1

.

– Assume je+1⊳
E
e+1 je. By T2, ⊳e+1 ∈ dom(pi). Thus, there is (a unique) ie+1

such that ie+1 ⊳
w
e+1 ie.

By T3, we have E[je+1] ∈ qie+1
. Moreover, λ(je+1) = aie+1

, and ν(je+1) =
ν̂(ie+1).
Let k ∈ [m] and j ∈ U . By condition T8, we have E[je] ∈ qie implies
fie((E[j], k)) = (⊳, (E[j], k)) for some ⊳ ∈ S. Due to guard g3 of condition
T7, we have ρprevw

⊳
(ie)((E[j], k)) = ρie+1

((E[j], k)). We deduce ρie((E[j], k)) =
ρie+1

((E[j], k)).
Finally, let k ∈ [m]. We distinguish two cases. Suppose type−(je+1) 6= ∅.
Then, fie+1

((E[je+1], k)) = (⊳, (E[je+1], k)) where we let ⊳ = ⊳E[je+1].
Thus, ρie+1

((E[je+1], k)) = ρprevw
⊳
(ie+1)((E[je+1], k)). By guard g2 of T7, we

have ρie+1
((E[je+1], k)) = dkie+1

. If type−(je+1) = ∅, then ρie+1
((E[je+1], k)) =

dkie+1
is due to the update fie+1

((E[je+1], k)) = (k, 0) (T8).

This concludes the proof of Lemma 4. ⊓⊔

By means of Lemma 4, we will show that spheres that are contained in states
indeed occur in a data word. It will be used in combination with the following
simple monotonicity fact, which follows easily from the definitions.
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Next, we show that a sphere correctly simulates w and vice versa, which
concludes the correctness proof for AB.

For i ∈ [n], let Ei = (Si, αi, col i) with Si := (Ui, (⊳
Ei)⊳∈S, λi, νi, γi) be the

unique extended sphere from qi such that γi = αi. In particular, Si = π(qi).

Lemma 5. For all i ∈ [n], we have B-Sphw(i) ∼= Si.

Proof. For e ∈ {0, . . . , B}, let e-Si denote the e-sphere of (Ui, (⊳
Ei)⊳∈S, λi, νi)

around γi, which is defined in the canonical manner. We show, by induction, the
following more general statement:

For every e ∈ {0, . . . , B}, there is an isomorphism h : e-Sphw(i) → e-Si

such that, for each i′ ∈ [n] with distw(i, i′) ≤ e, we have Ei[h(i
′)] ∈ qi′ .

(*)

We easily verify that (*) holds for e = 0. Now suppose there is an isomorphism
h : e-Sphw(i) → e-Si with e < B. We extend the domain of h to elements i′

with distw(i, i′) = e+ 1 as follows. Let i1, i2 ∈ [n] such that distw(i, i1) = e and
distw(i, i2) = e+ 1. Let ⊳ ∈ S. We distinguish several cases:

– Suppose i1 ⊳
w i2. Since distw(i, i1) < B, we have distw(γi, h(i1)) < B. By

T6, there is j2 ∈ Ui such that h(i1) ⊳
Ei j2. Since Ei[h(i1)] ∈ qi1 , we obtain,

by T1, T4, and T7, λi(j2) = ai2 , νi(j2) = ν̂(i2), and Ei[j2] ∈ qi2 .

– Suppose i2 ⊳
w i1. Similarly, due to distw(i, i1) < B and T5, there is j2 ∈

Ui such that j2 ⊳Ei h(i1). Using T1, T3, and T7, we obtain λi(j2) = ai2 ,
νi(j2) = ν̂(i2), and Ei[j2] ∈ qi2 .

We set h̄(i2) = j2 and h̄(i′) = h(i′) for all positions i′ in e-Sphw(i). In doing so,
we extend the domain of h to elements with distance e + 1 from i. Note that
this extension h̄ : (e+1)-Sphw(i) → (e+1)-Si is well defined, i.e., j2 is uniquely
determined by i2 and does not depend on the choice of i1 or ⊳: if, for i2, we
obtained distinct elements j2 and j′2, then Ei[j2] ∈ qi2 and Ei[j

′
2] ∈ qi2 , which

contradicts the definition of a state.

We show that we obtain a homomorphism h̄ : (e + 1)-Sphw(i) → (e + 1)-Si.
Let i1, i2 ∈ [n] such that distw(i, i1) = distw(i, i2) = e+ 1. Moreover, let ⊳ ∈ S.
Suppose i1 ⊳

w i2 (the case i2 ⊳
w i1 is symmetric). We have Ei[h̄(i1)] ∈ qi1 and

Ei[h̄(i2)] ∈ qi2 . By T3 (or T4), this implies h̄(i1)⊳
Ei h̄(i2).

Next, we show that h̄ is surjective. Let j1, j2 ∈ Ui and ⊳ ∈ S such that
distEi(γi, j1) = e, distEi(γi, j1) = e + 1, and j1 ⊳Ei j2 (the case j2 ⊳Ei j1 is
similar). We have Ei[j1] ∈ qh−1(j1). By T4 and qh−1(j1) 6∈ F⊳, there is i2 ∈ [n]
such that distw(i, i2) = e+1, h−1(j1)⊳

w i2, and Ei[j2] ∈ qi2 . We deduce that h̄
is surjective.

Let us show that h̄ is injective. Let i1, i2 ∈ [n] such that distw(i, i1) =
distw(i, i2) = e + 1. Assume i1 6= i2. We show that, then, h̄(i1) 6= h̄(i2). Let
j1 = h̄(i1) and j2 = h̄(i2). Assume, towards a contradiction, that j1 = j2.
Furthermore, assume i1 < i2 (the other case is symmetric). In Ei, there are
paths from j1 to α and from α to j1 that are simulated, in w, by paths from i2
to i and from i to i1, respectively. By Lemma 4 and monotonicity of a signature,
we can simulate these paths of Ei arbitrarily often in w. This yields an infinite
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Fig. 8. h̄−1 is a homomorphism

descending chain . . . < i21 < i11 < i1 < i2 such that E[j1] ∈ qil
1

and dki2 = dki1 = dkil1
for all l ≥ 1 and k ∈ [m]. But this is a contradiction, as every word position has
only finitely many smaller positions. The procedure is illustrated in Figure 7.

Finally, we show that h̄ : (e+ 1)-Sphw(i) → (e+ 1)-Si is actually an isomor-
phism. Let j1, j2 ∈ Ui and ⊳ ∈ S such that distEi(γ, j1) = distEi(γ, j2) = e + 1
and j1 ⊳

Ei j2. We show that this implies h̄−1(j1) ⊳
w h̄−1(j2). Set i1 = h̄−1(j1)

and i2 = h̄−1(i2). Assume, towards a contradiction, that i1 6⊳w i2. We have
j1 6= j2, Ei[j1] ∈ qi1 , and Ei[j2] ∈ qi2 . Due to the definition of the set of states
of AB, this implies i1 6= i2. Suppose nextw

⊳
(i1) < i2 (the other case is similar).

Again, by Lemma 4 and monotonicity of ⊳w, we can build an infinite descending
chain . . . < i21 < i11 < i1 < i2 such that E[j1] ∈ qil

1
for all l ≥ 1 (cf. Figure 8).

This is a contradiction. ⊓⊔

B. Comparison with Class Automata

We compare class register automata to class automata [3], which have been
shown to capture all (extended) XPath queries. Class automata are a smooth
(undecidable) extension of data automata and, therefore, of class memory au-
tomata. A class automaton is suitable to work over words (even trees) with multi-
ple data values. It consists in a pair (A,B) where A is a non-deterministic letter-
to-letter transducer from the label alphabet Σ to some working alphabet Γ ,
and B is a finite automaton over Γ ×{0, 1}m. A data word (a1, d1) . . . (an, dn) ∈
Σ×{0, 1}m is accepted if, for input a1 . . . an, there is some output u1 . . . un ∈ Γ ∗

of A such that, for all d ∈ D, the word (u1, b1) . . . (un, bn) ∈ (Γ × {0, 1}m)∗ is
accepted by B. Hereby, bki = 1 iff dki = d.
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We will show that, form = 2, class automata capture neither EMSO logic nor
non-guessing class register automata. Note that class automata do not depend
on a signature. To allow for a fair comparison, we choose the simple signature
S
2
+1,∼ = {≺+1 ,≺1

∼ ,≺
2
∼}.

Theorem 7. There is L ∈ rEMSO(S2+1,∼) ∩ CRA−(S2+1,∼) such that L cannot
be recognized by any class automaton.

Proof. Let Σ = {a} and D = N. Using [3], one can show that there is no class
automaton that recognizes L = [{(a, 1, 1) . . . (a, n, n)(a, 1, 1) . . . (a, n, n) | n ≥
1}]S2

+1,∼
. It is, however, easy to define an rEMSO(S2+1,∼)-sentence for L. We

restrict to the construction of a non-guessing class register automaton, which is
very similar to the automaton from Example 5. Here, we will need four registers,
rk1 and rk2 for k = 1, 2. The crucial difference is in the second phase, where
we encounter a data value for the second time. We henceforth require that, at
position n+ i, the k-th data value dkn+i is contained in register rk1 at prev≺k

∼

(n+

i) = i. The value dkn+i is henceforth stored in rk1 and has to coincide, at position
n+ i+ 1, with the contents of rk2 at position prev≺k

∼

(n+ i+ 1) = i+ 1. ⊓⊔
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