
HAL Id: hal-00558519
https://hal.science/hal-00558519

Submitted on 22 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tools and technologies for Computer-Aided Speech and
Language Therapy

Oscar Saz, Shou-Chun Yin, Eduardo Lleida, Richard Rose, Carlos Vaquero,
William R. Rodríguez

To cite this version:
Oscar Saz, Shou-Chun Yin, Eduardo Lleida, Richard Rose, Carlos Vaquero, et al.. Tools and tech-
nologies for Computer-Aided Speech and Language Therapy. Speech Communication, 2009, 51 (10),
pp.948. �10.1016/j.specom.2009.04.006�. �hal-00558519�

https://hal.science/hal-00558519
https://hal.archives-ouvertes.fr


Accepted Manuscript

Tools and technologies for Computer-Aided Speech and Language Therapy

Oscar Saz, Shou-Chun Yin, Eduardo Lleida, Richard Rose, Carlos Vaquero,

William R. Rodríguez

PII: S0167-6393(09)00066-1

DOI: 10.1016/j.specom.2009.04.006

Reference: SPECOM 1801

To appear in: Speech Communication

Received Date: 1 July 2008

Revised Date: 31 March 2009

Accepted Date: 9 April 2009

Please cite this article as: Saz, O., Yin, S-C., Lleida, E., Rose, R., Vaquero, C., Rodríguez, W.R., Tools and

technologies for Computer-Aided Speech and Language Therapy, Speech Communication (2009), doi: 10.1016/

j.specom.2009.04.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.specom.2009.04.006
http://dx.doi.org/10.1016/j.specom.2009.04.006
http://dx.doi.org/10.1016/j.specom.2009.04.006


 

 

 

ACCEPTED MANUSCRIPT 

 

Tools and Technologies for Computer-Aided

Speech and Language Therapy

Oscar Saz a,1, Shou-Chun Yin b,2, Eduardo Lleida a,

Richard Rose b, Carlos Vaquero a and William R. Rodŕıguez a
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Abstract

This paper addresses the problem of Computer-Aided Speech and Language Ther-
apy (CASLT). The goal of the work described in the paper is to develop and evaluate
a semi-automated system for providing interactive speech therapy to the increasing
population of impaired individuals and help professional speech therapists. A discus-
sion on the development and evaluation of a set of interactive therapy tools, along
with the underlying speech technologies that support these tools is provided. The
interactive tools are designed to facilitate the acquisition of language skills in the ar-
eas of basic phonatory skills, phonetic articulation and language understanding pri-
marily for children with neuromuscular disorders like dysarthria. Human-machine
interaction for all of these areas requires the existence of speech analysis, speech
recognition, and speech verification algorithms that are robust with respect to the
sources of speech variability that are characteristic of this population of speakers.
The paper will present an experimental study that demonstrates the effectiveness
of an interactive system for eliciting speech from a population of impaired chil-
dren and young speakers ranging in age from 11 to 21 years. The performance of
automatic speech recognition (ASR) systems and subword-based pronunciation ver-
ification (PV) on this domain are also presented. The results indicate that ASR and
PV systems configured from speech utterances taken from the impaired speech do-
main can provide adequate performance, similar to the experts’ agreement rate, for
supporting the presented CASLT applications.
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1 Introduction

It is often the case that there are insufficient resources to provide for the
acquisition of speech and language skills for handicapped children and young
adults suffering from speech disorders. These handicaps might as well be phys-
ical or developmental disorders leading to dysarthria, a general type of speech
impairment caused by a disorder of the neuromuscular system. This could be
generated by a developmental disability like Down’s Syndrome or by cerebral
palsy caused by stroke, as well as by organic disorders in the phonatory, ar-
ticulatory or auditory systems. Speech therapy for these individuals generally
involves extended interaction between an individual student and a skilled ther-
apist. As a result, the time and the expense of providing this therapy for all
impaired students can make it impractical to serve a large student population.

This paper describes interactive tools that were developed to reduce the time
required and also perhaps to reduce the level of expertise required from the
therapist for providing the interactive component of the therapy. There are
three general areas of diagnosis and treatment for speech and language dis-
orders that are reviewed in Section 2. The first is the acquisition of basic
phonatory skills. These skills include control of basic functions like voicing,
speech intensity, breathing and tone. Automated interactive applications have
been implemented for developing these skills, but are not evaluated in this
paper. The second is acquisition of the phonetic system of a language, this is,
the pronunciation of the set of sounds of the language and the way they cre-
ate syllables and words. The user interaction in this case involves the patient
receiving feedback evaluating quality of pronunciation of words presented in a
therapy session. Automatic procedures for verifying the quality of pronuncia-
tions are proposed and evaluated in Section 6 to provide this feedback. The
last area of diagnosis and treatment is language understanding. In this case,
the user interaction involves interactive dialogs with the student to evaluate
skills in various question-answering scenarios. Automatic speech recognition
(ASR) performance is evaluated under several adaptation paradigms in Sec-
tion 5 using utterances collected from a population of impaired children and
young adults to determine whether adequate performance (comparable to the
agreement of a set experts that have labeled the same data) can be obtained

1 This work was supported under TIN-2005-08660-C04-01 from MEC of the Spanish
government
2 This work was supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC) Program Number 307188-2004
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 for operation in this application domain.

A study was performed to characterize the semi-automated interactive speech
therapy domain. The goal was to evaluate the feasibility of a more efficient
and lower cost methodology for diagnosis and treatment of students with neu-
romuscular disorders that could help human therapists. This methodology
includes, at its lowest level, an interactive dialog between the student and an
automated system for performing training, collecting speech from the student,
and providing performance feedback. At the next level, a mechanism exists for
a non-expert to measure the performance of the student. This was provided
through a simple, easily reproducible scheme for labeling utterances at the
phonemic level according to the accuracy of pronunciation. At the highest
level, the speech therapist can assimilate the evaluations obtained from the
students interactive sessions, review sample utterances, provide performance
assessment, and prescribe additional therapy for the student.

The study was performed using a speech corpus containing utterances elicited
from a population of impaired children and young speakers ranging in age from
11 to 21 years. These speakers were prompted using on-screen text and images
to utter words from a phonetically balanced vocabulary designed for diagno-
sis of speech impairments (Monfort and Juárez-Sánchez, 1989). In the end,
the corpus included 14 impaired speakers as well as 168 unimpaired speak-
ers. The study had two components. The first component was to determine
whether natural speech could be elicited using this paradigm and to determine
if non-experts could reliably specify where portions of utterances have been
mispronounced. This issue was addressed by implementing and evaluating a
labeling scheme on this corpus where non-expert human labelers provided
phoneme-level labels to indicate phoneme mispronunciations and deletions.
The second component of the study was the use of this corpus to develop and
evaluate ASR and Pronunciation Verification (PV) techniques as discussed
above.

There has been a great deal of research in the area of Computer-Aided Speech
and Language Therapy (CASLT) over the last decade and research on vari-
ous aspects of speech interfaces for human-machine interaction has been per-
formed before (Oester et al., 2002; Vicsi et al., 1999; Garćıa-Gómez et al.,
1999). The work described in this paper extends this work by considering the
components of the proposed multi-level methodology proposed above for di-
agnosis and treatment of impaired children. The paper begins in Section 2 by
reviewing the procedures involved in traditional speech and language therapy
and in novel CASLT applications. In Section 3, the components of the semi-
automated “Comunica” system for human-computer interaction practices in
speech and language therapy, as they relate to the procedures performed in
traditional therapy, are described. A characterization of the human-machine
interaction in articulation training is provided in the form of the speech corpus
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 and phoneme level transcription scheme in Section 4. Finally, the ASR and
PV techniques are presented and evaluated for this task domain in Sections 5
and 6. Discussion and conclusions are extracted in Sections 7 and 8.

2 Speech and Language Disorders and Therapy

Traditional methods for speech and language therapy are based on the direct
interaction between patient and therapist via a set of activities developed by
the therapist for the diagnosis and treatment of the disorders of the patient.
This direct interaction is necessary and effective in giving a personal feedback
to every patient. But this way of working would require a high number of
therapists to help all the possible patients in a school or institution without
slowing down their possibilities of maximum progress, that unfortunately is
not feasible now in most of the cases. Furthermore, this interaction is entirely
based on the subjective evaluation of the therapist; hence, this evaluation
might vary along time as the therapist gets used to the patient’s speech or
when the patient changes of therapist for whatever reason. The development
of CASLT systems may overcome these two drawbacks and help professional
therapists by providing a semi-automated way for speech therapy (several
patients can work at the same time) and with an evaluation whose change
over time will only reflect the changes in the patient’s speech. This Section
brings a review on traditional speech and language therapy techniques and
recent speech technologies-based techniques.

2.1 Speech acquisition - Phonation

Prior to language acquisition, children need to learn to control their own speech
production with skills like breathing, control of tone and intensity and vocal-
ization. Developmental disabilities and neuromuscular disorders can create a
delay in the acquisition of these abilities that make the children unable to start
articulating the first sounds and words. Speech therapists have been making
use of game-like activities to train these skills: Moving the fire of a candle will
help an impaired child to learn the control of breathing; vocalization in front
of a mirror will help the therapist in providing feedback about the correct
articulation of the vowels. Following these ideas, several handbooks (Acero-
Villán et al, 2005) are published to discuss these strategies and propose new
ideas.

Section 3.1 will present the approach in this work to computer-aided phonation
acquisition in “PreLingua”. This tool aims to translate to a computer-based
framework a set of activities in which the patient trains all these abilities
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 mentioned above in a direct and simple way.

2.2 Language acquisition - Articulation

The main step of speech and language acquisition under study in this work is
the acquisition of the phonetic system of the language. Speech and language
therapy in this level consists on sessions between the speech therapist and
the patient who utters different words and receives an evaluation on the cor-
rectness of the pronunciation by the therapist. Books providing different set
of especially chosen words are often published (Monfort and Juárez-Sánchez,
1989; Albor, 1991; Aguinaga et al., 2004) to help the community of speech
therapists in their work.

Section 3.2 will introduce “Vocaliza”, the proposal in this work for articulation
acquisition and speech training. This application aims to train the phonolog-
ical abilities of children while also introducing to them the semantics and
syntax of the language via different activities. Furthermore, the application
relies on Augmentative and Alternative Communication (AAC) systems to
make the work friendlier for the patients and easier for the professionals in
speech and language therapy. The technologies used to provide language im-
provement are ASR and PV. Sections 5 and 6 will measure the performance
of these technologies to achieve the proposed goals.

2.3 Language acquisition - Understanding

The final step in the language acquisition is the ability to use it as a tool to
fulfill the daily situations. When children master the phonological level of the
language (articulation) they have to start using this language to interact with
the world. One important task is to be able to describe their environment or
answering questions about it (descriptive skills) and it is also important to
establish dialogs in a real environment to achieve their desired objectives in
their daily life (dialog skills).

This area of speech and language therapy also requires knowledge in psy-
chology to be able to motivate the patient to achieve goals and objectives in
the everyday life through language. So usually, the speech training consists
on the proposal of an activity with images and text to be solved via dialog
with the educator (that is, answering to a given question, the description of a
given situation or progressing in a simulated scenario) as proposed in several
handbooks (Monfort and Monfort-Juárez, 2001).

Section 3.3 will introduce “Cuéntame”, an application that intends to motivate
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 children to use language as a descriptive and interactive tool. “Cuéntame”
presents a set of oral scenarios that the user has to solve in order to obtain an
audio-visual reward. AAC systems are used in a similar way as in “Vocaliza”
to make the tool accessible to children with diverse sensory needs (hearing-
impaired, vision-impaired,...). ASR is again the basis of the application in the
interactive dialogs.

2.4 A review of CASLT applications

The development of CASLT software has been a major issue since the 1990’s.
Speech technologies have been increasing their robustness to different envi-
ronment conditions and this has allowed the creation of new tools as it will
be reviewed in this Section.

Considering phonatory skills in young children, the increase in the compu-
tation power of new computers made possible the analysis of features such
as pitch or formants in real time applications for home computers. IBM’s
SpeechViewer was a very popular commercial approach for the training of
speech skills as explained in speech therapy in Section 2.1. This application
used a very simple speech interface of games, in which the ability of the user
was tested in producing speech with varying intensity, pitch or formants. This
software was a very interesting and effective work in improving young chil-
dren’s speech skills (Pratt et al., 1993) with a good approach in creating the
interface with the patients.

In terms of language training in the articulation level, several research projects
have explored the possibilities of providing this level of language therapy. It
is to mention the special interest that the 6th Framework Program of the Eu-
ropean Union (“Quality of Life and Management of Life Resources”) had in
this issue. All these approaches deal with important issues in the development
of CASLT applications like the user interface or the feedback provided to the
user. The approach of works like Optical-Logo-Therapy (Hatzis, 1999) and its
successor Orto-Logo-Paedia (Oester et al., 2002) was to give the user a vi-
sual feedback in the correct positioning of the articulatory elements (tongue,
palate, teeth) to produce correctly the different sounds. HARP (Lefévre, 1996)
focused on the special speech therapy needs of the hearing impaired commu-
nity, considering that these individuals can not have an audio feedback on the
correct pronunciation of sounds. Other projects like SPECO (Vicsi et al., 1999)
were intended as a multilingual speech therapy software for several European
languages based on an audiovisual interaction scenario with game-like activi-
ties. The use of AAC systems has been a priority for other tools (Granstroem,
2005), while some works aimed for the speech rehabilitation of patients having
suffered a laryngectomy (Kornilov, 2004) have been also reviewed.
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 Finally, there are two major fields in these applications which are gaining im-
portance nowadays. First, the development of reading tutors for the assessment
of the literacy of young children. The research in these applications is rising as
the possibility of including Large Vocabulary Continous Speech Recognition
(LVCSR) in real time applications is a matter of fact today. Recent approaches
include (Duchateau et al., 2007) and (Gerosa and Narayanan, 2008) in which
the user can approach the system with natural language to assess the com-
prehension of a text via open-ended questions. The development of Second
Language (L2) learning tools is also an incredibly increasing line today due to
the need of achieving a good assessment in foreign languages. This interest is
growing due to the need of a correct use of foreign languages in the world of
business and academia. In L2 learning, tools are usually aimed either to the
acquisition of the sounds and phonetics of the target language (Cucchiarini
et al., 2007), or to the acquisition of the correct grammar or syntax of the
target language (Ito et al., 2008). These grammatical and syntax approaches
can be shared with the development of CASLT tools for the training of the
language understanding abilities in disabled speakers.

3 Tools for speech and language therapy: “Comunica”

The development of tools for speech and language therapy requires the work
of an interdisciplinary team that merge expertise in the field of speech tech-
nologies and in the field of speech and language therapy and education. Thus,
this work was supported by the staff and educators of the Public School for
Special Education (CPEE) “Alborada”, located in Zaragoza (Spain). Their
collaboration in other projects has been fruitful in the fields of AAC tech-
nologies like communication boards, computer handling aids and space-time
orientation devices (Mart́ınez et al., 2007).

Three tools are part of the “Comunica” project (Escart́ın et al., 2008): “PreLin-
gua” teaches basic phonation skills to children with neuromuscular disorders.
“Vocaliza” (the firstly developed tool in this framework) aims to train mainly
the articulatory level of language. Finally, “Cuéntame” attempts to introduce
impaired children population to language understanding.

“Comunica” is an effort of the researchers in speech technologies of the Aragón
Institute for Engineering Research (I3A) with the supervision of the CPEE
“Alborada”. The Aragonese Center in Education Technologies (CATEDU) is
currently funding the creation of free pictorial items in use in several technical
aids like “Comunica”.
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Fig. 1. Feature extraction in“PreLingua”

3.1 “PreLingua”

“PreLingua” gathers a set of game-like applications that use speech processing
to train children with speech developmental delays, aiming to help the work
in speech therapy oriented to phonation as seen in Section 2.1. A feature
extraction diagram like the one shown in Figure 1 is used for the training
of five speech skills in the games (voice activity, intensity, breathing, tone
and vocalization). After signal preprocessing (DC offset and pre-emphasis),
energy of each frame is calculated (used in intensity games) and a threshold
is applied to determine if voice is presented on the frame (used for voice
activity games). Signal is then windowed and a Linear Prediction Coefficients
(LPC) (Rabiner and Schafer, 1978) analysis applied to estimate the vocal
tract transfer function. From this point, the autocorrelation of the prediction
error leads to the extraction of the fundamental frequency value (used in tone
games) and sonority level (used in breathing games); and the extraction of the
roots of the transfer function is used to extract the formant frequencies values
(used in vocalization games).

Voice activity games (Rodŕıguez et al., 2008) are oriented to children with a
developmental disability that delays their speech to that of infants who still
do not associate their production of sounds to changes in their environment.
A binary voice activity signal based on a variable threshold over the framewise
energy of the input signal (Figure 1) is the only output of the system. When
activated, this signal will subsequently produce a reaction in the screen of the
computer in the form of animated shapes and colors. Very simple feedback is
given in these games, as they are oriented to infants or children with severe
disabilities. This kind of games have also been pointed out by pedagogists and
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 educators as useful for the early stimulation of infants with severe disorders.

Intensity games (Rodŕıguez et al., 2008) allow a patient who has just learned
the ability to distinguish speech production to learn to control the volume
of that production. Speech intensity is calculated as the framewise energy of
the input signal and is also used for the Voice Activity Detection (VAD) in
Figure 1 within the voice activity games. In intensity games, an animated
character flies through a left-to-right scenario (i.e. maze) and its position in
the vertical axis is proportional to the intensity of the speech production.
With this strategy, the user has to modulate the intensity to avoid obstacles
or interact with secondary characters on screen by raising or lowering the
volume of speech.

Breathing games use the estimated sonority value from the Figure 1 and ap-
plies a threshold over it to detect low sonority frames associated to unvoiced
segment. The detection of these unvoiced speech segments produces an anima-
tion in the screen (a character blows windmills or a ball climbs up a blowpipe)
resembling traditional strategies in speech therapy to train this skill.

Tone games follow the same approach as intensity games but they require the
user to control the fundamental frequency or pitch instead of intensity, which
is also required for a correct speech production. The fundamental frequency
obtained in Figure 1 is used as in the example of these games given in Figure
2, where the main character (butterfly) moves up and down as the user rises or
lowers the fundamental tone to make it interact with other characters, while
the pitch curve is shown on the upper right corner to help the therapist.

Vocalization games aim to transmit to the child the correct articulation of
the vowels. With that objective, a representation of the formant map is plot-
ted with the correct standard distribution of the vowels. As the vowel map
is language-dependent, vocalization games are initially oriented to the five
Spanish vowels: /a/, /e/, /i/, /o/ and /u/. In the games, formants are ex-
tracted with LPC analysis as shown on Figure 1 and the result is shown in
the screen in the formant map, where the user can check how close that vowel
is to the standard values. Vocal tract normalization would be further required
to adapt the standard values of formants to every user in improved versions
of the game.

All the games within the “PreLingua” framework do not require any previous
configuration apart from the use of a microphone and their educative value,
although not studied in this paper which is focused in ASR and PV technolo-
gies, relies on the robustness of the speech processing shown in Figure 1 and
in the use of simple interfaces to provide of reinforcement and stimulation to
the users (very young children with severe disabilities).
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Fig. 2. Tone game in “PreLingua”

3.2 “Vocaliza”

“Vocaliza” is an application oriented to the speech training of the articulation
abilities of the patient in isolated words and short sentences. While focusing
mostly on the articulatory side of the language like explained in Section 2.2,
it also introduces the user to the semantics and syntax levels of language with
different activities (Vaquero et al., 2008).

“Vocaliza” follows and operation diagram as shown in Figure 3: On the upper
level, the configuration interface is the way in which the therapist creates the
profiles for the different users of the application. These profiles contain all
the information regarding the work of every patient with “Vocaliza” (words
to practice, acoustic information and interface requirements of every child).
Once a user profile is created, the core of the application are the four activ-
ities developed for speech and language therapy and the speech technologies
embedded in the application to provide the user with a correct feedback. Be-
low this structure, the user interface just requires the speech input from the
patient; while the output of the system (text, audio and images) will appear
automatically as the patient completes the activities, not requiring any super-
vision by the therapist. The activities for speech and language therapy, the
use of speech technologies and the user interface in “Vocaliza” are explained
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 CONFIGURATION
CORE
INTERFACE

Userprofile
SpeechTechnologies SpeechTherapyActivities

Oral inputFeedback

Speechtherapist

Patient
Fig. 3. “Vocaliza” operation diagram

in the following sections:

3.2.1 Activities for language training

To make speech and language training attractive for young children, “Vocal-
iza” exercises three levels of the language (phonological, semantic and syntac-
tic) presenting different activities.

The phonological level is exercised encouraging the user to utter a set of words
previously selected by the speech therapist or educator during the configura-
tion procedure to focus on the special needs of every user. The application
runs an ASR decoding on the utterance to accept or reject it and evaluates
the accepted utterances via a word-level PV algorithm displaying a grade as
the final outcome of the game.

The semantic level is exercised presenting a riddle game previously defined by
a speech therapist or educator. The application asks a question to the user and
provides three possible answers. The user must utter the correct answer and
the ASR system must accept it to go on with the next riddle. The application
will show again a grade depending on the ability of the user to solve the riddle.

The syntactic level is exercised encouraging the user to utter a set of sentences,
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Fig. 4. “Vocaliza” interface

previously selected by a speech therapist or educator. Again, the application
will use ASR decoding to accept the input utterance and in that case will
evaluate the utterance to display a grade.

3.2.2 Speech technologies for speech and language therapy

The speech technologies provided by the core of “Vocaliza” are ASR, speech
synthesis, acoustic user adaptation and PV.

ASR constitutes the main technology of the application. Speech therapy activi-
ties require ASR to decode user utterances, and to decide which word sequence
has been pronounced so that the application will be able to let the user know
if the game has been completed successfully. A robust performance of the ASR
system embedded in the application is then, strongly required. This evaluation
is done on Section 5 over a corpus with several impaired young speakers that
will be presented on Section 4.

Speech synthesis provides a way to show the user how a word or sentence
should be pronounced, reinforcing the correct pronunciation in the speech
therapy activities. Every word, sentence and riddle is synthesized to be shown
to the end user of the application during the games. The speech synthesis used
within the activities is the Spanish voice of the Lernout & Hauspie Text-to-
Speech (TTS) software (Coorman et al., 2000)

Speaker adaptation enables the application to estimate speaker-dependent
acoustic models adapted to each user. “Vocaliza” uses Maximum A Posteriori
(MAP) (Gauvain and Lee, 1994) estimation. Speaker adaptation is strongly
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 required for obtaining the full performance of the application since impaired
speech can reduce dramatically the performance of ASR as it will be shown
in Section 5, so that users suffering severe speech impairments would not be
able to obtain any result with the application.

PV is the way in which the application provides an evaluation in the improve-
ment of user communication skills. “Vocaliza” uses a word-level Likelihood
Ratio (LR)-based Utterance Verification (UV)-procedure (Lleida and Rose,
2000) to assign a measure of confidence to each hypothesized word in an ut-
terance. This method obtains the distance (as a ratio) between the likelihood
of the input utterance to two models (one generated from non-impaired speech
and one adapted to impaired speech). Further improved methods of phoneme-
level PV are evaluated in this article in Section 6 for future implementation
within the “Vocaliza” application and in future applications requiring a PV
method.

3.2.3 User interface and AAC systems

AAC systems and an easy user interface are the ways in which “Vocaliza”
motivates children to enjoy the application while practicing their speech. The
use of text, images and sounds (as in Figure 4) reinforces in the child the
concept and correct pronunciation of the word or sentence that is presented.

The use of these three interactive ways of presenting every activity and the
outcome of it are aimed at achieving a total accessibility by every user: Image
and sound reinforce the games interface for users with low reading skills due
to their developmental disabilities, while image and text provide feedback to
children who may suffer hearing impairments. Finally, the use of sound and
big font text and images will allow children with visual impairments to take
full advantage of the potential of the application. The therapists can, hence,
configure multimodality in the application to deal with the personal situation
of each patient.

Furthermore, configuration of the application for the use with different users is
made in a simple way to help speech therapists to work with different patients.
Every patient can have a different user profile that stores all the information
required, and this user profile stores how the therapist wants the words or
sentences prompted to the user. Image is the prompt by default and audio
and text are eligible by the therapist for every user. It also stores all the
words, riddles and sentences that each user will have to practice from the
whole set of words, riddles and sentences stored in the application. It also
allows the therapist to decide if the ASR system embedded in the application
will use speaker-independent or speaker-dependent acoustic models.
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 3.3 “Cuéntame”

“Cuéntame” (“Tell me” in Spanish) aims at helping children with delays in
the acquisition of the oral language to improve their communicative skills
and follows the same philosophy that “Vocaliza” in its operation procedure
as shown in Figure 3. Hence, this application also relies strongly in a robust
but simple user management and configuration and in the need of using AAC
systems to reinforce the correct use of language in the patients, as well as
in the performance of speech technologies in speech and language therapy.
As “Vocaliza”, “Cuéntame” is intended to allow children to interact with the
application in an unsupervised way after a short time of configuration within
the application by the speech therapist.

3.3.1 Activities for language training

Three activities are designed into the application. All of them share the same
vision on the initial approach that consists in scenarios of growing difficulty
that the user has to solve via speech. The production of fully structured sen-
tences is encouraged to the user in all the activities with different audio-visual
rewards.

The question answering activities present an open ended question and the
user has to provide an answer that fits the set of possible correct answers that
the program has generated. The way in which the application chooses all the
possible answers is shown on Figure 5: The speech therapist introduces the
question that will be shown to the patient and a one-word answer to it (as the
therapist only has to type one word, it simplifies the work of configuring all
the activities). Then the syntax and semantic analysis over the information
given by these data will generate a certain number of correct sentences to be
used as possible answers. When the user gives the answer, an ASR system
searchs for the keywords generated in the configuration phase.

The descriptive activities ask the user to describe an object accordingly to a
given group of attributes (shape, color, etc...); the user has to utter a descrip-
tion of the object until filling up all the attributes. Once again, the user is told
to use natural language and a group of possible correct sentences to describe
each attribute is generated as in Figure 5.

The dialog activities are designed to resemble an oral command control inter-
face as shown in Figure 6 in which a certain environment is shown to the user
(house, school, shop). The user has several actions that can be done (open,
take, push...) and several objects to be used (door, chair, TV...) and is asked
to utter pairs of them (action-object) following a sequence of actions that lead
to the achievement of the goal proposed by the application and the therapist
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Fig. 5. Generation of possible answers in “Cuéntame”

Fig. 6. “Cuéntame” interface

(for instance, turn on the TV).

3.3.2 Speech technologies for speech and language therapy

“Cuéntame” shares with “Vocaliza” a similar use of speech technologies re-
garding ASR, PV, speech synthesis and speaker adaptation. But, further tech-
nologies are required to deal with two new issues in “Cuéntame”:

First, the control and rejection of Out-Of-Vocabulary (OOV) words is re-
quired as the user is encouraged to utter freely any sentence. Hence, rejection
of OOV words is necessary via a word-level confidence measure. In this case, a
word-level version of the PV algorithm presented in Section 6 is used. Further-
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 more, correct language modeling is also required to avoid ASR errors during
the activities. The language model obtained in the activities is generated di-
rectly from all the information introduced in the configuration process doing
a syntactic analysis to detect the semantic categories of every word and create
the language model (Figure 5). With all these keywords obtained from the
morpho-syntactic analysis, the ASR system runs as a keyword spotter looking
for them in the user utterance and evaluating the completeness of the sentence.

4 Speech Corpus of an Automated Interactive Speech Therapy Do-

main

In the previous Section, several CASLT applications have been presented to
provide an easy way of unsupervised speech and language therapy. Hence, the
need for configuration of the speech technologies (ASR and PV) used in the
speech therapy domain arises. Although all the applications in Section 3 are
aimed to the population of children with different degrees of neuromuscular
disorders and language impairments, the focus in this Section will be set in the
characterization of the “Vocaliza” domain in Section 3.2. “Vocaliza” was the
firstly developed tool in “Comunica” and has been the object of the research
shown in this paper during the past years. This tool asks the child to utter a set
of words chosen by the therapist and evaluates them based on the output of an
ASR decoding and PV algorithm. This characterization of the domain is done
and explained in Section 4.1 via the acquisition of a novel corpus containing
impaired speech from children and young adults in the form of isolated words
uttered during the use of the “Vocaliza” application.

Furthermore, it is strongly required to evaluate an efficient mechanism to
provide the evaluation of impaired speech. This can only be obtained via
a manual labeling of the collected speech that is explained in Section 4.2,
altogether with the acquisition of a corpus with unimpaired speech from young
children in Section 4.3 for the task and domain adaptation of the systems.

4.1 A novel corpus of impaired speech from children and young adults

The acquisition of this novel corpus (Saz et al., 2008) had to follow the same
process that the users have on the “Vocaliza” tool and had to be realistic in
the speech impairments that actual users of “Vocaliza” might have. Regard-
ing disordered speech, some previous corpora have been acquired for studies
in dysarthic speech like Nemours (Menéndez-Pidal et al., 1996), a research
corpus of 814 short sentences in English from 11 dysarthric speakers, and
the corpus for the STARDUST project (Hawley et al., 2003) used for the
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Word SAMPA Word SAMPA Word SAMPA

árbol /arBol/ boca /Boka/ bruja /Bruxa/

cabra /kaBra/ campana /kampana/ caramelo /karamelo/

casa /kasa/ clavo /klaBo/ cuchara /kutSara/

dedo /DeDo/ ducha /DutSa/ escoba /eskoBa/

flan /flan/ fresa /fresa/ fuma /fuma/

gafas /Gafas/ globo /Globo/ gorro /Gorro/

grifo /Grifo/ indio /indjo/ jarra /xarra/

jaula /xawla/ lápiz /lapiT/ lavadora /laBaDora/

luna /luna/ llave /LaBe/ mariposa /mariposa/

moto /moto/ niño /niJo/ ojo /oxo/

pala /pala/ palmera /palmera/ pan /pan/

peine /pejne/ periódico /perjodiko/ pez /peT/

piano /pjano/ pie /pje/ piña /piJa/

pistola /pistola/ plátano /platano/ playa /plaLa/

preso /preso/ pueblo /pueBlo/ puerta /pwerta/

ratón /raton/ semáforo /semaforo/ silla /siLa/

sol /sol/ tambor /tamBor/ taza /taTa/

teléfono /telefono/ toalla /toaLa/ toro /toro/

tortuga /tortuga/ tren /tren/ zapato /Tapato/

Table 1
Words in the Induced Phonological Register and their SAMPA transcription

development of speech therapy tools and augmented communication devices
for heavily impaired individuals. The Universal Access Database (Kim et al.,
2008) is a massive corpus containing several hours of speech from 10 individ-
uals with different degrees of dysarthria. In languages different from English,
it can be referred also efforts of speech acquistion in Dutch (Sanders et al.,
2002), and regarding Spanish, the most remarkable effort was done in the
HACRO project (Navarro-Mesa et al., 2005), containing speech from speakers
of different ages with different speech impairments for the development of a
tool for the evaluation of oral utterances. This corpus was the model for the
acquisition of the corpus used in this work, although it is expanded in the
fact that several sessions are recorded from every speaker and the disabilities
of the speakers are mostly focused on developmental delays and the speech
impairments associated to them.
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 The procedure in the acquisition of every session was to place every speaker in
an scenario with the “Vocaliza” application in which a certain set of words of
special speech therapy interest was presented. The application was running on
adaptation mode, a mode that allows the user to adapt the acoustic models
to their own speech by recording several utterances. In this mode, no ASR is
run and every utterance can be visually checked in its waveform to evaluate
the quality of the recorded signal. The set of words used for the recordings
was the Induced Phonological Register (RFI) (Monfort and Juárez-Sánchez,
1989). RFI, while containing only 57 words is a powerful set of words for
speech therapy as it contains examples of all the 23 phonemes and 70% (36
out of 51) of the allophones described traditionally in the Spanish language
(Alarcos, 1950) as shown in Table 1. The total amount of syllables in the 57
words is 129 (an average of 2.26 syllables per word, with 90 different syllables)
and the number of phonemes is 292 (an average of 5.13 phonemes per word).

From the technical aspect, a wireless close-talk microphone was used in the
recording. This way, comfortability of the speakers was guaranteed as they
were not directly attached to the computer while obtaining the best speech
quality possible with a high Signal-to-Noise Ratio (SNR). More precisely, the
recordings in the impaired speech corpus have an average SNR of 26.4 dB.
The recordings were made in an empty classroom environment in the “Albo-
rada” school while the rest of the classes were running normally in the school.
The speaker was told to repeat the utterance if an excess of noise from the
environment was captured.

The number of speakers that participated in the acquisition was 14; 7 males
and 7 females distributed in ages from 11 to 21 years as shown in Table 2. All
of these 14 speakers recorded 4 sessions of the isolated words to make a total
of 3 192 isolated word utterances (2 hours and 56 seconds of speech including
silence). Every session was acquired in different days to reflect intra-speaker
variability. All the speakers have been diagnosed by their educators and speech
therapists with different levels of dysarthria due to several origins as well as
other language disorders at the semantic/syntactic and pragmatic levels.

4.2 Manual evaluation of the impaired speech

Once the corpus was acquired, the evaluation of any robust ASR system in Sec-
tion 5 or PV algorithm in Section 6 required of a manual labeling in the corpus
that validated the systems. Thus, a labeling process was started. In this pro-
cess, every phoneme in the corpus was labeled by three different transcribers
as having been either deleted, mispronounced and therefore substituted with
another phoneme, or correctly pronounced. In the end, the final label for the
phoneme was chosen by consensus among the labelers. The average percentage
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Impaired Speech Corpus

Code Gender Age Code Gender Age Code Gender Age

Spk01 F 13 Spk06 M 16 Spk11 F 19

Spk02 M 11 Spk07 M 18 Spk12 M 18

Spk03 M 21 Spk08 M 19 Spk13 F 13

Spk04 F 20 Spk09 F 11 Spk14 F 11

Spk05 M 18 Spk10 F 14 - - -

Table 2
Speakers in the corpus: Code, gender (Male or Female) and age

of correct phonemes is 82.4%, while 10.3% of the phonemes are substituted
and 7.3% are deleted and the results for every speaker are shown in Table 3.
The total number of labelers was 10, all of them with expertise in the fields
of speech technologies or phonetics.

The labeling strategy resembles more lexical labeling than speech quality la-
beling. This was originally intended to create a more objective measure of the
mispronunciations by the speakers in the corpus. Also, with this type of label-
ing, labels are more consistent as the pair-wise inter-labeler agreement rate is
85.8% which raises to 89.7% when considering only a binary decision: Correct
versus Incorrect (deletions plus substitutions). This consistent labeling avoids
the problems of a subjective speech quality measurement that would have re-
quired very experienced labelers and would have suffered more of subjective
differences within the evaluation given by different labelers.

This lexical labeling also aims to assimilate the approach to the speech disorder
that a speech therapist might have when dealing with impaired speech from
young disabled patients. In this situation, the transmission of the message is
more important than speech quality, and this labeling procedure focuses on
the substitution of phonemes that would cause a change in the meaning of the
uttered word. Incorporating a PV algorithm that correctly detects this kind of
mispronunciation in tools like “Vocaliza” and “Cuéntame” would help speech
therapists in their daily work with this kind of disorders. The effort in this
task will show its results in Section 6.

4.3 An unimpaired corpus for domain adaptation

As a parallel process to the recordings of the impaired speech corpus, record-
ings of a reference corpus containing speech from unimpaired speakers in the
same age range as the impaired speakers were made. This reference corpus
was considered necessary to avoid the mismatch due to the difference of age
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Human Labeling

Speaker Del. Subs. Corr. Speaker Del. Subs. Corr.

Spk01 0.2% 0.9% 98.9% Spk08 13.1% 17.7% 69.2%

Spk02 9.2% 12.4% 78.4% Spk09 2.9% 5.3% 91.8%

Spk03 0.7% 4.6% 94.8% Spk10 8.4% 13.1% 78.5%

Spk04 1.1% 2.1% 96.8% Spk11 2.1% 4.7% 93.2%

Spk05 17.4% 26.1% 56.5% Spk12 11.7% 14.0% 74.3%

Spk06 0.2% 0.5% 99.3% Spk13 25.9% 30.5% 43.6%

Spk07 5.6% 7.3% 87.1% Spk14 3.9% 5.1% 91.0%

AVG. 7.3% 10.3% 82.4%

Table 3
Labeling results per speaker: Rate of deletions, substitutions and correct phonemes

between the impaired speakers and the age of the speakers contained in the
adult corpora used for creating the speaker-independent models for the ex-
periments in ASR in Section 5.1 and in PV in Section 6.2. This mismatch
due to age could mask the mismatch in speech due to the impairments of the
speakers that gets better reflected when comparing speech from subjects in
the same age range, providing a very useful task and domain adaptation as
shown in Section 5.2.

This unimpaired corpus should repeat the same acquisition scenario as the
impaired speech corpus. Thus, the same vocabulary (RFI) and the same type of
sessions (isolated words) were chosen for this recording scenario. The amount
of speakers in this corpus is 168, 73 boys and 95 girls ranging in the age from
10 to 18 years. Every speaker uttered a session of the 57 words in the RFI,
which makes a total number of 9 576 isolated-word utterances in the corpus (6
hours, 17 minutes and 43 seconds of speech including silence). The recording
process was exactly the same, using “Vocaliza” as the domain of acquisition
and with a close-talk microphone that guaranteed a high average SNR of 25.6
dB.

5 Experiments on Dysarthric ASR

ASR is the core of the “Vocaliza” and “Cuéntame” applications. A robust
performance of the ASR system is not only important for CASLT tools, but
all the knowledge gained in these tests can be also used for future works in
oral command control systems for physically handicapped individuals (Hawley
et al., 2003). These systems require of ASR to improve the performance in a
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 task with the type of speech presented in Section 4, as the speakers might
also be tentative users of this kind of technical aids due to their physical
disabilities. The results shown in this Section present a baseline of ASR that
could be used within this line of work.

Three different experiments were designed: First, results with a speaker-independent
ASR system trained from a population of adult speakers were obtained. Sub-
sequently, a task-dependent but speaker-independent ASR system was tested.
And finally, several speaker-dependent ASR systems for every impaired speaker
were evaluated. This line of work (from speaker independence to speaker de-
pendence via task domain adaptation) will be also be followed by the PV
algorithms in Section 6. All these experiments were required to understand
how ASR and PV react to impaired speech from children and young adults
with different impairments. These speakers are users of applications like “Vo-
caliza” in Section 3.2 and “Cuéntame” in Section 3.3 and their speech was
collected as explained in Section 4.

5.1 Speaker-independent results

First, all the isolated-word utterances in the corpus were evaluated through a
speaker-independent ASR system. This model was trained with the Spanish
unimpaired adult speech corpora Speech-Dat Car (Moreno et al., 2000), Al-
bayźın (Moreno et al., 1993) and Domolab (Justo et al., 2008) via Maximum
Likelihood (Dempster et al., 1977) optimization. The model set, and the ones
generated from it, consisted of a set of 746 context-dependent units plus a
begin-end silence model; every model being a 1-state Hidden Markov Model
(HMM) whose distribution is a Gaussian Mixture Model (GMM) made up of
16 Gaussians. Features for the ASR system were extracted every 10 millisec-
onds using a 25-millisecond Hamming window; 12 Mel-Frequency-Cepstrum
Coefficients (MFCC) were then obtained and were used within the ASR sys-
tem plus their first and second time derivatives; log-energy plus its first and
second derivatives are also calculated to create a final 39-dimensional feature
vector.

Results for the speaker-independent set of experiments are shown in Table 4 for
every one of the 14 impaired speakers shown in Section 4.1. The average Word
Accuracy (WAC) for all the speakers reached 66.8%, 29.94% lower than the
results obtained using the same ASR system for the 168 unimpaired speakers,
whose average WAC was 96.70%. These results show the big influence of the
disorders suffered by the speakers, specially for the most impaired speakers
like Spk05, Spk12 or Spk13 whose WAC was below 50%, according to the
results in the labeling in Section 4.2 that showed these speakers as some of
the ones with more problems in their speech production and intelligibility.
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Speaker-Independent ASR

Spk01 Spk02 Spk03 Spk04 Spk05 Spk06 Spk07

WAC 99.6% 64.5% 72.8% 85.1% 38.2% 93.9% 73.3%

Spk08 Spk09 Spk10 Spk11 Spk12 Spk13 Spk14

WAC 56.6% 71.9% 61.0% 89.0% 30.7% 21.5% 76.8%

Avg. 66.8%

Table 4
Speaker-independent ASR results

Task-Dependent ASR

Spk01 Spk02 Spk03 Spk04 Spk05 Spk06 Spk07

WAC 92.9% 84.2% 92.5% 98.3% 43.4% 96.9% 76.3%

Spk08 Spk09 Spk10 Spk11 Spk12 Spk13 Spk14

WAC 55.3% 77.6% 71.1% 94.3% 37.7% 23.7% 82.5%

Avg. 73.6%

Table 5
Task-dependent ASR results

5.2 Task-dependent results

The task and domain adaptation was achieved adapting the initial speaker-
independent model trained with adult speech using the unimpaired speech
corpus explained in Section 4.3 via a Maximum A Posteriori (MAP) strategy
(Gauvain and Lee, 1994). The MAP algorithm guaranteed a good convergence
with an amount of data like the one available for the task domain adaptation,
more than 6 hours of speech, which was entirely used for the adaptation.

The results are shown in Table 5 and gave an average WAC of 73.6%. The
increase of WAC for the task and domain adapted ASR is a significant 22.92%
but it is still far from the 96.70% WAC achieved by the unimpaired speakers.
This relative task-domain adaptation increase (TDINC) was calculated as
follows:

TDINC(%) =
TDWAC − SIWAC

UWAC − SIWAC
100% (1)

where TDWAC is the WAC with the task-dependent acoustic model, SIWAC
is the WAC with the initial speaker-independent acoustic model and UWAC
is the reference WAC of the unimpaired speakers.

The difference in WAC between the speaker-independent model (66.8%) and
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Speaker-Dependent ASR

Spk01 Spk02 Spk03 Spk04 Spk05 Spk06 Spk07

WAC 99.6% 90.8% 99.6% 99.6% 54.8% 100.0% 93.9%

Spk08 Spk09 Spk10 Spk11 Spk12 Spk13 Spk14

WAC 76.3% 90.4% 89.0% 99.1% 82.9% 30.3% 96.0%

Avg. 85.9%

Table 6
Speaker-dependent ASR results

the task-dependent model (73.6%) relied in the mismatch between the adult
speech and the children and young speakers’ speech used for training both
models, as well as in the adaptation to the task (57 words in the RFI) and to
the acoustic conditions of the recordings. The 73.6% WAC was only affected
in this case by the speech disorders of the speakers and was shown to be
significantly higher than the WAC obtained with unimpaired speakers.

5.3 Speaker-dependent results

Speaker-dependent ASR experiments were carried out within a leave-one-out
strategy in which three of the isolated-word sessions of every speaker were
used for adaptation and the remaining session was used for evaluation. Fi-
nally, the definitive WAC for every speaker was obtained as the average WAC
for the 4 evaluated sessions. The algorithm used for adaptation was again a
MAP approach (Gauvain and Lee, 1994) using as seed the task-dependent
model trained for the experiments in Section 5.2. In this case there are no
units appearing in the test data that are unseen in the adaptation data, so
it was considered not necessary the use of Maximum Likelihood Linear Re-
gression (MLLR) (Legetter and Woodland, 1995) to characterize the speaker-
dependent models.

Results for the speaker-dependent set of experiments are shown in Table 6
for all the impaired speakers. The average WAC increased to 85.9% (63.83%
of relative improvement over the speaker-independent results) This relative
speaker adaptation increase (SDINC) was calculated as follows:

SDINC(%) =
SDWAC − SIWAC

UWAC − SIWAC
100% (2)

where SDWAC is the WAC with speakers-dependent acoustic models, SIWAC
is the WAC with the initial speaker-independent acoustic model and UWAC
is the reference WAC of the unimpaired speakers.
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Fig. 7. Scatter plot correlating the percentage of correct phonemes for every speaker
with the WAC results in the SI and SD cases, and the linear regression estimates

In this case, the increase was more significant than in the task-dependent sit-
uation, and was rising towards the WAC obtained by the unimpaired speakers
(96.70%), but still a 10.83% lower. It was to notice that half of the speakers
had a WAC around or below 90% even with speaker adaptation.

5.4 ASR for Speech and Language therapy

One of the design goals of the speech therapy tools was that they were mainly
intended to be used by patients with cognitive disorders (as most of the pupils
in the CPEE Alborada). This situation leaded to the fact that the feedback
in the pronunciation games should be given in a simple way, so it could be
easily understood by any user. The idea in “Vocaliza” was that ASR could
be a simple and robust way of pronunciation verification; as it would reject
utterances which were extremely distorted from the canonical pronunciation.

This section aims to test if ASR is a good word-level PV method to reject
heavily mispronounced utterances. The proposed scenario is as follows: The
speech therapists configures the tool with a certain number of words to be
trained by a given patient. Each word is presented isolated to the patient
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 who has to utter it as correctly as possible and the ASR system embedded
in the tools decodes the most likely pronounced word from the vocabulary
inserted by the therapist. If the output of the ASR system is the same that
the word presented to the patient, it proceeds to the next word (accepting the
utterance of the user). If the ASR output is different, the word is considered
mispronounced (rejecting the utterance of the user) and prompted again.

Main goals of the tests were to obtain a low rejection of correctly pronounced
utterances (to avoid frustration in the user) and a low acceptance of incorrect
utterances (to force the user to improve the pronunciation). This possibility
arises watching at the correlation between the correctness of the speakers’
pronunciation (seen in Table 3) and the ASR results (Tables 4, 5 and 6).
The scatter plot between these two measures is shown in Figure 7 for the
speaker-independent and speaker-dependent cases, where the linear regression
functions are also plotted. The correlation coefficients (r) are 0.917 for the
speaker-independent regression model and 0.9565 for the speaker-dependent
model, which shows the correlation of ASR results with the labeling results.

Hence, two new measures of ASR performance are used, being these the False
Rejection Ratio (FRR) in Equation 3 and the False Acceptance Ratio (FAR)
in Equation 4:

FRR =
RCU

CU
(3)

FAR =
AIU

IU
(4)

with CU being the number of correct utterances and IU the number of in-
correct utterances. RCU is the number of correct utterances that have been
rejected and AIU the number of incorrect utterances that have been accepted.

One key point for this measure was to determine what could be considered a
mispronounced utterance. Every utterance contained a single isolated word;
so, as utterances were labeled at the phoneme level but not at the word level,
a mapping from phoneme labels to word labels was required. Initially, every
utterance with any number of mispronounced phonemes was considered as
mispronounced; this is, only words correct in all their phonemes were consid-
ered as correct words.

These results are presented in the first columns of Table 7 (Case 1). With the
use of speaker-independent acoustic models, the FRR was 12.3% and the FAR
was 43.3%. FRR can be reduced to 1.5% with the use of speaker-dependent
acoustic models as seen on Section 5.3, but the FAR rises to 70.5%. This value
of FAR could not be considered a reliable operation point for any specialist
in speech therapy, as it was losing all of its pedagogical interest. Anyway,
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Case 1 Case 2

SI model TD model SD model SI model TD model SD model

FRR 12.3% 5.5% 1.5% 29.4% 15.5% 5.8%

FAR 43.3% 53.6% 70.5% 27.1% 32.4% 52.3%

Table 7
FRR and FAR of speech recognition as pronunciation verification method

it was to be noticed that those words with any number of mispronounced
phonemes were considered as mispronounced words. Considering that the RFI
vocabulary was relatively small (57 words in Table 1) there were no minimal
pairs between them (this is, words with just one phoneme different); so, it was
expectable that words with only one mispronounced phoneme were correctly
recognized by the system.

To study this influence, a second experiment (Case 2) was performed. In this
case, a word was only considered as mispronounced when a minimum of two
if its phonemes were labeled as mispronounced. Results in terms of FRR and
FAR are given in the last columns of Table 7. In this case, an Equal Error Rate
(ERR) situation was achieved when using speaker-independent acoustic mod-
els (FRR of 29.4% and FAR of 27.1%). This operating point was acceptable,
but possible frustration could still be lowered by the use of speaker-dependent
acoustic models. In this case, FAR rose to 52.3%, so there was a big number
of incorrectly pronounced utterances who were being accepted by the system.

The main conclusion that can be achieved from these experiments is that
the presented word-level PV is not an accurate situation for robust speech
therapy (although considered necessary by the therapists when dealing with
individuals with cognitive disorders). Hence, the need for phoneme-level PV
arises, being studied in Section 6 as a work necessary in the development of
tools oriented to provide a feedback with more precise resolution.

6 Verifying Pronunciations Arising from Dysarthric Speech

This section describes a set of confidence measure-based techniques for detect-
ing phoneme-level mispronunciations in utterances from the impaired popula-
tion described in Section 4. The task domain is defined by the user interface
in the current configuration of the interactive learning tool “Vocaliza”, which
was introduced in Section 3.2. In this task domain, all utterances correspond
to isolated words taken from the 57 word phonetically balanced RFI vocabu-
lary (Monfort and Juárez-Sánchez, 1989). User utterances are elicited in the
interactive dialog using written and pictorial prompts, as described in Sec-
tion 3. As a result, PV can be assumed to be a problem of verifying the claim
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 that a particular phoneme occurring in an utterance of a known word has been
correctly pronounced.

This PV scenario is similar to the problem of PV for automated language learn-
ing and language skills evaluation applications (Zhang et al., 2008). However,
members of the young impaired speaker population suffer from neuromus-
cular disorders of varying severity. This distinguishes this population from
language learners who are assumed to not be proficient in the given language
but at the same time are assumed to not suffer from any speaking impair-
ments. Hence, speech obtained from the impaired population of speakers is
more likely to be significantly affected at multiple levels than speech from
unimpaired speakers. Effects of these disorders can be observed in frame level
spectral characteristics, segment level coarticulation, lexical level pronunci-
ation rules, and suprasegmental pitch contours (Patel, 2002). While there
has been considerable effort made to model how these disorders are reflected
in the underlying articulatory dynamics of speech production (Deller et al.,
1991), the techniques described here are based on a posteriori probabilities
derived from HMM-based ASR. Phoneme-level measures of confidence are de-
rived from the acoustic speech utterance and are used to define a decision rule
for accepting or rejecting the hypothesis that a phoneme was mispronounced.

There are three important issues that are addressed in this section (Yin et al.,
2009). First, a phoneme-level confidence measure is derived that incorporates
both acoustic and non-acoustic knowledge sources that may be impacted by
the mispronunciations resulting from the speech impairments. In Section 6.1, a
procedure used for deriving confidence measures based on posterior probabil-
ities derived from phoneme lattices is described (Mangu et al., 2007). Second,
in order for a confidence measure to be effective in detecting variability aris-
ing from the mispronunciations produced by the impaired speaker population,
it is necessary to reduce the influence that other sources of variability have
on the confidence measure. In Section 6.2, the application of acoustic HMM
adaptation to limit the effects of interspeaker variability and task variability
is described.

The last issue concerns the fact that the PV task predicts the potentially sub-
jective decisions made by human labelers working under the labeling scheme
given in Section 4.2. In Section 6.3, a nonlinear mapping is performed to trans-
late the a posterior probabilities estimated from ASR lattices to confidence
measures that can better predict these manually derived labels.
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Fig. 8. Confusion network-based posterior probability estimation

6.1 Phoneme Level Confidence Measure

In the phoneme PV scenario, it was assumed that the “target” word sequence
and its baseform phonetic expansion were known. For the experimental study
described in Section 6.4, it was assumed that the input test utterance corre-
sponded to an isolated word and the corresponding baseform phoneme string,
q
n
, n = 1, . . . , N , was known. PV in this context simply refers to obtaining

confidence measures for each phoneme in the baseform expansion and applying
a decision rule for accepting or rejecting the hypothesis that a given phoneme
was correctly pronounced. The process, as depicted in Figure 8, was performed
in two steps.

First, phoneme recognition was performed on the given isolated word utter-
ance where search was constrained using a network that described the po-
tential pronunciations that might be expected from an unimpaired speaker.
This network could potentially be created from the syllabification rules of
the language or be trained from observed pronunciations decoded from the
population of unimpaired speakers. While rule-based constraints are currently
being investigated, simple n-gram phonotactic constraints were applied here.
Specifically, a bigram phonotactic model was trained from baseform phonetic
expansions obtained from an 8 million word subset of the Spanish language
section of the Europarl speech corpus (Koehn, 2005), containing transcriptions
from several sessions in the European Parliament translated to different Eu-
ropean languages. This phonotactic bigram model was also used to constrain
search as outlined in Figure 8.

Second, a confusion network, as depicted in Figure 8, was created using a lat-
tice compression algorithm (Mangu et al., 2007). A phoneme lattice L1 which
contained phoneme labels and their associated acoustic and language proba-
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 bilities on the arcs was generated by the ASR decoder. A phoneme lattice is
a Directed Acyclic Graph (DAG) which contains a large number of compet-
ing phoneme hypotheses. These lattices generally contain a large number of
redundant paths and can often be very large. The confusion network aligned
links on the phoneme lattice and transformed the lattice into a linear graph
in which all arcs that emanated from the same start node terminated in the
same end node. The ordering properties of the original lattice were main-
tained in the confusion network. The posterior phoneme probabilities P (q

n
),

n = 1, . . . , N , appearing on the transitions of the confusion network were ob-
tained by forming the sum of probabilities of all the paths passing through the
target phoneme arc in the lattice and normalizing by the sum of probabilities
of all the paths in the lattice. Compared with the original phoneme lattice,
the compact structure and the ordering properties of the confusion network
facilitated efficient evaluation of posterior-based confidence measures for ver-
ifying phoneme pronunciations. The posterior probabilities for the baseform
phonemes in the target phoneme string were obtained by aligning the target
phoneme string with the phoneme lattice L1. These posterior phoneme proba-
bilities were used as phoneme-dependent confidence scores. A decision criterion
for verifying whether a given target phoneme had been correctly pronounced
could be implemented by comparing these scores with a decision threshold.

6.2 Reducing variability through model adaptation

Adaptation scenarios are presented here for reducing the effects of other
sources of variability. These may include all sources of variability outside of
those introduced by the speech disorders existing among the disabled speaker
population. For example, physiological and dialect differences among speak-
ers, differences in microphones, and differing acoustic environments can all
influence the ability to detect mispronunciations.

The baseline ASR system and the adaptation scenarios included in our exper-
imental study described in Section 6.4 are introduced. Baseline HMM mod-
els were trained from the Spanish language Albayźın speech corpus (Moreno
et al., 1993), which includes 6 800 sentences with 63 193 words. This corpus
contains 6 hours of speech including silence; however, only 700 unique sen-
tences are contained in the corpus. Because of this lack of phonetic diversity,
it was difficult to train context-dependent models that could generalize across
task and domains. For this reason and because of the simplicity of this small
vocabulary task, context-independent monophone models were used here. In
all experiments, 25 monophone-based context-independent HMMs were used
which consisted of 3 states per phoneme and 16 Gaussians per state. MFCC
observation vectors along with their first and second difference coefficients
were used as acoustic features. Furthermore, the corpora used for the train-
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 ing of speaker-independent models in Section 5.1 like SpeechDat-Car (Moreno
et al., 2000) and Domolab (Justo et al., 2008) were not used at this point as
they are not designed to be phonetically balanced and do not relate to this
task.

Phoneme-level PV was performed on isolated word utterances from a 57 word
vocabulary where each utterance was an average of only 2.3 seconds in length
including silence. In order to obtain a more robust task-dependent acoustic
model, the unimpaired corpus described in Section 4.3 was used to perform a
MAP-based (Gauvain and Lee, 1994) and MLLR transform-based (Legetter
and Woodland, 1995) adaptation of the Gaussian mean vectors. The MLLR
adaptation involved two regression classes, one for the silence and the other
one for all the non-silence phonemes. The reason for combining both MAP and
MLLR adaptation was based on their complementary behavior (Goronzy and
Kompe, 1999). MAP adaptation was performed independently on the means
associated with distributions assigned to each phoneme classes. Improved mod-
els were obtained using MAP for phonemes that were well represented in the
adaptation data. On the other hand, MLLR adaptation was applied as a linear
transformation to the mean vectors of the distributions. MLLR has the ability
to benefit from observation vectors belonging to all phoneme classes to adapt
those models that are not well represented in the adaptation data. As a result,
simply combining the two adaptation procedures can result in complementary
performance increases.

The MAP/MLLR task-dependent adaptation corpus included 6 840 adap-
tation utterances spoken by 120 unimpaired speakers from the 168 children
and young adults in Section 4.3. Each unimpaired speaker provided 57 iso-
lated test word utterances where all the words were assumed to be accurately
pronounced. The adaptation corpus contained 4.5 hours of speech including
silence.

Supervised speaker-dependent adaptation for each test speaker was performed
using an MLLR-based transform applied to the Gaussian means of the task-
dependent HMM. For each speaker, a single MLLR transform matrix was
estimated and applied for speaker adaptation. The speaker-dependent MLLR
adaptation data consisted of 57 isolated word utterances, or 2.2 minutes of
speech for each of the test speaker. The remaining 2 394 impaired speakers
utterances, three sessions of 57 isolated word utterances for each impaired
speaker, were used for evaluation. The supervised speaker-dependent MLLR
transformation was then applied prior to verifying the phoneme level pronun-
ciation of the impaired speech utterances.
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 6.3 Non-linear Mapping of Posterior Probabilities

A nonlinear transformation was performed to map the lattice posterior proba-
bilities to phoneme-level confidence measures. There were two motivations for
this: The first motivation stemmed from the fact that all of the PV techniques
presented here were evaluated in terms of their ability to predict the labels
defined by the labeling scheme seen in Section 4.2. The decision made by an
expert as to whether a given occurrence of a phoneme was classified as being
“mispronounced” rather than as a “pronunciation variant” will always have
a subjective component. The labeling scheme presented in Section 4.2 is im-
portant because it addresses the trade-off between the need for a consistent,
repeatable, and easily implemented labeling strategy against the need for an
accurate characterization of the quality of pronunciation of a given phoneme.
There is no guarantee, however, that the posterior probabilities estimated as
shown in Figure 8 will always be accurate predictors of these labels.

The second motivation for mapping the lattice posterior probabilities to phoneme-
level confidence measures was the fact that there was a great deal of prior in-
formation available in this PV scenario. This included knowledge of the target
word, the target phoneme, and the position of the phoneme within the word.
This prior information could be combined with the phoneme-level posterior
probability using one of many possible fusion strategies to better predict the
human derived labels.

In the experimental study described in Section 6.4, the parameters of a single-
layer multilayer perceptron with the above parameters as input were trained
to implement a non-linear transformation. Backpropagation training was per-
formed for a network with 47 hidden nodes and with input activations which
included the phoneme-level posterior probabilities, indicator variables corre-
sponding to each of the phoneme labels, and indicator variables corresponding
to the word labels. The network was trained with the human derived pronunci-
ation labels serving as targets. PV was performed using the output activations
obtained from this network on test utterances with the same kinds of input
parameters as the ones used in the training phase.

6.4 Study of PV Performance

This section presents an experimental study performed to evaluate the ability
of the PV techniques presented in Section 6 to detect mispronunciations in
utterances obtained from impaired speakers. Verification performance is mea-
sured using utterances from the 14 speaker population of impaired speakers
as a test corpus. For each phoneme in the baseform phonetic expansion of a
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Phoneme-level Verification Performance (EER)

Adaptation Scenario zerogram bigram

TIND HMM (Baseline) 25.3% 22.2%

TDEP MAP/MLLR Adaptation 19.7% 18.4%

SDEP MLLR Adaptation 18.3% 17.1%

SDEP NN Mapping 14.9% N/A

Table 8
Phoneme detection performance measured as the equal error rate (EER) for task-
independent (TIND) baseline, task-dependent (TDEP) MAP/MLLR adaptation,
speaker-dependent (SDEP) MLLR adaptation, and SDEP NN-based non-linear
mapping.

word, the task is to verify the claim that the pronunciation of that phoneme
is correct according to the human labels assigned using the labeling scheme
described in Section 4.2. Since this is in fact a detection problem, the per-
formance is presented using receiver operating characteristic (ROC) curves as
the probability of false rejection (FR) vs. the probability of false acceptance
(FA) of a pronunciation hypothesis. These characteristics can be summarized
using the equal error rate (EER) measure. The EER is computed by applying
a threshold to the phoneme-level confidence scores and identifying the thresh-
old setting where the probability of false acceptance is equal to the probability
of false rejection.

The performance relating to several issues will be considered. First, the effect
of the adaptation strategies for reducing task-dependent (TDEP) and speaker-
dependent (SDEP) variability will be considered. Second, the effect of the
applied phonotactic bigram constraints in decoding will be evaluated with re-
spect to an unconstrained (zerogram) decoding. Third, the performance of the
non-linear neural network (NN)-based mapping procedure will be presented.

The PV verification performance was found to vary across phoneme classes.
For example, when the results in Table 6 are reported separately for phonemes
classified as vowels and non-vowels, the performance for the vowel class is con-
siderably worse than the non-vowel class. For the TDEP MAP adaptation case
using the zerogram network, the vowel class EER is approximately 18 percent
higher than the EER obtained for the non-vowel class. Vowels represent 44
percent of the total phoneme occurrences in the corpus. This surprising dif-
ference in EER is partly due to the human labeling strategy. Rather forgiving
subjective judgments were made by the labelers when deciding whether a given
utterance contained a “pronunciation variant” of a phoneme as opposed to a
labeled mispronunciation error. This results in many cases where the decision
threshold defines a phoneme instance to be mispronounced when the reference
label indicates the phoneme was correctly pronounced. There is less ambigu-
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 ity in human labelers’ decisions for the labeling of deletion errors. The higher
EER observed for vowels results from the fact that substitution errors are more
common for vowels and deletion errors are more common for non-vowels.

Table 8 presents the global PV performance for a variety of experimental con-
ditions where each is delineated in the first column of the table. The second
and third columns of Table 8 display the performance in EER for the zerogram
and bigram recognition networks respectively. The results in Table 8 are ob-
tained on a test set consisting of 2 394 utterances and 12 264 monophone test
trials. These include 10 083 phonemes labeled as being correctly pronounced
and 2 128 labeled as incorrectly pronounced. The 2 128 ‘incorrect’ test trials
correspond to phoneme instances that have been either mispronounced by the
test speaker (substituted for another phoneme) or deleted altogether.

There are several observations that can be made from the results given in
Table 8. First, from the first row of the table, it is clear that the EER for ver-
ifying phoneme-level pronunciation task-independent HMM models trained
from the Albayźın speech corpus is fairly high. An EER of over 25 percent is
obtained when no phonotactic constraints are applied in decoding. An EER
of 22 percent is obtained when the bigram network is used. The second row of
the table shows that MAP/MLLR adaptation of the HMM to the corpus of
unimpaired children and young adults speaking utterances of the same vocab-
ulary words results in approximately twenty percent decrease in EER. This
rather significant improvement is due largely to the significant mismatch in
speaker characteristics that exists between the largely adult speaker popula-
tion in the Albayźın corpus and the unimpaired younger speaker population
in the adaptation corpus.

The age of the children and young adults in the corpora used here ranged
from 11 to 21 years old. The age of members of the speaker population in the
Albayźın training corpus ranged from 19 to 64 years old. The ages of one third
of the speakers in the Albayźın corpus were between 39 and 64, approximately
two thirds of the speakers were between the ages of 23 and 38, and less than
one percent of the speakers in the Albayźın corpus were less than 22. Hence,
the degree of overlap between the ages of the two speaker populations was
extremely small.

The third row of Table 8 shows that speaker-dependent MLLR adaptation
of the TDEP HMM models using 57 utterances from each test speaker re-
sults in approximately seven percent decrease in EER. Note that the speaker-
dependent adaptation data includes both correctly pronounced phonemes and
phonemes that were mispronounced by the impaired speakers. Including the
mispronounced phonemes in the adaptation data may limit the potential per-
formance improvements that are achievable in this scenario.
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TDEP Verification Performance using Reduced Test Set (EER)

TDEP MAP/MLLR Adaptation 20.5%

TDEP + NN Mapping 19.7%

Table 9
Task-dependent (TDEP) phoneme detection performance using unconstrained zero-
gram network obtained with and without speaker-independent NN-based non-linear
mapping

The fourth row of the table shows the effect on performance when the same
utterances used for MLLR adaptation are instead used to train the NN-based
mapping described in Section 6.3. This results in a substantial 18% reduction
in EER with respect to the TDEP case. Finally, comparing the EER displayed
in the second and third columns of Table 8, the bigram phonotactic constraints
result in a reduction in EER rate between 7% and 12%.

The issue of the statistical significance of differences between measures based
on false accept rates and false reject rates has been addressed in the litera-
ture (Bengio and Mariethoz, 2004; Delong et al., 1988). However, there is no
significance test for these applications that has become widely accepted in the
speech and language community, so the results of these significance tests can
be difficult to interpret. By any test, one would assume that the EER differ-
ence of 1.3 percent shown for rows two and three of Table 8 are at best barely
statistically significant. This equal error rate point corresponds to a difference
of 130 false rejection trials out of 10083 correctly pronounced phonemes and
27 false acceptance trials out of 2128 incorrectly pronounced phonemes. With-
out computing confidence intervals on these outcomes, one cannot conclude
with any certainty that the resulting estimate of the difference in error rates
for this case is significant.

Figure 9 displays the pronunciation verification performance over the 2 394
utterance test set in the form of ROC curves. The ROC curves labeled TIND,
TDEP, and SDEP in Figure 9 correspond to the systems whose zerogram
EER results are given in rows two through four of Table 8. Note that the
performance characteristics are well behaved in that the same rank order of
performance is achieved by the three systems at all operating points.

While the NN-based nonlinear mapping was shown in Table 8 to provide a
substantial reduction in EER, the scenario followed for the system in Table 8
involved using speaker-dependent data in training the NN. In order to in-
vestigate the effect of this mapping in a speaker-independent scenario, the
14-speaker training set was divided in half. Utterances from the first seven
speakers were used for training the NN-based mapping and utterances from
the second set of seven speakers were used as a test set. The results for this
revised training and testing scenario on the reduced test set are displayed in
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Fig. 9. ROC curves displaying phoneme-level verification using three different HMM
models: task independent (TIND) models, task adapted (TDEP) models, and
speaker adapted (SDEP) models. A zerogram, or unconstrained, ASR network was
used to generate phoneme lattices

Table 9. It is clear from Table 9 that the impact of the NN-based mapping in
reducing the EER relative to the TDEP performance is far less for the speaker-
independent training of the NN than it is for the speaker-dependent case re-
ported in Table 8. Although these last results have to be considered carefully
due to the reduced test set used (only half of the sessions per speaker).

7 Discussion

In this section, it will be discussed how speech technologies can help in the
improvement of pronunciation skills by young impaired children in the appli-
cation “Vocaliza”. The corpus used for the evaluation of these speech technolo-
gies (ASR and PV) gathers a group of children and young adults with speech
therapy needs who are potential users of the “Vocaliza” tool. The baseline
result in ASR (66.8% of WAC) indicates the strong loss of performance due to
the speech disorders of the speakers. Hence, research in speech technologies in
the presence of impaired speech is necessary to achieve a better performance
in the proposed CASLT tools.
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 Regarding ASR, speaker adaptation provided a significant increase in WAC
(63.83%), showing the strong influence of the speakers’ disorders in the perfor-
mance of the ASR system in “Vocaliza”. Further studies assured this hypothe-
sis, like the correlation between ASR results and the rate of mispronunciations
per speaker. The ASR system is used in “Vocaliza” to accept or reject the
speaker’s utterance of a prompted word prior to evaluation. The increase in
WAC achieved with speaker adaptation is necessary to avoid the frustration of
the user when correctly pronouncing the word, while rejecting highly incorrect
utterances. However, trying to evaluate whole words as correct or incorrect is
influenced by the non-unique matching of the human-obtained phoneme la-
bels to word labels, resulting in the need of phoneme-level PV for advanced
evaluation.

In terms of PV, a major reduction in EER was achieved with a non-linear
mapping to the phonetic labels made over the impaired speech corpus. This
mapping makes the PV algorithm match the possible corrective scheme given
by an educator in a speech therapy class. The final result in EER is promising
for the use of this phoneme-level PV algorithm in tools requiring a phoneme-
level measure of the articulation abilities of the user like second language
learning tools (Rodŕıguez, 2008).

8 Conclusions

In this paper, a set of tools for speech and language therapy have been pre-
sented under the framework of “Comunica”. These tools are oriented to chil-
dren who need to train their phonatory, articulatory and descriptive abilities.
Two of these tools make use of speech technologies like speech recognition and
pronunciation verification to provide of real language improvement in the user.
ASR can provide a simple but efficient word-level pronunciation verification
while a novel PV system has been tested to detect mispronunciations at the
phoneme-level. Speech technologies jointly with AAC systems and a simplified
user interface allow the unsupervised automation of the process of speech and
language therapy for children.

Future work might include studies in ASR and PV considering an open-
vocabulary task. This study would validate tools for teaching language un-
derstanding like “Cuéntame” in the same way that it has been done with
“Vocaliza” in this paper. An open-vocabulary domain would have to consider
the study in language modeling for language impaired individuals. The treat-
ment of OOV words in the ASR system would also be required in this domain.
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