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Abstract: This paper considers the single machine scheduling problem of jobs with 

controllable processing times and compression costs and the objective to minimize the total 

weighted job completion time plus the cost of compression. The problem is known to be 

intractable, and therefore it was decided to be tackled by population-based heuristics such as 

differential evolution (DE), particle swarm optimization (PSO), genetic algorithms (GAs), 

and evolution strategies (ES). Population-based heuristics have found wide application in 

most areas of production research including scheduling theory. It is therefore surprising that 

this problem has not yet received any attention from the corresponding heuristic algorithms 

community. This work aims at contributing to fill this gap. An appropriate problem 

representation scheme is developed together with a multi-objective procedure to quantify the 

trade-off between the total weighted job completion time and the cost of compression. The 

four heuristics are evaluated and compared over a large set of test instances ranging from 5 to 

200 jobs. The experiments showed that a differential evolution algorithm is superior (with 

regard to the quality of the solutions obtained) and faster (with regard to the speed of 

convergence) to the other approaches. 

 

 

Key words: scheduling, controllable processing times, crash costs, meta-heuristics, differential 

evolution, swarm intelligence, genetic and evolutionary algorithms, evolution strategies. 
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1. Introduction  

Scheduling involving controllable job processing times has received increasing research 

attention in the last two decades due to its compliance with the real needs of modern 

production systems. In such systems, production managers usually face the problem of 

scheduling the jobs at faster processing times with higher costs. Jobs’ processing times are 

usually controllable (compressible) by allocating additional resources, such as working 

overtime, performing subcontracting, running machines at higher speeds, consuming more 

energy, fuels, etc. The efficient coordination of job scheduling and resource allocation 

decisions is a critical factor for a modern production system to achieve competitive 

advantage.  

This paper considers the problem of scheduling multiple jobs with controllable processing 

times on a single machine and the objective to minimize the total weighted job completion 

time plus the cost of compression. We will refer to this problem as TWJCTP for short. 

TWJCTP is NP-hard (Wan et al. 2001, Hoogeveen and Woeginger 2002) and consequently 

the right way to proceed is through the use of heuristic techniques. In all our knowledge no 

other heuristic exists in the literature for directly solving large size instances of TWJCTP. 

This paper aims at contributing to fill this gap facing TWJCTP by means of modern 

population-based heuristics namely differential evolution (DE), particle swarm optimization 

(PSO), genetic algorithm (GA), and evolution strategies (ES). The performance of each one 

of them is examined under the influence of two different encoding schemes necessary for 

mapping the genotypes (evolving vectors) to phenotypes (actual job schedules). A new, 

simple control scheme for estimating the control parameters settings for the case of DE, PSO 

and GA is also presented. The proposed control scheme is adaptive and found superior to 

traditional deterministic control schemes with regard to the quality of solutions obtained.  

The scheduling problem with controllable processing times and costs has been studied by 

researchers such as (Vickson 1980a, 1980b, Van Wassenhove and Baker 1982, Daniels and 

Sarin 1989, Zdrzalka 1991, Panwalkar and Rajagopalan 1992, Alidace and Ahmadian 1993, 

Guochun and Foulds 1998, Biskup and Cheng 1999, Foulds and Guochun 1999, Wan et al. 

2001, Hoogeveen and Woeginger 2002). Vickson (1980a, 1980b) initiates the topic, first, by 

considering the problem with the objective of minimizing the total flow time and the total 

processing cost incurred due to the job processing time compression (Vickson 1980a). Then 

by considering the problem of minimizing the total flow and resource costs under the 

assumption that the job flow costs are identical (Vickson 1980b). Van Wassenhove and Baker 

(1982) proposed an algorithm to determine the trade-off curve between maximum tardiness 

and total amount of compression on a single machine. Later, Daniels and Sarin (1989) 

extended the work of Van Wassenhove and Baker (1982) by considering the additional 

constraint of allowed maximum job tardiness. Zdrzalka (1991) considered a single machine 
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scheduling problem in which each job has a release date, a delivery time and a controllable 

processing time; and gave an approximation algorithm for minimizing the overall schedule 

cost. Panwalkar and Rajagopalan (1992) considered the common due date assignment and 

single machine scheduling problem in which the objective is the sum of penalties based on 

earliness, tardiness and processing time compressions. The authors showed that the problem 

can be reduced to a linear assignment problem. Their results extended later by Alidace and 

Ahmadian (1993) to the parallel machine scheduling case. Biskup and Cheng (1999) also 

extended the work of Panwalkar and Rajagopalan (1992) by adding the total completion time 

in the objective function, and showed that the extended problem can be solved as an 

assignment problem. An early survey with results on the specific research field can be found 

in (Nowicki and Zdrzalka 1990). An up-to-date extended survey in the field together with a 

unified framework for the related scheduling problems can be found in the recent paper of 

Shabtay and Steiner (2007).  

The rest of this paper is organized as follows: Section 2 formulates TWJCTP. Section 3 

describes very briefly DE, PSO, GA and ES. Section 4 introduces the way the four 

population-based heuristics can be applied on TWJCTP, while Section 5 presents and 

discusses the results of the experimental evaluations of the algorithms. Finally, Section 6 

summarizes the contribution of the paper and states some directions for future work. 

 

2. Problem formulation 

To facilitate the presentation, the following notations are used throughout the paper: 

n  number of jobs 

iJ   job i 

π   a job sequence (a schedule) of the n jobs  

][iπ  job in the i-th position of sequence π  

inp   normal (initial) processing time of job i 

iy   amount of compression of job i 

iu    maximum permitted amount of compression for job i 

iap   actual processing time of job i 

iφ   unit cost of compressing job i 

iC   completion time of job i  

iw   weight factor of job i 

TWCT  total weighted completion time of a given π schedule 

CoC  cost of compression of a given π schedule 
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TWJCTP formally written as 1/contr/∑wiCi (Hoogeveen and Woeginger 2002) can be 

defined as follows: consider a set of n independent jobs },,,{ 21 nJJJ K  to be processed 

without interruption on a single machine that can handle only one job at a time. Each job iJ  

(i=1,…,n) is available at time zero, and its initial (normal) processing time inp  can be 

compressed by an amount iy  ( ii uy ≤≤0 ) with iu  being an upper bound on the compression 

ability of iJ . Hence, the actual processing time of iJ  is estimated by iii ynpap −= . 

Performing this compression incurs a cost ii yφ , with iφ  being the unit cost of compressing 

iJ . Let iC  the completion time of job iJ  (i=1,…,n) in some schedule, and iw  a weighted 

factor corresponding to iJ . Then, the objective of TWJCTP is to determine a job sequence π  

for the jobs, and a corresponding compression vector ),,( 1 nyy K=y  (with the compressions 

of all the jobs in π ) that minimizes  

 

∑∑
==

+=+=
n

i

ii

n

i

iiCoCTWCT yCwfff
1

][][

1

][][),( ππππ φπ y      (1) 

 

The completion time of ][iπ is estimated by  

 

( )∑
=

= −
i

j

jji ynpC
1

][][][ πππ               (2) 

 

Hence, ƒ is a bi-criteria objective function composed by total weighted completion time 

of the n jobs in π , and the corresponding total cost of compressing these jobs. According to 

the literature (Hoogeveen and Woeginger 2002, Hoogeveen 2005), four variants of the basic 

TWJCTP arise:  

 

P1: to minimize the total cost given by Eq.(1), 

P2: to minimize ∑
=

=
n

i

iiTWCT Cwf
1

][][ ππ  under the constraint Ayf
n

i

iiCoC ≤=∑
=1

][][ ππφ ,     

P3: to minimize CcCf  under the constraint BfTWCT ≤ , 

P4: to identify the trade-off curve for ( CoCTWCT ff  , ). 
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This paper studies problem P4. The trade-off curve connects all points (
**  , CoCTWCT ff ) 

where 
*

TWCTf  is the best possible value of TWCTf  given that
*

CoCCoC ff ≤  and vice versa. In 

other words, P4 consists in identifying the set of Pareto-optimal solutions for ( TWCTf , CoCf ), 

i.e., the set of solutions that are not dominated by any other solution in the search space when 

all the objectives are considered, and they do not dominate each other in the set.  

 

Lemma 1: There is always an optimal schedule to TWJCTP in which every job iJ  (i=1,…,n) 

is either totally uncompressed ( iy =0), or totally compressed ( iy = iu ). The proof can be found 

in Hoogeveen and Woeginger (2002). 

 

 

3. Population-based heuristics  

DE (Storn and Price 1997), PSO (Eberhart and Kennedy 1995), GAs (Holland 1975) and 

ES (introduced in the early of 1960s by Rechemberg and Schwefel; see Fogel (1995) for a 

detailed description) belong to a modern class of heuristics known as evolutionary algorithms. 

Independently of the form of the optimization problem, any evolutionary algorithm undergoes 

the following general operation mechanism (Michalewicz and Fogel 2000):  

(a) Create (usually in a random way) a population S of individuals that represent potential 

solutions to the physical problem.  

(b) Evaluate the quality of each individual in S.  

(c) Reward individuals of higher quality (so that to survive and reproduce their structure in 

the next generation) by introducing selective pressure on S.  

(d) Generate new individuals by applying variation operators on S. 

(e) Repeat steps (b)-(d) several times until the satisfaction of a suitable termination 

criterion. 

 

The main differences between DE, PSO, GAs, and ES rely on the way they perform steps 

(c) and (d). In particular, DE attempts to replace in each generation all the individuals in S by 

new, better solutions. Each individual solution becomes a target for replacement by a 

competitor called trial solution. Mutation and crossover operators are used to create a trial for 

each target solution. A one-to-one comparison between targets and trials determines the new 

members in S. Similarly, PSO attempts to replace all the solutions in S with better solutions, 

by exploiting information such as the current quality of an individual, its own best quality in 

history, and the quality of its neighbours. A GA from the other site replaces only a subset of S 

using a suitable parent selection strategy. Offspring are created by applying crossover and 
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mutation operators on the selected population subset. In ES the whole population is seen as 

the parent. From this population an offspring population is generated and evaluated. The new 

S is created deterministically, either from the best members of the offspring population ((µ, 

λ)-selection), or from the union of parents and offspring ((µ+λ)-selection). Offspring are 

created using simple recombination between the alleles of the parent strings, followed by a 

self-adaptive mutation scheme based on Gaussian perturbations. 

DE, PSO, and ES are stochastic optimizers over continuous search spaces, meaning that 

they utilize real-valued vectors to represent solutions of the physical problem. While a GA 

can be found in various forms such as binary-coded, permutation-coded, or real-valued, 

depending on the way it codes the solution space of the physical optimization problem. To 

achieve a fair comparison between the heuristics, it was decided to develop a real-valued GA 

(rGA) in this work. That is, genotypes (individual solutions in S) are floating-point vectors as 

in the case of DE, PSO, and ES.  

 

4. Problem representation: mapping real-valued vectors to TWJCTP solutions 

For the application of these heuristics on TWJCTP one must decide how to decode the 

real-valued vectors maintained and evolved (the genotypes) to actual TWJCTP solutions 

(phenotypes). For a n-job TWJCTP a candidate solution consists of a job sequence π , i.e., a 

permutation of the integers 1,2,…,n, together with a compression vector y , i.e., a string of 

integers ][]1[ ,, nyy ππ K (with ][iyπ ∈[0, ][iuπ ] ∀ i∈[1,n]). To that purpose, a real-valued vector 

containing 2n real numbers has been made was selected for use (see Fig. 1). The n most left 

components of the vector corresponds to π  and its n most right components corresponds to 

y . In the following we will refer to the two parts of the vector with π-part and y-part for 

short, respectively. 

< Insert Figure 1 about here > 

 

4.1.  Creating a job sequence from a real-valued vector  

After the decision about the structure of the implemented genotype, a way to map this 

structure to an actual TWJCTP solution must be determined. In the literature there are at least 

two different encoding schemes for representing permutations through real-valued vectors 

namely, random keys (Bean 1994) and sub-range keys (Nearchou 2006). Both of them were 

adopted and their influence on the performance of the examined heuristics was investigated. 

The application of the two encoding schemes on TWJCTP is explained below through a 

simple example. 

< Insert Table 1 about here > 
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Let us assume a 5-job TWJCTP with the characteristics given in Table 1. Furthermore, let 

us also assume that in some point in time the following real-valued vector was generated by a 

heuristic: 

)91.0 ,15.0 ,60.0 ,04.0 ,31.0 ,62.0 ,27.0 ,10.0 ,42.0 ,75.0(
4444 34444 21

4444 84444 76

party

part

x

−

−

=

π

     (3) 

 

Random keys work as follows: the numbers in π-part of x  are sorted and their order in x  

determines π . That is, (0.75, 0.42, 0.10, 0.27, 0.62) corresponds to the job sequence           

(3–4–2–5–1). Since the 3
rd

 number in the vector has the lowest value (=0.10), followed by the 

4
th
 number in the vector, which is the second smallest number (=0.27), etc.  

Sub-range keys work as in the following: the range [1…n] is divided into n equal sub-

ranges and the upper bound of each sub-range is saved in an array SR=[1/n, 2/n, …,n/n]
T

 (SR 

stands for Sub-Ranges). Then, we take each number from π-part and determine the sub-range 

in which this number belongs. The order of these sub-ranges in SR constitutes the final 

solution. For the above example, n=5 and thus, 
T

SR ]1.0 0.8, 0.6, 0.4, 0.2,[= . The first number 

from π-part (=0.75) lies in the fourth sub-range (0.6<0.75≤0.8), therefore the resulting 

schedule is (4 _ _ _ _ ). The second number (=0.42) lies in the third sub-range (0.4<0.42≤0.6), 

and so on. Finally, the generated (by sub-range keys) schedule is (4 3 1 2 4).  

As it is clear, this schedule is illegal since it contains duplicated jobs. To produce a valid 

version of the schedule the following very simple two-steps repairing procedure is applied on 

the proto-schedule:  

(a) Delete all the duplicate jobs: (4 3 1 2 _) 

(b) Fill the empty locations in the schedule with the remaining (unused) jobs following an 

ascending order of their values: (4 3 1 2 5) 

Therefore, (0.75, 0.42, 0.10, 0.27, 0.62) corresponds to the job sequence (4–3–1–2–5), 

which is different from that obtained by random-keys. 

 

4.2.  Creating a compression vector from a real-valued vector 

It is now the time to obtain the compression vector y  corresponding to x . To achieve 

this mapping, the following encoding mechanism is proposed 

 





−

≤
=

otherwise  ,

5.0  if         ,0

][ nj

j

j
u

x
y

π
  for all  j=n+1,n+2,…,2n      (4) 
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where jy  (j=n+1, n+2,…,2n) denotes the amount of compression for the job lying in the (j-n) 

position of π . 
][ nj

u
−π

 denotes the maximum permitted amount of compression for this job, 

and 
j

x  is the corresponding real number in y-part of x . If 
j

x is less than or equal to 0.5 then 

job ][ nj −π  is not compressed at all, or is totally compressed. Note that, Eq. (4) implements 

lemma 1 for optimal TWJCTP solution. 

Therefore, applying Eq. (4) on the above example (Eq. (3)), results in a mapping of y-part 

into vector y =(0,0,8,0,4) if random-keys method is adopted; and y =(0,0,4,0,7) if sub-range 

keys method is adopted. The total cost for the two TWJCTP solutions (π ; y )random-

keys=(3,4,2,5,1;0,0,8,0,4) and (π ; y )sub-range-keys=(4,3,1,2,5;0,0,4,0,7), are thereby 1415 and 

1664 units, respectively. 

 

 

5. A multi-objective procedure for TWJCTP  

The attempt with the multi-objective problem (MOP) studied in this paper is to find a 

Pareto set of optimal solutions for ( TWCTf , CoCf ) (see Eq.(1)). A Pareto set contains all those 

not dominated solutions to TWJCTP, such that no other solutions are superior to them in 

respect to both the objectives shown in Eq.(1). In order to determine a Pareto set of TWJCTP 

solutions, the operation mechanism of each one of the four heuristics under consideration was 

enhanced with the following two main features: 

a) A separate secondary population of diverse Pareto-optimal TWJCTP solutions is 

maintained and iteratively updated from generation to generation. This population will 

be composed of all Pareto solutions found during the search. 

b) The main population is iteratively updated using an elitist preserving strategy. Based on 

this strategy, a portion of the main population is randomly replaced by a number of elite 

Pareto solutions. 

 

In MOP a solution with the best values for each objective can be regarded as an elite 

solution. Hence, for TWJCTP there are two elite (extreme) solutions in the evolving 

population each of which optimizes one objective. These solutions are candidates to be copied 

into Pareto population. Pareto set is further completed by additional elite solutions using the 

procedure given below. A Pareto population of the final generation contains the near-optimal 

solutions to TWJCTP. The decision maker can then select that solution accomplishing more 

her or his preferences.  
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Procedure Pareto_Population  

Input: (a) The main population of solutions S and its size Ns;  

            (b) The Pareto population Γ and its size Γ_size. 

Output: The updated versions of S and Γ. 

Begin 

  // Check each one of the individual solutions in S whether constitutes a Pareto solution // 

cS=cΓ=0 ;  // initialize counters for the members in S and Γ, respectively // 

While (cΓ ≤ Γ_size) and (cS ≤ Ns) do 

cS=cS+1; 

Compare S(cS) with all Pareto solutions in Γ;  // S(cS) is the cS
th
 member of S // 

If S(cS) is not contained in Γ then 

If S(cS) dominates some Pareto solutions then  

Add S(cS) into Γ and delete the solutions dominated by it;   

 Increment accordingly counter cΓ; 

Else if there is empty space in Γ then  

 Add S(cS) into Γ. 

 Increment accordingly counter cΓ; 

Endif 

Endif 

Endwhile 

// apply elitist preserving strategy // 

Determine the two elite Pareto solutions in Γ; 

Replace two randomly selected members in S with the two elite Pareto; 

Return (S, Γ); 

End;  

 

5.1 Fitness assignment mechanism 

A critical question arising when facing a MOP by the means of evolutionary algorithms is 

how to estimate the fitness function of individual solutions with regard to the multiple 

objectives. A simple method to combine multiple objective functions into a composite fitness 

solution is the well-known weighted-sum method. According to this method, the MOP under 

consideration is written as in the following:  

 

∑∑
==

⋅+⋅=⋅+⋅=
n

i

ii

n

i

iiCoCTWCT yCwfff
1

][][2

1

][][121),(min ππππ φωωωωπ y    (5) 
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The weights 1ω  and 2ω  specify the relative importance of the corresponding objectives. 

The determination of the suitable values for these weights is in general a difficult task and 

constitutes another critical research issue in multi-objective optimization. In the literature, 

there are three general methods to compute the weights iω (i=1,…,Q) for a weighted-sum 

objective function with Q objectives: the fixed-weight method, the random-weight method 

and the adaptive-weight method. The former uses constant weights satisfying the relation,  

 

,Q,i fii

Q

i

K1  allor   0    ,1
1

=>∑ =
=

ωω          (6) 

 

However, as Murata et al. (1996) showed, using constant weights within an evolutionary 

algorithm the search direction is fixed, and for this reason it is difficult for the search process 

to obtain a variety of not dominated solutions. To overcome this drawback, Murata et al. 

(1996), proposed the use of random weights according to the following formula, 

 

,Q,i 

Qrandomrandom

irandom

i

K

L

,21 

21random

=

+++
=ω

        (7) 

where irandom (i=1,…,Q) are non-negative random numbers.  

 

Furthermore, Gen and Cheng (2000) proposed an adaptive-weight method which 

readjusts the weights by utilizing some useful information from the current population. This 

method computes the weights by, 

 

,Q,i f

iziz
i K1  allor   ,

minmax

1
=

−
=ω          (8) 

 

where 
max

iz and 
min

iz  are the maximum and minimum values of the i
th
 objective in the 

population, respectively.  

 

After much experimentation with the above methods we found the random-weight 

method superior to the others with regard to the quality of the solutions obtained, and hence it 

was decided to adopt this method in our study. 
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6. Computational experiments 

6.1 Data generation 

To examine the performance of the heuristics on TWJCTP, multiple experiments were 

performed over a set of test problems with n=5, 10, 20, 50, 100 and 200 jobs. No standard 

TWJCTP data are reported in the literature and for this reason it was decided to proceed with 

the random generation of this data set. For each category of problems 10 test instance were 

generated as in the following: for every job iJ (i=1,2,…,n) four integer quantities were 

randomly drawn from discrete uniform distributions: the job’s initial normal processing 

time inp ∈[1,100], an upper bound of the compression permitted for this job 

iu ∈[0.6×××× inp ,0.9×××× inp ], the unit cost of compressing this job iφ ∈[2,9], and a weight factor 

related to the time completion of the job iw ∈[1,15]. The author will be glad to distribute this 

data set to any reader who is interested hoping that this will become a common test bed for 

TWJCTP.  

The performance of the heuristics was quantified through the use of the following indices:  

(a) Index P: denoting the number of the different Pareto solutions generated by a 

heuristic over a specific test instance. 

(b) Index P*: denoting the number of not dominated solutions among all Pareto 

solutions obtained by all the heuristics. In particular, since some Pareto solutions 

obtained by one heuristic may be dominated by other heuristics, all the obtained 

solutions are compared to each other and the not dominated among them are 

selected.  

(c) The quality ratio P*/P in percentage. The larger the value for this ratio for a given 

heuristic, the higher the performance of the heuristic. 

(d) The actual processing time consumed in seconds.  

 

To get the average performance of the heuristics, each one of them was run 20 times over 

every test instance (starting each time from a different random number seed) and the solution 

quality was averaged. Hence, as there are 10 instances in each one of the 6 categories of 

problems, this means that each heuristic was run 6×10×20 times=1200 times in total. All the 

heuristics were coded in Borland Pascal and run on an IBM-compatible PC with the following 

hardware and software specifications: an AMD Dual Core 2.11 GHz processor, 2.0 GB of 

RAM, and Microsoft Windows XP Professional operating system.  
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6.2. Choice of the control parameters 

When designing a population-based heuristic among others, one has to decide about the 

size Ns of the population used. This is a common parameter for all the examined heuristics. 

To make the heuristics comparable it was decided to use the same Ns=n population size for 

all, and limit the running process of each one of them to a maximum of 3n CPU seconds. This 

means a maximum running time for them equal to 15 sec for 5-job problems, 30 sec for      

10-job problems, etc. The size of the Pareto population was defined to be equal to 50 for the 

small size instances (n≤20) and equal to 100 for the large size instances (n≥50). It is worth 

pointing out that the basic data structures required are identical for all compared algorithms. 

The settings for the additional control parameters involved in DE, PSO and rGA were 

determined after experimenting with two different control schemes: a static scheme consistent 

to the general indications of the literature, and a proposed dynamic control scheme with 

which some parameters are fixed during the search process while some other parameters are 

altered according to the diversity of the entire population. These control schemes are 

described below in detail, while a synopsis of them is given in Table 2.  

 

< Insert Table 2 about here > 

 

a) DE - static control scheme: Crossover rate (CR) was defined to take values within the 

discrete range {0.01, 0.1, 0.5, 0.7, 0.9} while varying F (a scaling positive parameter used in 

the creation of the mutant vectors) to take a value within the range {0.5, 0.75, 0.95}. That is, 

this scheme results in 15 different combinations of (CR, F).  

DE - dynamic control scheme: CR was set equal to 0.01 and F being adapted within the range 

[0.4, 1.0] as in the following. At the beginning of the search process, F is high (F=F0=1) and 

decreases slowly by a factor ϑ=0.9 using the relation F=ϑ×F. When the population’s diversity 

becomes too ‘small’, or F becomes lower than 0.4, then it takes again its initial high value 

(F=F0). A small diversity of the population is encountered when the fitness of the worst 

member of the population (fitnessworst) and the average population fitness (fitnessavg) are 

almost the same. That is, F is being estimated by the following rule: 

 

FFelse F Fthen)(F) orfitness.sif (fitnes avgworst ×==<×≥ ϑ      4.0 950 0   (9) 

 

It is also highlighted that mutant vectors in DE were implemented using the standard DE1 

scheme (Storn and Price, 1997). 
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b) PSO - static control scheme: We followed the indications of Kennedy (1998), 

Parsopoulos and Vrahatis (2002). Firstly, c1 and c2 (cognitive and social parameters) were 

both set to a fixed and equal value within the range {0.5, 1.0, 2.0}. Then, since some recent 

works (Parsopoulos and Vrahatis 2002) report that it might be better to choose c1>c2, with 

c1+c2≤4, experiments were also performed using the combination c1=2, c2=1.5. The 

experimental investigations led us to adopt the latter settings since higher quality solutions 

were encountered. Furthermore, inertia weight factor Iw was defined to gradually decreased 

from Iw0=1.2 towards 0.4 using the relation Iw=Θ×Iw (with Θ=0.95). If Iw becomes lower 

than 0.4 then it is reset to Iw0. 

PSO – dynamic control scheme: c1 and c2 are estimated as in the static scheme. Iw by the 

relation Iw=Θ×Iw, starting from Iw0 and being reset to this value if the following condition 

exists: (Iw<0.4) or (fitnessworst≥0.95×fitnessavg). 

 

c) rGA, - static control scheme: We experimented with various recommended crossover and 

mutation rates (Goldberg 1989) such as CR∈{0.6, 0.8} and MR∈{0.01, 0.0333, 1/n, 0.1}.  

rGA, - dynamic control scheme: A fixed crossover rate equal to 1.0 was defined, and an 

adapted mutation rate MR∈[0.1, 0.8] which is high at the beginning and decreases slowly by 

the population’s diversity. When the population’s diversity becomes too ‘small’, then MR 

takes again its original high value. More specifically, MR is initially defined equal to 0.8, and 

decreased in each new generation by a factor ϑ=0.9 using the relation MR=ϑ×MR. Similarly, 

to DE and PSO, a small population’s diversity is encountered when the minimum population 

fitness and the average population fitness are almost the same. MR is reset to 0.8 if the 

following condition is satisfied: (MR<0.0333) or (fitnessworst≥0.95×fitnessavg).  

The three genetic operators, i.e., selection, crossover, and mutation were implemented 

through binary tournament selection, one-point crossover and uniform mutation, respectively. 

These operators were found to be the best among a set of known operators with regard to the 

quality of the solutions obtained.  

 

After much experimentation with the above schemes the following best settings for the 

control parameters were determined: for DE, the dynamic scheme i.e., (CR, F)=(0.01, adapted 

within the range [0.4, 1.0] using Eq.(9)). For PSO, the static scheme (c1, c2, kIw )=(2, 1.5, 

adapted within the range [0.4, 1.2]). For rGA, the static scheme with (CR,MR)=(0.8, 0.01). All 

the results presented below are conducted by these settings.  

 

d) For the case of ES, we followed the recommendations of the literature (Eiben and Smith 

2003). After experimentation for choosing the correct survivor selection scheme, we found 
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that using (µ,λ)-scheme within ES results in a much superior optimizer to that of using (µ+λ)-

scheme. For this reason (µ,λ)-scheme was adopted. µ was estimated using the heuristic rule 

λ/µ=7. Mutation was performed through Gaussian perturbation. The mutation step sizes σ 

were estimated using self-adaptation through a suitable formation of the genotype structure. 

In particular, for n-job TWJCTP, the genotype in ES has the form },,;,,{
11 nn

xx σσ KK .x 

part of the genotype denotes the real-valued vector solution and σ part of the genotype the 

mutation step size corresponding to each component of the real-valued vector. Offspring 

were generated using discrete recombination for x values and intermediate recombination for 

σ values.  

 

6.3.  Comparative results  

For each one of the examined heuristics two versions were implemented corresponding to 

a distinct encoding scheme, either to random-keys, or to sub-range keys. In the following we 

will refer to them by the abbreviations xx1 (meaning heuristic xx with random-keys) and xx2 

(heuristic xx with sub-range keys) for short. Depending on the problem size the following 

(see Table 3) average processing times were needed. These times correspond to the mean 

CPU time spent by each heuristic till the creation of the best individual solution within the 

permitted running duration. As can be seen from Table 3, DE heuristics seem to be the fastest 

optimizers especially for large size problems. Almost identical average convergence times are 

reported for all the heuristics on the small size problems. While rGA and ES appear to have 

the slowest rate of convergence for problems with size greater than 50. 

 

< Insert Table 3 about here > 

 

Table 4 displays the number of unique Pareto solutions obtained by each one of the 

heuristics after a single trial over the 60 test beds. For example, for 5-job problems (n=5) in 

the case of the first test instance, three of the heuristics (de1, rga1, es2) determined 13 

different Pareto solutions, while each one of the rest five heuristics determined 14 Pareto 

solutions. For 10- and 20-job problems, PSO heuristics (pso1, pso2) managed to obtain a 

larger set of Pareto solutions than that obtained by the other heuristics. For 50-job problems 

de1 and pso2 outperformed all the others with the latter being slightly better. While, in the 

case of the most difficult classes of problems (n=100, 200) DE heuristics (de1, de2) showed 

the highest performance, generating a larger set of Pareto solutions than that obtained by the 

other approaches.  

 

< Insert Table 4 about here > 
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Fig. 2 illustrates the not dominated solutions obtained by the heuristics after a single run 

over the first test instance of each class of problems with n≥20. As one can see from this 

figure, in the case of n=20 test instance (Fig. 2(a)), the solutions obtained by PSO heuristics 

(▲ and ∇∇∇∇) and those obtained by de2 (○) are of higher quality (lower curves) than those 

obtained by the other approaches. Similar high performance for pso1, pso2 and de2 can be 

also observed for the large size instances. In the most difficult class of problems (n=200) de2 

and pso2 clearly outperforms all the other approaches. Poor performance was encountered in 

the case of de1 and rga1 heuristics (higher curves in Fig.2). Some solutions obtained by them 

have small values of TWCT and others have small values of CoC, while very few solutions 

have small values of both objectives if compared with the not dominated solutions obtained 

by the other heuristics. The performance of ES approaches is higher than that of de1 and rga1, 

but inferior than that of pso1, pso2 and de2.  

 

< Insert Figure 2 about here > 

 

The above discussion concerns the results obtained by the heuristics after a single trial 

over each one of the 60 test instances. Due to the stochastic behavior of these heuristics, one 

must evaluate their average performance after multiple trials on the test beds. Hence, each 

heuristic was applied 20 times on each one of the 60 test instances. After each trial, we first 

reported the unique Pareto solutions (index P) obtained by each heuristic. Then, all the 

obtained solutions were compared to each other, and the not dominated among them were 

selected (index P*). The values of P and P* were averaged over the 20 trials of each heuristic 

on every test instance. Recall that, every new trial was starting from a different random 

number seed (same for all the examined heuristics). Tables 5 and 6 display the final averaged 

values of P and P* respectively, on the examined test instances. To make things more clearly, 

we describe some lines of these tables. For example, let us take the case of the 1
st
 instance of 

100-job problems (n=100) and measure P (Table 5). As one can see, best results for this 

instance were obtained by de1 (P=25.4) and worst results by es2 (P=14.6). That is, de1 was 

found able to generate a Pareto set of 25.4 unique solutions in average, while the 

corresponding ability of es2 was a Pareto set of 14.6 solutions in average. But how good were 

the obtained solutions? The answer to this question can be found in Table 6. In particular, for 

the specific benchmark (n=100, 1
st
 instance), only 0.2 solutions in average from the Pareto set 

obtained by de1 (P*=0.2) were not dominated by any other solution. This is the smallest P* 

value among the examined heuristics for the specific test instance. Meaning that, although the 

variety of the solutions obtained by de1 was in average greater than that of the other 

approaches (P=25.4, from Table 5); almost all of them were of very poor quality and being 

dominated by the other Pareto solutions. This information is illustrated more clearly in         
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Fig 2(c) mentioned above. Furthermore, some other observations for this benchmark (see 

Table 6) are the following: (a) the highest P* value was encountered by de2 (P*=18.4). Which 

means that, 18.4 solutions (in average) out the 23.6 (P index) in total, were not dominated by 

any other Pareto solution. (b) de2 is by far the most effective heuristic. (c) The second best 

performance is due to pso1 (P*=4.4). 

 

< Insert Table 5 about here > 

< Insert Table 6 about here > 

 

Table 7, gives a synopsis of the results shown in Tables 5 and 6. Particularly, Table 7 

displays the mean values of P and P* (Table 7(a)) and quality ratio (P*/P) (Table 7(b)) 

averaged over the 10 instances of each different benchmark class. As can be seen from     

Table 7(b), best results are due to de2 which achieved a % quality ratio equal to 98.5, 85.5 

and 43.1 for small size problems (n=5, 10 and 20), respectively; and a quality ratio equal to 

65.7% for 50-job problems, 71% for 100-job, and approximately 75.5% for 200-job problems. 

The second best performance was achieved by PSO heuristics with pso2 being slightly better 

than pso1 for large size instances (n=100, 200). The worst performance was due to de1 and 

es1. Furthermore, examining the influence of the two encoding schemes (random-keys and 

sub-range keys) on the performance of the examined heuristics, one can safely conclude that 

sub-range keys are more suitable to be used within DE. For the other three approaches both 

coding schemes seem to perform almost the same, with random-keys being slightly more 

suitable within PSO and sub-range keys being more suitable within rGA and ES. 

 

< Insert Table 7 about here > 

 

Finally, to verify the correctness of the reported results it was decided to test the 

performance of the heuristics over a similar scheduling problem for which polynomial time 

exact algorithms exists. The additional experiments were performed on problem 1/contr/∑Ci. 

The objective of this problem is to minimize the total job completion time plus the total cost 

incurred due to job processing time compression. As Vickson (1980a) showed, assuming 

equal weight factors ( nw = ) for all the n jobs, this scheduling problem can be formulated as 

an assignment problem and solved to optimality by an assignment algorithm such as the 

famous Kuhn’s Hungarian algorithm (Bazaraa et al. 1990). As test beds we select the test 

instances with n=5 and n=10 included in the benchmarks data set described above. Table 8 

reports the optimum solutions obtained by Vickson’s method for these instances. All of the 

examined heuristics found rather easily the particular optimum solutions so it was decided to 
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withhold the associated results. Fig. 3 depicts the optimum schedule corresponding to the first 

instance of the examined 10-job scheduling problem. The jobs’ characteristics for this 

instance are given in Table 9. Note that, the first four jobs in the generated optimum schedule 

(i.e. jobs 3, 6, 10, 1) are crashed while the other jobs are not crashed. 

 

< Insert Table 8 about here > 

< Insert Figure 3 about here > 

< Insert Table 9 about here > 

 

7. Conclusions 

Scheduling jobs with controllable processing times on a single machine and objective to 

minimize the total weighted job completion time plus the cost of compression is an NP-hard 

bi-criteria combinatorial optimization problem. Therefore, large size instances of the problem 

must be tackled through the use of heuristics. This paper examined the performance of four 

known population-based heuristics, namely, differential evolution (DE), particle-swarm 

optimization (PSO), genetic algorithm (GA), and evolution strategies (ES), for the solution of 

this problem. An appropriate problem representation was developed and two different 

encoding schemes for mapping the genotypes (evolving vectors) to phenotypes (actual job 

schedules) were investigated, namely random-keys and sub-range keys, respectively. 

Furthermore, a new technique for dynamically estimating the correct settings of the 

heuristics’ control parameters was presented and examined to improve their efficiency. 

Extensive experiments were performed over a set of randomly generated test problems with 

up to 200 jobs. The results obtained showed that DE with sub-range keys is by far superior to 

the other approaches with regard to the quality of the solutions obtained; and rather faster 

with regard to the speed of convergence to near-optimal solutions. 

On going research considers the common due date single machine scheduling problem of 

a number of jobs with controllable processing times. This type of scheduling sets costs 

depending on whether a job finished before (earliness), or after (tardiness) the specified due 

date. The objective is thereby, to find a sequence of jobs that minimizes a cost function that 

includes the cost of earliness and tardiness, due date assignment, makespan, and resource 

consumption. Moreover, future work will be directed to apply similar heuristic algorithms to 

multi-machine scheduling problems with controllable parameters including the job processing 

times, release dates, and delivery times. 
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Figure 2: Unique Pareto solutions obtained by the heuristics over the 1
st
 test instance 

of TWJCTP test beds with, (a) 20-jobs, (b) 50-jobs, (c) 100-jobs, and (d) 200-jobs. 
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Figure 2(c): 100-jobs TWJCTP 

18000000 19800000 21600000 23400000 25200000 27000000
0

1000

2000

3000

4000

5000

6000

7000

8000

 de1

 de2

 pso1

 pso2

 rga1

 rga2

 es1

 es2

C
o

C

TWCT

  
 

 

 

Figure 2(d): 200-jobs TWJCTP 
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Figure 3: The optimum schedule for the 10-job 1/contr/∑∑∑∑Ci with jobs' characteristics 

shown in Table 9. 
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Table 1: Jobs’ characteristics for a 5-job TWJCTP. 

 

 iJ  
2J  3J  

4J  5J  

inp  20 6 15 10 12 

iu  4 8 5 7 7 

iw  5 15 13 13 6 

iφ  1 2.5 1.5 1 2 
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Table 2: A synopsis of the control schemes used to determine the correct settings for the  

heuristics’ control parameters. 

 
 Heuristic 

 DE  PSO rGA 

 
Control parameters 

Control 

scheme 
Crossover rate: CR  

Scaling factor: F 

Cognitive parameter: c1 

Social parameter: c2  

inertia weight factor: Iw  

Crossover rate: CR  

Mutation rate: MR  

 

Static  CR∈{0.01, 0.1, 0.5, 0.7, 

0.9} 

F∈{0.5, 0.75, 0.95}  

•  c1=c2∈{0.5, 1.0, 2.0} 

•  c1=2, c2=1.2 

Iw =Θ×Iw ∈[0.4, 1.2] 

CR∈{0.6, 0.8} 

MR∈{0.01, 0.0333, 1/n, 

0.1} 

Dynamic  CR=0.01  

F=ϑ×F ∈[0.4, 1.0]  

Adapted using Eq. (9) 

c1=2, c2=1.2 

Iw =Θ×Iw ∈[0.4, 1.2] 

adapted by population 

diversity 

CR=1.0  

MR=ϑ×MR  ∈[0.1, 0.8] and 

adapted by population 

diversity 
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Table 3: Average running times in CPU seconds on a Dual Core 2.11 GHz PC 

 

 

n de1 de2 pso1 pso2 rga1 rga2 es1 es2 

5 3.4 4.0 5.1 5.4 5.7 4.6 5.5 5.1 

10 11.0 10.5 11.9 13.4 11.1 11.2 13.2 11.8 

20 26.7 24.3 29.2 26.6 27.4 28.6 28.5 28.1 

50 69.9 52.9 74.5 77.3 78.3 72.4 78.8 76.3 

100 118.2 111.6 144.6 138.8 152.6 179.4 229.7 217.5 

200 215.1 213.2 271.5 258.3 323.6 335.3 386.1 389.0 
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Table 4: Index P: Number of unique Pareto solutions generated by the heuristics after a 

single run over the examined test instances. 

 

 

 

  DE PSO rGA ES   DE PSO rGA ES 

 n   de1 de2 pso1 pso2 rga1 rga2 es1 es2  n   de1 de2 pso1 pso2 rga1 rga2 es1 es2 

5 1 13 14 14 14 13 14 14 13 50 1 25 18 19 27 22 19 12 14 

 2 13 15 15 16 17 17 16 15  2 28 25 19 24 20 26 18 15 

 3 12 15 17 16 15 13 16 17  3 18 11 20 27 21 20 20 17 

 4 14 17 18 17 18 19 19 16  4 23 20 21 21 22 15 14 14 

 5 17 16 16 18 16 17 18 17  5 18 28 25 33 14 23 19 16 

 6 13 11 13 13 12 13 13 13  6 21 20 23 20 18 19 13 11 

 7 12 12 13 13 13 13 11 13  7 20 23 22 20 20 18 18 14 

 8 7 7 9 9 8 7 19 9  8 18 20 17 25 25 21 14 21 

 9 13 14 15 15 13 15 15 13  9 32 23 21 19 16 17 19 20 

 10 12 13 13 11 13 12 13 10  10 24 24 30 24 28 23 14 25 

  126 134 143 142 138 140 154 136   227 213 217 238 206 202 161 168 

10 1 6 23 17 24 15 16 18 16 100 1 22 24 21 20 12 16 11 15 

 2 11 20 18 22 22 11 17 26  2 30 30 27 16 8 18 15 13 

 3 21 22 22 25 21 21 21 21  3 24 24 25 19 17 13 15 19 

 4 12 13 12 14 13 13 13 14  4 33 26 23 17 12 23 15 8 

 5 27 25 27 28 23 20 21 23  5 30 27 15 21 19 22 14 13 

 6 16 26 24 24 22 17 18 25  6 35 14 23 23 30 26 10 10 

 7 18 21 25 23 20 18 24 25  7 25 18 25 17 19 18 12 15 

 8 15 20 27 23 19 14 27 24  8 35 18 18 26 23 22 14 8 

 9 12 22 24 29 22 21 25 22  9 42 27 21 29 30 29 12 15 

 10 18 21 27 22 14 16 17 18  10 40 22 18 19 19 15 25 13 

  156 213 223 234 191 167 201 214   316 230 214 207 189 202 143 129 

20 1 12 20 18 19 20 13 14 8 200 1 30 24 20 22 18 17 10 15 

 2 17 20 10 18 17 15 19 19  2 27 46 20 19 21 14 12 12 

 3 18 15 24 16 17 17 13 16  3 16 24 23 22 12 14 17 18 

 4 17 24 22 25 20 19 15 19  4 34 32 17 15 13 13 20 14 

 5 13 17 21 19 13 15 13 15  5 36 22 20 29 20 24 13 13 

 6 20 18 20 16 19 19 21 14  6 33 17 16 20 21 18 18 14 

 7 19 19 16 18 16 15 18 17  7 28 21 15 25 20 21 12 14 

 8 18 23 24 20 19 20 22 12  8 26 20 24 24 18 16 20 17 

 9 23 16 25 23 15 18 12 19  9 42 32 21 32 11 12 17 11 

 10 19 24 28 16 21 9 13 16  10 38 16 23 29 15 18 12 11 

    176 196 208 190 177 159 160 156     310 253 197 238 169 167 151 139 

 

 

Page 28 of 33

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

A.C. Nearchou 

Page 29 of 33 

 

 
 

Table 5:  Index P: Average number of unique Pareto solutions obtained after 20 runs of 

each heuristic over the examined test instances. 

 

 

  DE PSO rGA ES   DE PSO rGA ES 

 n   de1 de2 pso1 pso2 rga1 rga2 es1 es2  n   de1 de2 pso1 pso2 rga1 rga2 es1 es2 

5 1 12.6 12.8 13.6 13.8 13.2 13.2 13.8 13.6 50 1 23.0 21.4 21.6 21.4 21.0 22.8 17.4 16.0 

 2 14.6 15.2 16.4 17.0 16.6 16.4 17.4 17.0  2 31.0 23.2 21.8 21.8 19.2 22.4 16.0 16.0 

 3 12.6 14.6 15.4 14.4 14.6 15.4 15.0 15.6  3 21.4 20.4 19.6 25.6 19.6 16.6 16.6 16.4 

 4 14.2 17.4 17.4 16.4 18.6 18.2 17.6 14.8  4 22.4 20.6 20.0 22.0 20.0 20.2 13.6 15.4 

 5 15.6 14.4 17.0 17.8 17.0 16.8 17.6 17.0  5 21.4 26.0 20.6 26.2 19.6 27.4 16.8 17.2 

 6 11.4 12.2 12.4 12.8 12.2 13.0 12.8 12.8  6 21.8 22.4 20.6 21.6 16.4 22.0 15.0 14.4 

 7 11.6 12.4 12.8 13.0 12.4 12.8 12.6 13.0  7 25.0 22.8 22.6 26.2 21.8 20.6 15.2 14.4 

 8 7.2 6.6 9.0 9.0 8.8 8.4 10.8 8.6  8 24.2 19.8 18.0 21.8 19.6 19.4 15.6 17.2 

 9 14.2 13.6 14.0 13.8 14.4 14.0 14.8 13.2  9 24.0 24.4 18.6 22.6 16.6 21.0 16.4 19.6 

 10 11.8 11.8 12.0 11.8 12.2 11.2 12.6 10.8  10 25.4 26.4 24.2 22.8 24.6 23.2 16.2 17.6 

10 1 11.8 20.2 20.6 22.2 19.4 18.0 20.2 18.8 100 1 25.4 23.6 19.4 23.0 16.0 17.8 15.4 14.6 

 2 13.4 19.2 23.6 23.4 19.0 14.6 19.2 23.4  2 32.8 27.2 23.4 21.0 18.0 20.0 11.4 11.8 

 3 17.8 23.4 24.4 24.4 18.2 18.8 22.4 24.2  3 29.2 22.0 22.2 23.0 17.6 14.4 14.4 13.6 

 4 10.0 13.4 15.8 15.2 15.2 13.2 11.8 14.6  4 34.0 27.2 19.6 22.4 16.2 21.6 12.4 11.6 

 5 25.6 26.4 26.6 25.2 20.8 22.0 25.6 23.8  5 31.4 27.2 17.4 20.4 19.6 19.0 11.4 14.2 

 6 19.0 22.4 27.2 24.4 18.0 18.8 20.0 26.0  6 34.8 22.0 20.0 21.4 25.2 23.2 10.2 14.4 

 7 18.0 20.0 25.4 24.8 18.0 17.6 20.6 21.2  7 29.2 24.4 23.4 23.8 19.0 19.6 12.2 12.0 

 8 14.0 21.2 24.2 27.2 17.4 20.8 21.2 26.8  8 33.6 25.0 21.0 24.6 23.4 17.8 12.6 11.6 

 9 21.0 24.0 24.4 27.2 21.4 20.8 24.0 24.2  9 40.4 29.2 21.6 23.8 23.4 22.4 13.4 13.0 

 10 15.6 20.0 24.2 23.0 14.4 18.6 18.0 23.4  10 34.8 23.8 19.6 20.0 20.6 18.4 14.8 9.0 

20 1 15.2 18.6 17.6 20.0 18.4 12.8 16.8 13.4 200 1 32.3 20.3 17.7 23.3 17.7 18.7 10.0 10.7 

 2 12.0 17.0 17.8 22.2 17.4 16.8 13.8 16.8  2 32.0 33.3 19.7 19.3 17.7 18.3 11.3 12.0 

 3 18.4 16.4 22.6 17.0 17.8 17.2 14.2 15.4  3 20.7 28.7 21.0 20.3 12.3 16.7 15.3 13.7 

 4 19.6 23.2 22.4 25.8 23.0 16.8 18.8 18.8  4 32.3 28.7 19.3 18.7 13.7 18.0 16.7 13.3 

 5 14.6 17.2 18.0 18.4 15.4 13.4 17.0 15.8  5 35.3 23.3 21.7 23.7 20.0 20.0 13.3 13.0 

 6 21.2 19.8 19.8 18.4 18.0 12.2 17.4 15.4  6 35.3 21.0 19.3 23.0 20.3 16.3 15.7 11.7 

 7 18.4 18.2 16.4 20.8 18.4 18.0 15.4 17.2  7 27.3 23.7 19.0 21.0 22.3 21.7 14.0 12.3 

 8 15.2 20.2 20.6 22.2 23.2 18.6 19.0 19.2  8 27.0 30.0 25.0 22.0 15.7 18.3 12.7 12.7 

 9 18.0 19.6 23.2 21.6 15.0 17.8 16.6 16.6  9 30.7 29.3 21.3 22.7 15.7 15.7 14.0 11.3 

 10 16.4 18.6 22.6 18.2 21.4 13.2 16.2 15.8  10 34.0 20.7 20.0 23.0 16.7 19.0 13.3 12.0 
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Table 6: Index P
*
: Number of not dominated solutions between all Pareto solutions 

obtained by the algorithms. Average results over 20 runs of each algorithm for the 

examined test problems. 

 

  DE PSO rGA ES   DE PSO rGA ES 

 n   de1 de2 pso1 pso2 rga1 rga2 es1 es2  n   de1 de2 pso1 pso2 rga1 rga2 es1 es2 

5 1 12.0 12.3 13.0 13.7 11.7 12.3 13.3 13.0 50 1 0.0 16.2 6.0 2.4 1.0 3.0 2.0 0.6 

 2 13.0 14.0 14.0 15.3 14.7 15.7 15.7 15.0  2 0.0 18.2 3.6 2.4 1.0 2.8 0.6 0.2 

 3 6.0 14.0 15.1 14.3 13.7 14.0 13.7 13.7  3 0.0 6.4 11.0 4.4 1.0 2.0 1.6 0.2 

 4 14.3 17.0 17.0 16.0 17.7 18.0 17.0 13.3  4 0.2 15.8 1.0 6.8 1.2 3.2 0.6 1.4 

 5 15.3 13.3 17.0 17.0 16.7 15.3 17.3 16.8  5 0.0 19.8 9.6 4.4 1.0 2.4 0.8 0.8 

 6 12.0 11.7 12.0 12.0 11.7 12.7 12.0 12.0  6 0.0 19.4 8.0 3.6 1.0 2.2 0.6 1.0 

 7 11.7 12.0 12.7 13.0 11.7 12.7 12.1 13.0  7 0.0 11.2 3.6 13.8 1.2 2.4 1.2 0.8 

 8 7.0 6.0 8.8 9.0 7.7 7.7 9.0 8.0  8 0.0 13.6 5.2 3.8 1.0 2.8 0.6 0.8 

 9 14.0 13.0 14.0 13.3 14.3 14.0 14.7 13.1  9 0.0 9.6 10.6 2.2 1.4 2.0 1.8 1.0 

 10 11.0 11.7 11.7 11.3 11.7 10.7 12.3 10.6  10 0.0 19.2 6.0 5.2 1.0 2.0 0.6 0.6 

10 1 2.0 18.4 11.0 14.8 1.4 5.8 3.0 6.6 100 1 0.2 18.4 4.4 2.8 1.4 1.8 0.4 0.8 

 2 2.4 17.0 12.4 20.2 1.4 4.2 3.6 5.2  2 0.4 18.4 5.6 4.2 1.8 2.0 0.4 0.8 

 3 1.6 17.2 14.2 18.6 1.4 5.6 2.8 4.2  3 0.0 13.0 3.2 7.0 1.6 2.0 0.2 0.8 

 4 5.2 13.1 14.8 6.6 1.4 5.4 6.2 4.8  4 0.0 14.2 1.4 7.4 1.6 2.0 0.2 2.0 

 5 2.4 21.8 11.0 15.2 11.8 2.4 5.4 7.6  5 0.0 20.4 3.6 5.6 1.6 2.0 0.6 0.8 

 6 1.4 19.6 17.0 15.2 4.2 3.2 4.0 4.8  6 0.0 14.8 1.8 3.8 1.6 2.4 1.0 0.2 

 7 0.8 17.4 14.4 15.6 3.4 3.8 2.2 7.8  7 0.2 20.2 4.0 3.0 1.4 2.0 0.6 2.2 

 8 2.8 15.8 10.0 20.6 1.4 8.8 3.2 12.4  8 0.0 20.0 3.0 5.2 1.4 2.2 1.2 0.8 

 9 0.8 19.2 22.8 21.2 2.0 3.8 4.0 10.0  9 0.0 24.2 3.4 3.4 1.2 2.4 0.2 0.6 

 10 2.4 19.6 16.4 20.6 1.2 4.0 4.4 5.4  10 0.2 15.0 2.4 2.8 1.2 2.0 0.0 0.6 

20 1 0.0 4.0 11.4 3.6 1.0 1.6 1.8 0.2 200 1 1.3 17.7 2.3 6.3 0.7 2.3 0.7 0.3 

 2 0.0 5.0 9.4 4.8 1.0 3.4 1.2 1.0  2 2.3 23.3 9.7 5.3 0.7 2.0 0.7 0.0 

 3 0.0 9.4 5.8 7.0 1.0 2.2 0.6 1.0  3 6.0 18.7 7.7 4.0 1.0 1.3 0.3 0.3 

 4 0.0 12.4 10.4 6.2 1.2 3.0 0.6 0.4  4 6.3 20.7 8.0 3.0 1.0 1.3 0.0 0.0 

 5 0.0 12.6 5.8 3.2 1.2 2.4 0.8 0.0  5 1.7 21.7 1.7 10.3 1.0 1.3 0.3 0.3 

 6 0.0 10.2 6.6 6.8 1.2 2.0 0.4 0.0  6 6.3 15.7 4.0 8.7 1.0 1.3 0.0 0.3 

 7 0.0 8.8 5.0 3.6 1.2 6.2 0.2 2.2  7 5.0 21.7 1.3 7.7 0.7 1.3 0.0 0.3 

 8 0.0 4.8 9.8 10.4 1.0 3.0 0.4 1.0  8 5.7 21.7 6.3 7.0 1.0 1.3 0.3 0.0 

 9 0.0 5.6 15.4 3.2 1.0 4.8 1.2 1.8  9 4.7 19.7 7.7 4.0 1.0 1.3 0.0 0.0 

 10 0.0 8.6 9.4 3.2 1.0 4.2 1.4 0.6  10 4.0 15.0 4.3 10.3 1.3 1.3 0.3 0.0 
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Table 7: (a) A synopsis of the results shown in Tables 5 and 6. The values are averaged 

over the 10 instances of each problem’s category. Numbers in brackets correspond to 

index P
*
, while those outside the brackets to index P. (b) Quality ratio P*/P. 

 

 

 
n de1 de2 pso1 pso2 rga1 rga2 es1 es2 

5 12.6 (11.6) 13.1 (12.5) 14.0 (13.5) 14.0 (13.4) 14.0 (13.2) 13.9 (13.3) 14.5 (13.7) 13.6 (12.9) 

10 16.6 (2.2) 21.0 (17.9) 23.6 (14.4) 23.7 (16.9) 18.2 (3.0) 18.3 (4.7) 20.3 (3.9) 22.6 (6.9) 

20 16.9 (0.0) 18.9 (8.1) 20.1 (8.9) 20.5 (5.2) 18.8 (1.1) 15.7 (3.3) 16.5 (0.9) 16.4 (0.8) 

50 24.0 (0.0) 22.7 (14.9) 20.8 (6.5) 23.2 (4.9) 19.8 (1.1) 21.6 (2.5) 15.9 (1.0) 16.4 (0.7) 

100 32.6 (0.1) 25.2 (17.9) 20.8 (3.3) 22.3 (4.5) 19.9 (1.5) 19.4 (2.1) 12.8 (0.5) 12.6 (1.0) 

200 30.7 (4.3) 25.9 (19.6) 20.4 (5.3) 21.7 (6.7) 17.2 (0.9) 18.3 (1.5) 13.6 (0.3) 12.3 (0.2) 

 

 

 

 

Table 7(a) 

 

 

 

 

  

n   DE 
                         

PSO 
                       rGA                  ES 

 de1 de2 pso1 pso2 rga1 rga2 es1 es2 

5 92.4 95.4 96.6 95.8 94.0 95.5 94.6 94.4 

10 13.1 85.2 60.9 71.1 16.3 25.7 19.1 30.4 

20 0.0 43.1 44.3 25.4 5.7 20.9 5.2 5.0 

50 0.1 65.7 31.1 21.1 5.4 11.5 6.5 4.5 

100 0.3 71.0 15.8 20.2 7.4 10.7 3.7 7.6 

200 14.1 75.6 26.0 30.7 5.5 8.0 1.9 1.2 

average 20.0 72.7 45.8 44.1 22.4 28.7 21.8 23.9 

 

 

Table 7(b) 
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Table 8: Optimum solutions for the test instances included in the 5-job and 10-job 

1/contr/∑∑∑∑Ci. problems.  

 

 

 

Problem 

size 
Test instances 

 1 2 3 4 5 6 7 8 9 10 

5 606 381 578 511 888 477 619 821 361 511 

10 1811 1794 1994 1430 1831 2135 2153 1473 2217 2038 
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Table 9: Jobs’ characteristics for a 10-job 1/contr/∑∑∑∑Ci problem.  

 

 

Jobs inp  iu  iφ  

1 32 23 4 

2 44 39 5 

3 96 69 10 

4 7 5 8 

5 53 40 10 

6 39 27 3 

7 28 25 7 

8 59 40 6 

9 89 78 4 

10 32 19 6 

 

 

 
 

Page 33 of 33

http://mc.manuscriptcentral.com/tprs  Email: ijpr@lboro.ac.uk

International Journal of Production Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


