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Higher-Order Stress-Strain Theory for Damage Modeling
Implemented in an Element-free Galerkin Formulation

Yang Yang1 and Anil Misra2

Abstract: Gradient theories have found wide applications in modeling of strain
softening phenomena. This paper presents a higher order stress-strain theory to de-
scribe the damage behavior of strain softening materials. In contrast to most con-
ventional gradient approaches for damage modeling, the present higher order the-
ory considers strain gradients and their conjugate higher-order stress such that sta-
ble numerical solutions may be achieved. We have described the derivation of the
required constitutive relationships, the governing equations and its weak form for
this higher-order theory. The constitutive coefficients were obtained from a granu-
lar media approach such that the internal length scale parameter reflects the natural
granularity of the underlying microstructure. The weak form was discretized us-
ing an element-free Galerkin (EFG) formulation that readily admits approximation
functions of higher-order continuity. We have also discussed the implementation of
essential boundary conditions and linearization of the derived discrete equations.
Finally, the applicability of the derived model is demonstrated through two exam-
ples with different imperfections designed to initiate dislocation bands and shear
bands, respectively.

Keywords: Higher-order stress, microstructure, granular materials, damage, strain
softening, element-free Galerkin.

Introduction

A large number of engineering materials, such as concrete, rocks, polymers, ultrafine-
grained metals and composites, exhibit strain softening behavior, which, often leads
to a catastrophic material and structural failure. Materials undergoing strain soften-
ing gradually lose their load-carrying capacity accompanied by increasingly local-
ized deformations as those documented by many researchers (van Mier 1984, 1986;
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van Mier, et.al. 1997; Sluys, Cauvern and de Borst 1995). It is now widely rec-
ognized that the tangential moduli for these materials ceases to be positive-definite
upon onset of strain softening, resulting in a set of ill-posed partial differential
equations(PDE) whose solutions may have no physical significance. The conse-
quence of such a stress-strain relationship is that the traditional finite element solu-
tions based upon classical continuum description become powerless. For instance,
when strain softening of materials is treated as classical elasticity or elastoplasticity
problem, their finite-element solutions suffer from numerical instabilities and se-
vere mesh sensitivity (Pietruszczak and Mroz 1981; Bažant, Belytschko and Chang
1984; Sandler 1984; Frantziskonis and Desai 1987; de Borst, Sluys, Mühlhaus and
Pamin 1993; Chen, Wu and Belytschko 2000). In addition, the solutions become
physically unrealistic with increasing mesh refinement, since the energy dissipated
in the strain-softening domain tends to zero as the strain localizes into a single
element (Bažant 1976; Nemes and Spéciel 1996).

Four alternative approaches have been suggested in the literature to remedy the
above mentioned numerical deficiencies of the classical continuum model. These
so-called regularization techniques are generally based on the enrichment of the
classical continuum description with additional terms. One alternative is to utilize
the micropolar theory (or the more well known Cosserat theory) which considers an
additional material rotational degree of freedom independent from the displacement
field (Mindlin 1969; Chang and Ma 1990; Fleck and Hutchinson 1993; Steinmann
1994; Chang, Wang, Sluys and van Mier 2002a, b). A second alternative is to incor-
porate rate dependence or viscous effects within the constitutive models (Sandler
1984; Wu and Freund 1984; Needleman 1988; Sluys and de Borst 1992; Nemes
and Spéciel 1996). The third alternative is to use non-local theory proposed origi-
nally by Kroner (1967) and applied to strain-softening by Bažant, Belytschko and
Chang (1984) in which stresses and strains at a given point depend on a convolution
type integral accounting for the history of displacements in a finite neighborhood
about the point in question (Chen, Wu and Belytschko 2000; Murakami, Kendall,
and Valanis 1993; Valanis 1991; Bažant and Pijaudier-Cabot 1988; Belytschko,
Bažant, Hyun and Chang 1986; de Vree, Brekelmans and van Gils 1995).

The above three alternatives have been reported to have different capabilities to de-
scribe strain softening either in static or dynamic problems. A fourth alternative,
followed in this paper, is the addition of higher-order gradients in the system gov-
erning equations. Among the attractions of this approach are its simplicity as no ro-
tational degree of freedom or time effects are required, nor is there any dependence
on unknown ‘weak zones’ within the solid, and the difficult to determine influence
functions for the convolution integrals appearing in the classical non-local models
are avoided (Triantafyllidis and Bardenhagen 1993). In addition, this approach fol-
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lows strict locality in a mathematical sense (Peerlings, de Borst, Brekelmans and de
Vree 1996) and incorporates an inherent characteristic length scale that determines
the size of the localization zone. This type of models can be further divided into
two categories: (i) in which only the higher order strains are considered, and (ii)
the more rigorous type in which both higher-order strain and higher-order stress
gradients are considered.

The first type of gradient model has been widely used for: (i) investigating soft-
ening failure behavior in the context of plasticity (de Borst and Mühlhaus 1992;
Pamin 1994; de Borst, Pamin, Peerlings and Sluys 1995) and in the context of
elasticity (Peerlings, de Borst, Brekelmans and de Vree 1996; Altan and Aifantis
1997; Chang, Askes and Sluys 2002); and (ii) analyzing elastic wave propagation
(Sluys 1992; Sluys, de Borst and Mühlhaus 1993; Chang and Gao 1997; Chang,
Gao and Zhong 1998; Suiker, de Borst and Chang 2001a,b). Models with strain
gradients can overcome one of the major shortcomings in constitutive equations
for solids admitting localization of deformation at finite strains, i.e. their inability
to provide physically acceptable solutions to boundary value problems in the post-
localization range due to loss of ellipticity of the governing equations (Triantafyl-
lidis and Aifantis 1986). However, a peculiar characteristic of this type of models
is that the discrete tangent stiffness does not maintain positive definiteness result-
ing in the numerical difficulties associated with strain-softening (Chang, Askes and
Sluys 2002).

In contrast, the second type of gradient-enhanced model contains both the higher-
order strain and the higher-order stress terms. This type of model appears to un-
conditionally maintain the stability and, therefore, offers a more robust approach.
However, this approach has been rarely employed mainly because of its numer-
ical complexity. Chang, Askes and Sluys (2002) compared the performances of
the higher-order gradient models with and without higher-order stress for modeling
fracture behavior in the context of an infinitely long bar. They concluded that the
addition of higher-order stress terms results in stabilizing the positive definiteness
of the tangent stiffness moduli when entering the strain softening regime such that
physically significant solutions can be ensured and strain-softening phenomenon
can be realistically reproduced. The present work builds upon the success of this
higher-order stress-strain theory in dealing with one-dimensional strain softening
problem by Chang and coworkers (2002) and further develops the approach for
multi-dimensional simulation of localized failure process.

In this paper, we focus upon the derivation of a first-order theory that includes
the usual Cauchy stresses and strains termed as zeroth-order tensors in constitutive
model, and the first-order gradient of strain and its conjugated first-order stress. All
the formulations are derived using the tensor notations such that they can be readily
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applied to multi-dimensional analysis. We derive the higher-order constitutive laws
on the basis of a microstructural mechanics approach used for modeling granular
media (Chang and Gao 1995; Mühlhaus and Oka 1996; Suiker, de Borst and Chang
2001a,b). We postulate that a monolithic material can be represented as a granular
material with a certain material packing structure. The macroscopic material model
of this pseudo-granular material is obtained in terms of the microscopic material
properties. For simplicity, an isotopic granular packing structure is utilized. As a
result, first-order gradient damage constitutive models are derived such that a so-
called internal length scale, i.e. the particle radius, is incorporated directly into the
model to reflect the granularity of the underlying microstructure. We then derive
the governing equations and their weak form for this first-order gradient theory and
solve them using meshfree techniques.

Meshfree methods, such as the EFG (Belytschko, Lu and Gu 1994) method and
the Meshless Local Petrov-Galerkin (MLPG) method (Atluri, and Shen 2002) have
been used as an alternative to eliminate the mesh-subjectivity. The EFG method,
known to require a set of much looser topological background cells for numerical
integrations of the global weak form compared to FEM, has been demonstrated to
be quite successful in solving many challenging problems in solid mechanics, for
instance, static and dynamic crack growth modeling (Krysl and Belytschko 1997;
Belytschko and Tabbara 1996; Belytschko, Lu and Gu 1994, 1995; Belytschko,
Lu, Gu and Tabbara 1995; Belytschko, Gu and Lu 1994; Lu, Belytschko and Tab-
bara 1994). The MLPG method, in which the weak form of equilibrium equations
are based on a local sub-domains such that it involves neither elements for inter-
polation nor shadow meshes for integration, has also been applied widely to solid
mechanics problems (Atluri and Zhu 1998; Atluri, and Shen 2002), including to
the Toupin-Mindlin formulation of strain gradient theories in 2-D elasticity context
(Tang, Shen and Atluri 2003). However, there have been only few attempts to apply
the EFG or the MLPG method to gradient-enhanced continua with strain softening
(Askes, Pamin and de Borst 2000; Chang, Askes, Sluys 2002) or in the context of
plasticity (Pamin, Askes and de Borst 2001, 2003). Jirásek (1998) has investigated
the applicability of EFG method to strain softening problems and confirmed that
for regularized localization problems EFG method behaves in a manner superior to
finite element (FE) method in the description of continuous fields. From the view-
point of gradient-enhanced continuum theory developed in this paper, the EFG or
the MLPG method has an important advantage over classical FEM that the approx-
imation functions with high order of continuity needed for proper representation of
the higher-order derivatives can be readily incorporated into the formulation with-
out increasing the problem size (Askes, Pamin and de Borst 2000; Pamin, Askes
and de Borst 2003).
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Higher-Order Stress-Strain Theory for Damage Modeling 5

In the subsequent sections, we first derive the first-order constitutive equations that
incorporate an elastic damage law utilizing a discrete granular packing. We then
discuss the derivation of the system equilibrium equation based on an energy ap-
proach as well as the enforcement of essential boundary conditions using penalty
method. The EFG formulation is then presented, which includes a brief review of
the moving least square (MLS) approximation, the discretization and linearization
procedure to arrive at the final incremental form of the governing equation. Finally,
two examples in 2-D with different imperfections under displacement-controlled
uniaxial tension are numerically analyzed to demonstrate the applicability of the
proposed higher-order gradient model for modeling strain-softening behavior.

1 Higher-order stress/strain damage model

1.1 Damage law

Upon applying an isotropic damage law, the classical constitutive relation becomes
(Askes, Pamin, and de Borst 2000; Peerlings, de Borst, Brekelmans and de Vree
1996; de Vree, Brekelmans and van Gils 1995)

σ = (1−ω)Dε (1)

where ω is the so-called damage scalar quantity ranging from 0 for initial undam-
aged material to 1 when all material coherence is lost. D is the elastic moduli with
σ and ε the Cauchy stress tensor and the corresponding strain tensor, respectively.
For the example calculations in this paper, the damage state is governed by a linear
strain softening damage law through a scalar state variable, k, defined as the overall
effective strain. The effective strain, k, is determined by the square root of the sum-
mation of principle strains considering damage due to only tensile strains, which,
in 2-D, is given by the following equation

k =
√

(ε1)2 +(ε2)2 for ε1,ε2 > 0 (2)

where ε1 and ε2 are the principal strain components of strain ε =
[

ε11 ε12
ε12 ε22

]
.

The linear softening damage evolution function takes the form

ω(k) =

{
ku(k−k0)
k(ku−k0)

k0 ≤ k ≤ ku

1 k > ku
(3)

where k0 is the threshold of strain at which damage is initiated and ku is the strain
level at which all load carrying capacity is exhausted.
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1.2 Formulation of higher-order constitutive law using microstructural approach

A macroscopic continuum is postulated to have a granular microstructure consist-
ing of a set of interacting particles whose centroids represent material points as
depicted in Fig. 1. Under an applied load on a sample of such a material, the con-
ceptual grains may undergo translation or rotation. The relative displacement, δ i,
between two nearest neighbor particles n and p (see Fig. 1) (Chang and Misra 1990)
is given by

δi = un
i −up

i + ei jk(ωn
j rn

k −ω
p
j rp

k ) (4)

where ui =particle displacement; ω j =particle rotation; rk = vector joining the cen-
troid of particle to the contact point; superscripts refer to the interacting particles;
ei jk =the permutation symbols. Note that all subscripts follow the summation con-
vention of tensor unless stated otherwise.

ns

t

u p u n

ω n

ω p

 
Figure 1: Conceptual granular model of a continuum

The contact force f c
i between two particles may be related to the relative displace-
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ment δ c
j through the contact stiffness Kc

i j as

f c
i = Kc

i jδ
c
j (5)

with Kc
i j written in terms of the stiffness components in the normal direction Kn and

that in the tangential direction Kwas

Kc
i j = Kc

nnin j +Kc
w(sis j + tit j) (6)

where n,s, t are the unit base vectors of the local coordinate system constructed at
each contact as shown in Fig. 2. Vector n is normal to the contact plane and the
other two orthogonal vectors, s and t, are on the contact plane which are given by

n = cosγe1 + sinγ cosψe2 + sinγ sinψe3

s = dn
dγ

=−sinγe1 + cosγ cosψe2 + cosγ sinψe3

t = n× s =−sinψe2 + cosψe3

(7)

 

X

Y

ψ

γ

n

s

t

Z

Figure 2: Local coordinate system at an inter-particle contact

The strain energy density in a representative volume V can be written as

W =
1

2V

N

∑
c=1

f c
i δ

c
i (8)

with N refers to the total number of inter-particle contacts in the representative vol-
ume V . To develop a continuum model for the behavior of a particle assembly, it is
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desirable to equate the discrete displacement un
i of nth particle to the displacement

at the centroid of the nth particle, that is

ui(xn
i ) = un

i (9)

with xn
i the coordinate of centroid of the particlen.

Following the approach by Chang and Liao (1990), Taylor series expansions is used
for the displacement field. Thus, the displacement at particle n can be estimated
using the gradients at a reference point, x0, which is defined as the center of the
representative volume as follows:

ui(xn) = ui(x0)+ui, j(x0)x j +
1
2

ui, jk(x0)x jxk (10)

where the third-order derivatives and higher are neglected Ignoring the inter-particle
rotations, i.e. assuming a class of non-polar type of continua (Chang and Gao
1995), and substituting Eq. (10) into Eq. (4) we get

δ
c
i = ui(xn)−ui(xp) = ui, jLc

j +ui, jkJc
jk (11)

where the geometric quantities

Lc
j = xn

j − xp
j (12a)

Jc
jk =

1
2
(xn

jx
n
k− xp

j xp
k ) (12b)

Assuming a uniform particle radius r and the origin of local coordinates is located
at the pth particle, then Eqs. (12a)-(12b) are equivalent to

Lc
j = 2rnc

j (13a)

Jc
jk =

1
2

Lc
jL

c
k (13b)

Substituting Eqs. (5) and (11) into Eq. (8) yields

W =
1

2V

N

∑
c=1

(Kc
iqδ

c
q Lc

jui, j +Kc
iqδ

c
q Jc

jkui, jk) (14)

Let the strain measure ε be written as

ε
0
i j = ui, j ε

I
i jk = ui, jk (15)
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Higher-Order Stress-Strain Theory for Damage Modeling 9

Then the stress measures σ can be defined as

σ
0
i j =

∂W
∂ε0

i j
σ

I
i jk =

∂W
∂ε I

i jk
(16)

By combining Eqs. (11), (13a)-(16), following set of constitutive equations is
found:

σ
0
i j = Ci jqmε

o
qm +Bi jqmnε

I
qmn (17a)

σ
I
i jk = Bi jkqmε

0
qm +Di jkqmnε

I
qmn (17b)

where the constitutive tensors are expressed in terms of the fabric measures as

Ci jqm =
1

2V

N

∑
c=1

Lc
jK

c
iqLc

m (18a)

Bi jqmn =
1

4V

N

∑
c=1

Lc
jK

c
iqLc

mLc
n (18b)

Di jkqmn =
1

8V

N

∑
c=1

Lc
jL

c
kKc

iqLc
mLc

n (18c)

In the present study, only zeroth-order and first-order strains, ε0
i j, ε I

i jk and their
conjugate stresses, σ0

i j, σ I
i jk are considered. Assuming the central symmetry of

material, the constitutive tensor Bi jqmn=0 as stated by Chang, Askes, and Sluys
(2002), and the constitutive equations are further simplified to:

σ
0
i j = Ci jklε

0
kl (19a)

σ
1
i jq = Di jqklmε

1
klm (19b)

Since the representative volume consists of a large number of particles, a summa-
tion of any quantity over all particle contacts within the volume can be expressed in
an integral form by introducing a directional density function in terms of spherical
harmonic expansions which represents the discrete distribution of inter-granular in-
teractions in a continuum manner (Chang and Misra 1990). A truncated form of
spherical harmonic expansions is employed herein as

ξ (γ,ψ) =
1

4π
[1+

1
4

a20(3cos2γ +1)+3sin2
γ(a22 cos2ψ +b22 sin2ψ)] (20)

With the fabric parameters a20,a22 and b22 determining the anisotropy of the ma-
terial. For a suitably large representative volume with a large number of contacts,
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recalling Eq. (13a), the summation in Eqs. (18a) and (18c) may be recast into
integral forms as

Ci jkl =
2r2N

V

∫
Ω

nc
jK

c
iknc

l ξ (γ,ψ)dΩ (21a)

Di jqklm =
2r4N

V

∫
Ω

nc
jn

c
qKc

iknc
l nc

mξ (γ,ψ)dΩ (21b)

where the integration
∫

Ω
( )dΩ =

2π∫
0

π∫
0

( )sinγdγdψ; and Nξ (γ,ψ)dΩ= the num-

ber of contacts in the interval Ω to Ω + dΩ. Considering the symmetry of the
higher-order stress and strain tensors, the fourth-rank and sixth-rank constitutive
tensors have to satisfy the following symmetries

Ci jkl = Ckli j (22)

Di jqklm = Dklmi jq (23)

Appendix A gives the closed form expressions for the constitutive coefficients of an
isotropic material in terms of the Young’s modulus, Poisson’s ratio and the particle
size.

In a damage context we assume that all constitutive coefficients are pre-multiplied
with the same factor (1−ω) such that a nonlinear higher-order constitutive damage
model can be obtained as:

σ
0
iq = (1−ω)Ciqklε

0
kl (24a)

σ
1
i jq = (1−ω)Di jqklmε

1
klm (24b)

2 Derivation of system equilibrium equation

2.1 Energy functional and weak form

Following the framework for strain-gradient theory (Fleck and Hutchinson 1997),
the strain potential energy density with higher-order stress can be expressed as

W =
∫

ε0
σ

0
iqdε

0
iq +

∫
ε1

σ
1
i jqdε

1
i jq (25)

To proceed, we substitute the damage constitutive relations from Eqs. (24a) and
(24b) into Eq. (25) and make use of integration by parts for the higher-order term
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Higher-Order Stress-Strain Theory for Damage Modeling 11

while ignoring the boundary terms such that the final form of the energy functional
can be recast as

W =
∫

ε0
(1−ω)Ciqklε

0
kldε

0
iq−

∫
ε0

(1−ω)Di jqklr
∂ 2εkl0

∂xr∂x j
dε

0
iq

+
∫

ε0

∂ω

∂εmn0

∂εmn0

∂x j
Di jqklr

∂ε0
kl

∂xr
dε

0
iq (26)

where the substitution ε I
i jq = ∂ε0

iq/∂x j has been used. Stationarity of the poten-
tial energy is investigated by minimizing Eq. (26) which results in the following
nonlinear equilibrium equation in terms of displacement gradients:

(1−ω)[Ciqkl
∂ 2uk

∂xq∂xl
−Di jqklr

∂ 4uk

∂xr∂x j∂xq∂xl
]

− ∂ω

∂ε0
mn

∂ 2um

∂xq∂xn
[Ciqkl

∂uk

∂xl
−Di jqklr

∂ 3uk

∂xr∂x j∂xl
]

+
∂ω

∂ε0
mn

Di jqklr[
∂ 3um

∂x j∂xq∂xn

∂ 2uk

∂xr∂xl
+

∂ 2um

∂x j∂xn

∂ 3uk

∂xr∂xq∂xl
] = 0 (27)

Next, Galerkin method is utilized to derive the weak form equilibrium equation.
Pre-multiplying Eq. (27) by a test function δui and integrating over the 2-D domain
Ω, the weak form governing equation is obtained as∫

Ω

∂δui

∂xq
(1−ω)Ciqkl

∂uk

∂xl
dxdy+

∫
Ω

∂ 2δui

∂xq∂x j
(1−ω)Di jqklr

∂ 2uk

∂xr∂xl
dxdy

=
∫

Γt

∂δui

∂xq
σ

1
i jqn jdΓ+

∫
Γt

δui(σ0
iq−

∂σ1
i jq

∂x j
)nqdΓ (28)

Appendix B gives the details of the above derivation. The right-hand side of Eq.(28)
includes boundary integrals representing the boundary conditions. According to
Reddy (2005), terms corresponding to the test function in the boundary integrals
are determined as the essential boundary conditions, while their coefficients form
the natural boundary conditions. Thus, the boundary conditions for this higher-
order equilibrium system can be stated as

Essential b.c.: ui specified, ui,q specified (29a)

Natural b.c.: σ
0
iq−

∂σ1
i jq

∂x j
specified, σ

1
i jq specified (29b)

Note that though boundary conditions have been distinguished, the physical sig-
nificance of the natural boundary conditions resulting from higher-order stresses
remains an open question.
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2.2 Enforcement of essential boundary conditions using penalty method

The natural boundary conditions (or traction boundary conditions) have been in-
cluded into the weak form equilibrium equation via integration by parts. However,
the essential boundary conditions (or displacement boundary conditions) have not
yet been treated in the formulation. Moreover, the MLS approximations used latter
in EFG discretizaiton do not bear the Kronecker delta function property. There-
fore, the essential boundary conditions have to be imposed separately via special
techniques, such as the Lagrange multiplier method and the penalty method. How-
ever, it is well-known that the Lagrange multiplier method increases the number
of field variables and the resultant dimensions of the system matrix such that the
computational costs are unavoidably raised. In addition, the Lagrange multiplier
method results in a loss of the positive-definiteness of system matrix. In contrast,
the penalty method offers a more efficient way to impose the essential boundary
conditions without increasing the number of unknowns provided an appropriate
large penalty coefficient is utilized. Zhu and Atluri (1998) have presented a penalty
formulation of the EFG method which was verified through two benchmark closed-
form problems, namely a cantilever beam and an infinite plate with a circular hole.
Their results indicated that the penalty method yields a banded, symmetric and
positive definite system matrix and does not exhibit any volumetric locking while
retaining high rates of convergence for both displacements and strain energy. The
constrained higher-order Galerkin weak form (Eq. (28)) using penalty method is
posed as follows (Liu and Gu 2005):

∫
Ω

∂δui

∂xq
(1−ω)Ciqkl

∂uk

∂xl
dxdy+

∫
Ω

∂ 2δui

∂xq∂x j
(1−ω)Di jqklr

∂ 2uk

∂xr∂xl
dxdy

−
∫

Γt

∂δui

∂xq
σ

1
i jqn jdΓ−

∫
Γt

δui(σ0
iq−

∂σ1
i jq

∂x j
)nqdΓ

− 1
2

∫
Γu

δ [(ui− ūi)T
α(ui− ūi)]dΓ = 0 (30)

where ūi is the prescribed displacement vector; α is the penalty coefficient which is
often a large positive number and is determined herein by 106 times the maximum
diagonal element of the global stiffness matrix K. In Eq. (30), the higher-order
essential boundary conditions are ignored for the sake of simplicity, though it could
be included in an obvious and straightforward manner. Considering that

1
2

∫
Γu

δ [(ui− ūi)T
α(ui− ūi)]dΓ =

∫
Γu

δuT
i αuidΓ−

∫
Γu

δuT
i α ūidΓ (31)
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Higher-Order Stress-Strain Theory for Damage Modeling 13

Eq.(30) can be recast as∫
Ω

∂δui

∂xq
(1−ω)Ciqkl

∂uk

∂xl
dxdy+

∫
Ω

∂ 2δui

∂xq∂x j
(1−ω)Di jqklr

∂ 2uk

∂xr∂xl
dxdy

−
∫

Γu

δuT
i αuidΓ =

∫
Γt

∂δui

∂xq
σ

1
i jqn jdΓ+

∫
Γt

δui(σ0
iq−

∂σ1
i jq

∂x j
)nqdΓ

−
∫

Γu

δuT
i α ūidΓ = 0 (32)

3 Element-free Galerkin Formulation

3.1 MLS approximation

The essential idea for EFG method is that MLS interpolants are used for the trail
and test functions with a variational principle. To use MLS, it is only necessary to
construct a set of nodes in the problem domain without any elements. The connec-
tivity between field nodes is satisfied via the overlapping of the domain of influence
of sampling node in which its shape function is nonzero. The domain of influence
of each field node is controlled by a weight function wi(x) which is the product of
standard 1D weight functions in x and y directions for 2-D case expressed as

wi(x) = wix(x) ·wiy(x) (33)

In this study, a cubic spline is used as the weight function and the domain of in-
fluence is set to be rectangular with dimensiondsx and dsy which are determined by
a dimensionless parameter β and the nodal spacing dcx and dcy in each direction
respectively. For instance, the weight function in x direction takes the following
form

wix(x) =


2/3−4r̄2

ix +4r̄3
ix r̄ix ≤ 0.5

4/3−4r̄ix +4r̄2
ix−4/3r̄3

ix 0.5 < r̄ix ≤ 1
0 r̄ix > 1

(34)

where r̄ix = |x−xi|
dsx

, dsx = βdcx (with β = 3) and |x− xi| is the distance from node xi

to the sampling point x.

The MLS approximation uh(x) for displacement field function u(x) at x is defined
as

uh(x) = Φ
T (x)Us (35)

where Us is the vector collecting the nodal parameters of displacement field for all
the nodes within the influence domain; ΦT (x) is the vector of MLS shape functions
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corresponding to n nodes in the influence domain of the sampling point x, written
as

Φ
T (x) = {ϕ1(x) ϕ2(x) · · · ϕn(x)}1×n = pT (x)A−1(x)B(x) (36)

where the polynomial base vector p takes the quadratic form as

pT (x) = [1 x y x2 xy y2] (37)

and the matrix A(x) and vector B(x) are given as

A(x) =
n

∑
i=1

wi(x)p(xi)pT (xi) (38)

B(x) = [w1(x)p(x1) w2(x)p(x2) . . . wn(x)p(xn)] (39)

3.2 Discretization and Linearization

The trial function and test function are discretized according to:

ui = ϕipup δui = ϕipδup. (40)

In which ϕip is the MLS shape function and up is the nodal parameter of displace-
ment field for all nodes in the influence domain. Substituting Eq. (40) into the
weak form Eq. (32) and canceling out δup because of its arbitrariness yields the
following global discretized system equation

[Kps +Kα
ps]us = Fp +Fα

p (41)

where superscript α represents the resultants from penalty terms. Global stiffness
tensors Kps, Kα

ps and global force tensors Fp, Fα
p are given as

Kps =
∫

Ω

∂ϕT
ip

∂xq
(1−ω)Ciqkl

∂ϕks

∂xl
dxdy+

∫
Ω

∂ 2ϕT
ip

∂xq∂x j
(1−ω)Di jqklr

∂ 2ϕks

∂xr∂xl
dxdy (42)

Kα
ps =−

∫
Γu

ϕ
T
ip

αϕisdΓ (43)

Fp =
∫

Γt

∂ϕT
ip

∂xq
σ

1
i jqn jdΓ+

∫
Γt

ϕ
T
ip
(σ0

iq−
∂σ1

i jq

∂x j
)nqdΓ (44)

Fα
p =−

∫
Γu

ϕ
T
ip

α ūidΓ (45)
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In order to obtain the incremental form of system Eq. (41), we define a residual
force Rp as the difference between internal force (Kps + Kα

ps)us and external force
Fp + Fα

p . Taylor series expansion of the residual force is then utilized to perform
the linearization given by

Rp = Rp(u(r−1))+(
∂Rp

∂us
)(r−1)

∆u(r)
s +

1
2
(
∂ 2Rp

∂u2
s

)(r−1)(∆u(r)
s )2 · · ·= 0 (46)

where ∆u(r) is the increment and superscripts within parentheses refer to the itera-
tion step. Thus the solution of Eq. (41) at the rth iteration can be written in terms
of the solution for the (r−1)th iteration as follows

u(r) = u(r−1) +∆u(r) (47)

When second-order derivatives and higher in Eq. (46) are neglected, we obtain

(
∂Rp

∂us
)(r−1)

∆u(r)
s = Fp +Fα

p − (K(r−1)
ps +Kα(r−1)

ps )u(r−1)
s (48)

Defining tangent stiffness as Tps = ∂Rp
∂us

yields

Tps =
n

∑
m=1

∂ (Kpm +Kα
pm)

∂us
um +(Kps +Kα

ps) (49)

Inserting Eq. (42) and Eq. (43) into Eq. (49), the resultant tangent stiffness tensor
is obtained as

Tps =
∫

Ω

∂ϕT
ip

∂xq
(1−ω)Ciqkl

∂ϕks

∂xl
dxdy+

∫
Ω

∂ 2ϕT
ip

∂xq∂x j
(1−ω)Di jqklr

∂ 2ϕks

∂xr∂xl
dxdy

−
∫

Γu

ϕ
T
ip

αϕisdΓ−
∫

Ω

∂ϕT
ip

∂xq

∂ω

∂ε0
ab

∂ϕas

∂xb
Ciqklε

0
kldxdy

−
∫

Ω

∂ 2ϕT
ip

∂xq∂x j

∂ω

∂ε0
ab

∂ϕas

∂xb
Di jqklr

∂ε0
kl

∂xr
dxdy (50)

Finally, the incremental system equilibrium equation becomes

T (r−1)
ps ∆u(r)

s = Fp +Fα
p − (K(r−1)

ps +Kα(r−1)
ps )u(r−1)

s (51)
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4 Numerical example

A majority of published work on the simulation of strain softening using higher-
order gradient models employ a one-dimensional bar model under uniaxial tension
which has an imperfection in the middle to trigger the localization(de Borst, Pamin,
Peerlings and Sluys 1995; Peerlings, de Borst, Brekelmans and de Vree 1996;
Chang, Askes and Sluys 2002). To validate the applicability of the higher-order
stress/strain models implemented in an EFG formulation for simulating multi-dimen-
sional problems, we have presented two examples of 2-D models with different
types of imperfections.

 

y

ux4
2m

m

45mm 10mm 45mm

Figure 3: Plate with an imperfect zone parallel to a section – geometry and loading
conditions

4.1 Example 1 – Plate with an imperfect zone parallel to a section

We consider a rectangular 2-D domain (length=100mm, width=42mm) subjected
to a uniaxial tension via an incrementally imposed displacement ∆u=0.0025mm at
the right end while the left end is fixed at the upper and lower vertices and the
center point with hinged joint as shown in Fig. 3. To initiate a localization band,
a 10mm wide imperfection zone, shown as the hatched area in Fig. 3, is consid-
ered along the center section of the domain. Such an imperfection would represent
the inter-granular glassy films often observed in ceramic materials (Misra, Ouyang,
Chen and Ching 2007). The imperfection is characterized by a 10% reduction of
material property in terms of Young’s modulus which is taken as E=2×104N/mm2

for the plate material. Poisson’s ratio is taken as ν=0.25, and the damage evo-
lution parameters are given as k0=10−4 and ku=0.0125. A 33×13 uniform nodal
layout is used for obtaining the solutions for this problem. In addition, 14×8 rect-
angular background cells with four-point integration rule are used to integrate the
stiffness coefficient. The internal length scale parameter is taken asr=1.5mm. The
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incremental displacement is imposed in thirteen stages until the plate completely
fractures.

4.1.1 Example 1 – Evolution of damage and strain localization

Fig. 4 shows the computed contours of axial strain ε11 and stress σ11 in horizon-
tal direction (x direction) at three stages, namely, pre-peak, peak and failure stages.
The three stages correspond to the overall stretch u=0.01, 0.0125, 0.0325mm. In the
pre-peak nonlinear stage shown in Fig. 4(a), the imperfection has triggered dam-
age development in the central zone such that it enters strain softening mode lead-
ing to a primitive localization band. At this stage, the strain in the region outside
the imperfection is strictly uniform and remains unchanged during the subsequent
loading. This is also reflected in the stress contour in the right column of Fig. 4(a)
where a distinct weak zone of ∼7mm width appears. Upon further loading, the
strain localization band expands to ∼20mm wide at peak stress as shown in Fig.
4(b). Subsequently, the width of the softening band remains constant until the final
rupture shown in Fig. 4(c). We observe from the stress contour in Fig. 4(c) that
the axial stress σ11 in the weak zone reduces by about 17% compared to the peak
stress revealing an unloading phenomenon.

The contours of strain ε22 and stress σ22 corresponding to the previous three stages
are plotted in Fig. 5. As the damage develops in the central zone, lateral strain
ε22 localizes as well beginning from the outer edge of the plate. This behavior
is expected as the material contracts laterally when the imperfection experiences
increasing tensile strains in the horizontal direction. Naturally, the free edges un-
dergo larger contraction than the internal locations, such that the structure retains
a partial load carrying capacity until the last stage shown in the Fig. 5(c). Thus,
the lateral strain localization forms two separate weak zones at the upper and lower
edges of the imperfection that progress inwards.

Fig. 6 plots the development of the overall effective strain and stress contours at
the peak and failure stages. The overall effective strain is obtained according to
Eq. (2) which is defined as the square root of the summation of the principle strain
components. Similarly, the overall effective stress σ̄ can be calculated according to

σ̄ =
√

(σ1)2 +(σ2)2 (52)

where σ1 and σ2 are the principle stress components of stress σ =
[

σ11 σ12
σ12 σ22

]
.

Note for simplification purpose, the overall effective strain and stress in Fig. 6
are marked as ε and σ respectively. From Fig. 6(b) we can observe a distinct
localization band with width of about 20mm.
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Figure 4: Evolution of axial strain ε11 and stress σ11 contours at three stages: (a)
pre-peak stage, part of nonlinear (b) peak stage, nonlinear (c) post-peak failure
stage, nonlinear.
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Figure 5: Evolution of axial strain ε22 and stress σ22 contours at three stages: (a)
pre-peak stage, part of nonlinear (b) peak stage, nonlinear (c) post-peak failure
stage, nonlinear.
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Figure 6: Evolution of the overall effective strain ε and stress σ contours at (a)
peak stage, nonlinear (b) post-peak failure stage, nonlinear.
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Figure 7: Evolution of higher-order strain ε111 and higher-order stress σ111 con-
tours at (a) peak stage, nonlinear (d) post-peak failure stage, nonlinear.
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Fig. 7 gives the contours of the higher-order strain ε111 and conjugated higher-
order stress σ111 corresponding to the gradients of the horizontal strain ε11 and
stress σ11 with respect to x direction at the peak and failure stages respectively. At
the initial stage of loading the higher-order strain are negligible. However as the
strains localize within the imperfection, strain gradients develop in their proximity.
At peak axial stress stage, two strain gradient bands with mirror symmetry form on
the either side of the imperfection as shown in Fig. 7(a). At failure, shown in Fig.
7(b), bands of large strain gradients are present in the immediate neighborhood of
the rupture while the rest of the material experiences zero strain gradients which
are consistent with the strain and stress profiles shown in Fig. 4(c).

Similarly, the contours of the higher-order strain ε222 and higher-order stress σ222
corresponding to the gradients of the vertical strain and stress are plotted in Fig. 8
at the peak and failure stages.

Fig. 9 further illustrates the details of the evolution of damage and strain local-
ization by plotting the damage function, ω (Fig. 9(a)), and axial strain, ε11(Fig.
9(b)), along the horizontal central axis over all the loading steps. We note from
these figures that as the damage is initiated a localized strain zone begins to emerge
within the imperfection. This localized zone grows till we reach the peak stress.
Beyond peak stress the localization zone is confined to an unchanging narrow band
as shown in Fig. 9(b).

4.1.2 Example 1 – Discretization independency

To validate the mesh objectivity of the proposed higher-order gradient model, re-
sults from two different discretizations consisting of 33×13 nodes and 41×15
nodes were compared. All other parameters are kept same as that described in
the previous section. Fig. 10 shows the computed damage profile along the hori-
zontal central axis at rapture for the two discretizations. We note that a constant
damage width and nearly identical solutions are obtained upon mesh refinement,
indicating that the solutions from current method are independent of dicretization
size.

4.1.3 Example 1 – Effect of internal length scale parameter

The effect of internal length scale parameter r on softening behavior of the beam
can be observed from the damage profiles in Fig. 11 for three different r=1.5mm,
2mm and 3mm, respectively. With the increase of internal length parameter, the
localization zone becomes wider which illustrates that the width of localization
band is directly governed by the internal length scale as has been widely reported
by researchers, such as, Pamin (1994), de Borst and Sluys (1991) and Chang, Askes
and Sluys (2002).

chris
Font monospazio
21



22 Copyright © 2010 Tech Science Press CMES, vol.64, no.1, pp.1-36, 2010

 

ε222

0 20 40 60 80 100
-20

0

20

σ222

0 20 40 60 80 100
-20

0

20

(a)

ε222

0 20 40 60 80 100
-20

0

20

σ222

0 20 40 60 80 100
-20

0

20

(b)

 

mm-1

-2 -1 0 1 2

x 10
-5

 

MPa/mm
-0.05 0 0.05

Figure 8: Evolution of higher-order strain ε222 and higher-order stress σ222 con-
tours at (a) peak stage, nonlinear (d) post-peak failure stage, nonlinear.
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 Figure 9: Evolution of (a) damage ω and (b) axial strain ε11 along the horizontal
central axis over all the loading steps (33×13 nodes, ν=0.25, r=1.5mm)
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0

0.2

0.4

0.6

0.8

1

0 25 50 75 100
x [mm]

da
m

ag
e 

[-
]

r=1.5mm
r=2mm
r=3mm

Figure 11: Comparison of damage profile along the horizontal central axis of the
plate model for three different values of r.
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4.2 Example 2 – Plate with an internal imperfection

Example 1 considered that the imperfection zone is located along the entire section
of the plate such that the tensile deformation dominates the fracture process. In
example 2, the formation of shear band is investigated originating from an internal
square imperfection of side=10mm, placed at the center of the plate as shown in
Fig.12. All the other parameters and material properties are taken to be the same as
that for example 1. The boundary conditions are also imposed in the same manner
as in example 1.

Fig.13 shows the contours of the overall effective strain and the effective stress
corresponding to the peak-stress stage and failure stage. At the initial stages of
loading, the strain/stress fields are uniformly distributed and strain gradients are
absent. At peak-stress stage, an ‘x’ shaped shear band emerges as shown in Fig.
13(a) which grows in magnitude until failure as shown in Fig. 13(b).

u

4
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m

1
0m

m
1
6m

m

10mm

45mm 45mm

x

y

 

Figure 12: Plate model with an internal imperfection – geometry and loading con-
ditions.

Figs. 14 and 15 show the contours of the overall effective higher-order strain gra-
dients as well as the conjugates of stress gradients with respect to x and y direction
respectively.

5 Summary

This paper has presented a higher order stress-strain theory for damage modeling
of strain softening materials. In comparison to other gradient theories, the pre-
sented higher order theory considers strain gradients and their conjugate higher-
order stress. The main contributions of this paper can be summarized as follows:
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Figure 13: Evolution of the overall effective strain ε and stress σ contours at (a)
peak stage, nonlinear (b) post-peak failure stage, nonlinear.

• Derivation of constitutive coefficients for higher-order stress-strain law using
a granular media approach that connects the local inter-granular properties
and particle size to the macroscopic properties.

• Derivation of the governing equations and their weak form for the higher-
order theory in a tensorial form for application to multi-dimensional prob-
lems.

• Implementation of the derived theory into a mesh free EFG formulation for
the discretization of the governing equations.

• Linearization of the derived discrete equations for numerical simulations.

Since, the constitutive coefficients are derived by considering the underlying phys-
ical configuration of the material the internal length scale parameter is naturally in-
corporated. This length scale parameter acts as a localization limiter in the numeri-
cal solutions as has been previously discussed by Larsy and Belytschko (1988). The
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Figure 14: Evolution of the overall effective first-order strain gradient and conju-
gate stress gradient contours in x-direction at (a) peak stage, nonlinear (b) post-peak
failure stage, nonlinear.

higher-order gradient models are discretized via EFG method combining penalty
method for the enforcement of essential boundary conditions. The discrete equa-
tions are then linearized using Talyor series expansions. The EFG method offers the
advantage of incorporating approximation functions with high order of continuity
without increasing the problem size.

Two examples of 2-D plates with different imperfections have been numerically
analyzed to verify the applicability of the derived model to strain localization. The
proposed model can realistically capture the damage process with strain softening
phenomenon. Mesh-objectivity is also achieved through the addition of higher-
order gradient terms and the use of EFG method. The effect of the internal length
scale parameter on the size of the localization band has also been studied. Sta-
ble and converged results were obtained for the examples presented in this paper.
In our future studies, we will further evaluate the effects of internal length scale
parameter on the stability of this approach. We will also apply this approach to
investigate the similarities between the predicted strains and strain gradient fields
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Figure 15: Evolution of the overall effective first-order strain gradient and conju-
gate stress gradient contours in y-direction at (a) peak stage, nonlinear (b) post-peak
failure stage, nonlinear.

and those observed in experiments or atomic simulations performed on brittle ma-
terials, such as ceramics and geomaterials. The proposed higher-order theory will
also be implemented into the MLPG discretization in the future work.
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Appendix A. Higher-order constitutive constants of isotropic packing struc-
ture

We consider a material with an isotropic underlying structure whose fabric param-
eters are taken as a20 = a22 = b22 = 0. Under infinitesimal initial strain, material
properties can be represented by two constants, i.e. Young’s modulus E and Pois-
son’s ratio ν , and the following relations between material properties and compo-
nents of contact stiffness can be derived (Chang and Misra (1990); Chang and Gao
(1995)):

E = a
(

Kn(2Kn +3Kw)
3(4Kn +Kw)

)
(A.1)
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ν =
Kn−Kw

4Kn +Kw
(A.2)

with a = 2r2N/V representing the density of the packing structure.

Eqs.(A.1) and (A.2) can be rearranged to give

Kn =
3E

a(1−2ν)
(A.3)

Kw =
3E(1−4ν)

a(1−2ν)(1+ν)
(A.4)

Substituting Eqs.(6), (7) and (20) into (21a) and integrating we arrive at the zeroth-
order constitutive constants, Ci jkl , as

C1111 =
a
15

(3Kn +2Kw) (A.5)

C1122 =
a
15

(Kn−Kw) (A.6)

C1212 +C1221 =
a
15

(
Kn +

3
2

Kw

)
(A.7)

And for this case, the following identities for zeroth-order elastic moduli hold:

C1111 = C2222 (A.8)

C1122 = C2211 (A.9)

C1212 = C2121 (A.10)

Inserting Eqs.(A.3) and (A.4) into Eqs.(A.5)-(A.7), the zeroth-order constitutive
coefficients can be related to E and ν to recover the usual relations of isotropic
elastic tensor.

C1111 =
E(1−ν)

(1−2ν)(1+ν)
(A.11)

C1122 =
Eν

(1−2ν)(1+ν)
(A.12)

1
2

(C1212 +C1221) =
E

2(1+ν)
(A.13)

By combing Eqs. (6), (7), (20), (21b), (A.3) and (A.4) and using a similar algebra,
the components of first-order constitutive constants Di jqklm can be obtained as

D111111 =
3r2E(7−3ν)

35(1−2ν)(1+ν)
(A.14)

chris
Font monospazio
33



34 Copyright © 2010 Tech Science Press CMES, vol.64, no.1, pp.1-36, 2010

D111122 =
r2E(7−13ν)

35(1−2ν)(1+ν)
(A.15)

D111212 =
3r2Eν

7(1−2ν)(1+ν)
(A.16)

D122122 =
3r2E(7−23ν)

35(1−2ν)(1+ν)
(A.17)

where the following relations hold

D111111 = D222222 (A.18)

D111122 = D112112 = D112121 = D121121 = D211222 = D212212 = D212221 = D221221

(A.19)

D111212 = D111221 = D112211 = D112222 = D121211 = D121222 = D122212 = D122221

(A.20)

D122122 = D211211 (A.21)

The other elements of Ci jkl and Di jqklm are all zero. Note that (1) Eqs.(A.3) and
(A.4) provide a useful method for estimating the high-order constitutive constants
directly from the Young’s modulus and Poisson’s ratio without explicitly knowing
the numerical values of either the number of contacts N or the representative vol-
ume V ; and (2) the derived higher-order constitutive coefficients explicitly depend
upon the particle radius, r, which functions as a internal length scale parameter.

Appendix B Weak form derivation

To derive the weak form equilibrium equation from Eq. (27) we pre-multiply by
test function, δui, and integrate over the 2-D domain Ω as

∫
Ω

δui{(1−ω)(Ciqkl
∂ 2uk

∂xq∂xl
−Di jqklr

∂ 4uk

∂xr∂x j∂xq∂xl
)

− ∂ω

∂ε0
mn

∂ 2um

∂xq∂xn
(Ciqkl

∂uk

∂xl
−Di jqklr

∂ 3uk

∂xr∂x j∂xl
)

+
∂ω

∂ε0
mn

(
∂ 3um

∂x j∂xq∂xn
Di jqklr

∂ 2uk

∂xr∂xl
+

∂ 2um

∂x j∂xn
Di jqklr

∂ 3uk

∂xr∂xq∂xl
)}dΩ = 0 (B.1)
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The above integration is evaluated through integration by parts as follows:∫
Ω

δui(1−ω)Ciqkl
∂ 2uk

∂xq∂xl
dΩ =

∫
Γt

δui(1−ω)Ciqkl
∂uk

∂xl
nqdΓ

−
∫

Ω

∂δui

∂xq
(1−ω)Ciqkl

∂uk

∂xl
dxdy+

∫
Ω

δui
∂ω

∂ε0
mn

∂ε0
mn

∂xq
Ciqkl

∂uk

∂xl
dxdy (B.2)

and∫
Ω

δui(1−ω)Di jqklr
∂ 4uk

∂xr∂x j∂xq∂xl
dΩ =

∫
Γt

δui(1−ω)Di jqklr
∂ 3uk

∂xr∂x j∂xl
nqdΓ−∫

Ω

(
∂δui

∂xq
(1−ω)Di jqklr

∂ 3uk

∂xr∂x j∂xl
+δui

∂ω

∂ε0
mn

∂ε0
mn

∂xq
Di jqklr

∂ 3uk

∂xr∂x j∂xl
)dxdy

(B.3)

Substituting Eqs.(B.2) and (B.3) into Eq.(B.1) and using some algebra we get∫
Ω

∂δui

∂xq
(1−ω)(Ciqkl

∂uk

∂xl
−Di jqklr

∂ 3uk

∂xr∂x j∂xl
)dxdy−∫

Ω

δui
∂ω

∂ε0
mn

Di jqklr(
∂ 3um

∂x j∂xq∂xn

∂ 2uk

∂xr∂xl
+

∂ 2um

∂x j∂xn

∂ 3uk

∂xr∂xq∂xl
)dxdy

=
∫

Γt

δui(1−ω)(Ciqkl
∂uk

∂xl
−Di jqklr

∂ 3uk

∂xr∂x j∂xl
)nqdΓ (B.4)

Further integration by parts is carried out for the higher-order integrals in Eq.(B.4)
as∫

Ω

∂δui

∂xq
(1−ω)Di jqklr

∂ 3uk

∂xr∂x j∂xl
dxdy =

∫
Γt

∂δui

∂xq
(1−ω)Di jqklr

∂ 2uk

∂xr∂xl
n jdΓ

−
∫

Ω

∂ 2δui

∂xq∂x j
(1−ω)Di jqklr

∂ 2uk

∂xr∂xl
dxdy

+
∫

Ω

∂δui

∂xq

∂ω

∂ε0
mn

∂ 2um

∂x j∂xn
Di jqklr

∂ 2uk

∂xr∂xl
dxdy (B.5)

and∫
Ω

δui
∂ω

∂ε0
mn

Di jqklr
∂ 2um

∂x j∂xn

∂ 3uk

∂xr∂xq∂xl
dxdy =∫

Γt

δui
∂ω

∂ε0
mn

Di jqklr
∂ 2um

∂x j∂xn

∂ 2uk

∂xr∂xl
nqdΓ−

∫
Ω

(
∂δui

∂xq

∂ 2um

∂x j∂xn

∂ 2uk

∂xr∂xl

+ δui
∂ 3um

∂x j∂xn∂xq

∂ 2uk

∂xr∂xl
)Di jqklr

∂ω

∂ε0
mn

dxdy (B.6)
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Inserting Eqs.(B.5) and (B.6) into Eq.(B.4), the weak form can be written as

∫
Ω

∂δui

∂xq
(1−ω)Ciqkl

∂uk

∂xl
dxdy+

∫
Ω

∂ 2δui

∂xq∂x j
(1−ω)Di jqklr

∂ 2uk

∂xr∂xl
dxdy

=
∫

Γt

∂δui

∂xq
(1−ω)Di jqklr

∂ 2uk

∂xr∂xl
n jdΓ

+
∫

Γt

δui(1−ω)(Ciqkl
∂uk

∂xl
−Di jqklr

∂ 3uk

∂xr∂x j∂xl
)nqdΓ

+
∫

Γt

δui
∂ω

∂ε0
mn

Di jqklr
∂ 2um

∂x j∂xn

∂ 2uk

∂xr∂xl
nqdΓ (B.7)

Because
σ0

iq = (1−ω)Ciqklε
0
kl = (1−ω)Ciqkl

∂uk
∂xl

σ1
i jq = (1−ω)Di jqklrε

1
klr = (1−ω)Di jqklr

∂ 2uk
∂xl∂xr

∂σ1
i jq

∂x j
= (1−ω)Di jqklr

∂ 3uk
∂xl∂xr∂x j

− ∂ω

∂ε0
mn

∂ 2um
∂xn∂x j

Di jqklr
∂ 2uk

∂xl∂xr

(B.8)

Eq.(B.7) can be recast to the final weak form equilibrium equation as

∫
Ω

∂δui

∂xq
(1−ω)Ciqkl

∂uk

∂xl
dxdy+

∫
Ω

∂ 2δui

∂xq∂x j
(1−ω)Di jqklr

∂ 2uk

∂xr∂xl
dxdy

=
∫

Γt

∂δui

∂xq
σ

1
i jqn jdΓ+

∫
Γt

δui(σ0
iq−

∂σ1
i jq

∂x j
)nqdΓ (B.9)
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