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Abstract

This paper is devoted to assess the impact of quadrivalent Hman Papillomavirus (HPV) vaccine
on prevalence of non-oncogenic HPV 6/11 types in French makand females. For this purpose, a
non-linear dynamic model of heterosexual transmission foHPV 6/11 types infection is developed,
which accounts for immunity due to vaccination in particular. The vaccinated reproduction number
Ry is derived using the approach described by Diekmann (2010)adled the Next Generation Operator
approach. The model proposed is analyzed, with regard to egtence and uniqueness of the solution,
steady-state stability. Precisely, the stability of the model is investigated depending on the sign of
Ry 1. Prevalence data are used to t a numerical HPV model, so as toassess infection rates. Our
approach suggests that 10 years after introducting vaccin@on, the prevalence of HPV 6/11 types in
females will be halved and that in males will be reduced by onguarter, assuming a sustained vaccine
coverage of 30% among females. Using the formula we deriveakfthe vaccinated reproduction number,
we show that the non-oncogenic HPV 6/11 types would be eradiated if vaccine coverage in females
is kept above 12%. Human Papillomavirus, deterministic epilemic model, equilibrium, stability,
reproduction number, vaccination.

1 Introduction

Human Papillomavirus (HPV) is the most common sexually transmitted infection. At least 70 per cent of
sexually active people acquire HPV infection at some pointri their lives (Syrjanen et al., 1990). Nearly
one hundred HPV genotypes have been identi ed, among whichhere are low risk genotypes, causing
benign anogenital lesions, and high risk genotypes, whicmiluce pre-cancerous lesions in the cervix. Epi-
demiological studies on HPV infections establish the role fathese viruses as the primary cause of cervical
cancer (Mufioz, 2000). These infections are also the cause afogenital cancers, head and neck cancers,
anogenital warts and recurrent respiratory papillomatoss among women and men. While HPV 16/18
are incriminated in 70% of cervical cancer, HPV 6/11 are the pmary cause of almost (90%) all geni-
tal warts and of most respiratory recurrent papillomatosis cases (Gissmaret al., 1983). While available
epidemiological data in France indicate a prevalence of 1%nithe general population for genital warts,
a prevalence of 10% has been observed in young individualseaty15 to 25 (Monsonego, 2008). E cacy
of curative treatment is limited in presence of a high recurence rate for genital warts. Two prophylactic
vaccines against HPV infections are available. The bivaldnvaccine protects individuals from oncogenic
HPV 16/18 types. The quadrivalent vaccine protects individuals from oncogenic HPV types 16/18 and
non-oncogenic HPV types 6/11. The purpose of this paper is t@assess the impact of the quadrivalent
HPV vaccine on the prevalence of non-oncogenic HPV 6/11 typein French individuals.
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Mathematical epidemic modeling provides useful tools formalyzing the spread and control of infectious
diseases (Hethcote, 2000; Brauest al., 1945). In particular, it can be used in order to assess the ipact
of vaccination. Numerous mathematical models have been imbduced in the literature to study epidemics
of communicable diseases such as measles, in uenza, ruteahnd chickenpox. References are much too
numerous to be listed exhaustively, see Nun@t al.(2005) or Fenget al.(2000) for instance for recent
accounts of (deterministic) epidemic models.

Since anti-HPV vaccines have been developed, several datgnistic or hybrid models have been de-
veloped to assess the potential impact of vaccination on HP\prevalence and linked diseases (see e.g.
Hugheset al. (2002); Barnabaset al. (2006); Elbashaet al. (2007); Taira et al. (2004); Ribassin-Majed
et al. (2012a,b). However, the models documented in the literatue are based on numerical simulations
and o er very limited analytical results. It should be notic ed in addition that the complexity of these
models does not allow to study local and global stability forthe equilibrium points. To the best of our
knowledge, only Elbasha et al. studied local and global stality for equilibrium solutions in a simple
Susceptible-Infected-Retired (SIR) model (Elbasha, 200@nd Elbasha, 2008).

In certain models developed for communicable diseases, tisgstem of di erential equations that de-
scribes the evolution of the epidemics is not globally asyntptically stable, multiple equilibrium points
coexisting (Fenget al., 2000; Nufioet al., 2005). When considering vaccination, the vaccinated remduc-
tion number Ry, in addition to the basic reproduction number Rg, is estimated to assess the spread of
the disease of interest. The basic reproduction numbeRy is a threshold quantity establishing whether an
epidemic is likely to spread out or not. It is de ned as the expected number of secondary cases of HPV
caused by an infected individual during the entire period ofinfectiousness, in a completely susceptible
population (Dietz, 1975; Diekmann et al., 1990). The vaccinated reproduction number represents the
threshold in presence of vaccination. These values may deteine the likeliest scenario for the evolution
of the epidemic disease under study, depending on whether ¢y are below or above the critical value
1. However, bringing the vaccinated reproduction number balw 1 may not be su cient to eradicate
endemicity of the disease when multiple locally stable eqlibrium solutions coexist (Kribs-Zaleta et al.,
2000). Hence, in dynamic models, investigating the asympt@ behavior is an important issue.

The main objective of this paper is to assess the impact of qukivalent HPV vaccine on HPV 6/11
prevalences in French females and males. A deterministic ndel is presented using a system of ordinary
di erential equations to describe the heterosexual transnssion of the virus in the French population, con-
sidering the real vaccine coverage observed in France. In dition, a mathematical analysis of the model
is provided. Deterministic epidemic modeling for sexuallytransmitted infections, taking into account sex
and vaccination both at the same time, are not well documentd in the literature. Human Papillomavirus
is the only sexually transmitted infection which can be avoiled through vaccination. To the best of our
knowledge, only Elbasha (2006, 2008) proposed a Suscepélhfected-Retired (SIR) deterministic model
for HPV transmission. This paper is thus the rst to investig ate speci cally the impact of HPV vaccination
on non-oncogenic HPV types, through a mathematical/numercal analysis of the dynamic model proposed.

The paper is structured as follows. In section 2, a two-sex nuel of HPV infection transmission in
the sexually active population is introduced. We developedh deterministic model based on a system of
ordinary di erential equations for HPV 6/11 transmission considering vaccination, to evaluate the e ects
of vaccination campaigns in France. The basic reproductiomumber Ry and vaccinated reproduction
number R, are derived from an analytic formula in section 3. The asympttic behavior of the HPV
models (with and without vaccination) is studied in section 3 and the stability of equilibrium solutions
of the developed models is illustrated through simulationsn section 4. Subsequently, numerical values
for the infection rates are assessed by means of a tting pradure based on prevalence data, and the
impact of quadrivalent vaccine on HPV 6/11 prevalence in France for both sexes is quanti ed in section
5, considering the current vaccine coverage in France. Thexperimental results are nally discussed in
section 6. Technical details are deferred to the Appendix sgion.
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2 Human Papillomavirus model

In this paper we develop a deterministic model that describg the transmission mechanism of HPV 6/11
infection in a heterosexually active population. Classichy, the sexually active population is divided into
compartments. Non-oncogenic HPV types do not induce spect natural immunity (Monsonego, 2008),
therefore we use a Susceptible-Infected-Susceptible (§IStructure. In addition, vaccination is taken into
account, see Figure 1.

Figure 1. Flow diagram.

Deterministic models are widely used to simulate the spreaaf sexually transmitted infectious diseases.
Such models can be described using a system of ordinary diential equations, with females and males
in di erent compartments. The transmission term is non-linear as it re ects the interaction between in-
fectious and susceptible individuals. The use of a determistic model allows us here to take into account
herd immunity (indirect bene ts of vaccination, see Garnett (2005)) in a simple manner, which corre-
sponds to a decrease of HPV infections in non-vaccinated spbpulations due to vaccination coverage
of other individuals. When non-vaccinated (respectively accinated) women enter in the female sexually
active population (of size N¢ ), they move into the susceptible compartmentX s (respectively Vs) at the
constant rate [(1-' ) ] (respectively [  ]) and they leave all compartments at rate ;. We assume that
the exit of the sexually active population balances the entance in the sexually active population so that
the population size N in the model remains constant. In a similar fashion, non-vacinated (resp. vacci-
nated) men enter into the male sexually active population (6 sizeN,) into the susceptible compartment
Ys (resp. Ws) at constant rate [(1- ' ) ] (respectively [ , ]) and leave all compartments at rate
Susceptible individuals are infected with HPV at a per capit rate [, or ¢ (annual rates), depending on
their sex. The force of infection depends on infection rate§ ,, for men and ; for women) and on HPV
infection prevalence in the opposite sex as well. Then, theynove into infected compartments: X, (resp.
V) for women, Y, (resp. W, ) for men in non-vaccinated population (resp. in vaccinatedpopulation), see
the description of parameters on Table 1.
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Table 1: Description of variables and parameters.

Symbol Description Estimates References
Variables
Non-vaccinated population
Xs(t) Susceptible women
Ys(t) Susceptible men
X1 () Infected women
Y (t) Infected men
Vaccinated population
Vs(t) Susceptible women
Ws(t) Susceptible men
Vi (b) Infected women
Wi () Infected men
f Force of infection for women
m Force of infection for men
Nt Number of females 500,000
Nm Number of males 500,000
Biological parameters
f Infection rate for women calibration
m Infection rate for men calibration
Clearance rate 1.25 Trottier et al, 2008

Vaccines Parameters

f

Demographic parameters

Female vaccination rate scenario 1. 30% Fagot et al, 2011
scenario 2: 10%

Vaccine degree of protection 90% Future, 2010

Number of individuals in each sex 30,000 N=2
who enter annually in the model

retirement rate 6%

The following assumptions shall also be required:

Vaccinated people can be infected. The degree of protectioof vaccine is , the relative risk of a
vaccinated person experiencing a breakthrough infectiorsil

Vaccinated infected individuals are as much infectious asan-vaccinated persons.

Vaccine immunity does not wane during all sexually active lie.

Women and men who clear HPV infection at rate leave infected compartments and go back to
susceptible compartments.

Demographic and biological parameters are strictly positie. The notation %( ) is used for derivative.

The non-linear system of ordinary di erential equations that represents this compartmental model is:



3 ANALYSIS OF EQUILIBRIA AND REPRODUCTION NUMBERS 5

d;(—tsz(l 1) i Xs+ X1 Xs

dc% = iXs (+ )X

% =@ "m) mYs+ Yi  Ys

dd—YtI = mYs (+ )Y

o=@ v Vs @)
W= v (v

= @) aWsr W W

T2 Haws (+ W

We highlight the fact that the system above is nonlinear, theforces of infection depend on infection rates
and the prevalences of HPV infection in the opposite sex:

(Y, + W)
f Nm 1
X1+ V).

m =

The population in the model is assumed to remain constant, tht is:

Nt = Xs+ X| + Vs + V;;
Nm=Ys+ Y + Wsg+ W,;
N = N¢ + Npy:
And we assume:Ns = Np,.
Thus
NO=2 N:

Since at equilibrium N =2 —, we only need to analyze the asymptotically autonomous liming system
where N is replaced by its equilibrium value. We consider thesystem only in the region

D= (Xs;Xi;Ys; Yi; Vs; Vi; Ws; W) 2R8; Xg+ X+ Vg + V= —= N¢
and Ys+ Y, + Ws+ W, = — = Np,

It can be veri ed that D is positively invariant for this system, which has a unique slution in D. The
model is epidemiogically and mathematically well posed. Irsection 3, the equilibria of the model without
vaccination are analyzed and a closed analytical form for th basic reproduction number is given.

3 Analysis of equilibria and reproduction numbers

In this section, we consider the model without vaccination & a rst go. There are two possible equilibria:
the Disease Free Equilibrium (DFE in abbreviated form) and the Endemic Equilibrium. In order to
analyze the stability of these equilibria, the basic reprodction number Rg is computed.
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3.1 The model without vaccination

In the abscence of vaccination, , =0 and' s =0 as well asVs = V|, = Wg = W, =0. The system of
ordinary di erential equations is as follows:

Cl;(—ts = IL—:XS+ X X s

% = IL—:XS (+ )X

% _ Ef'ys+ Y. Ys (3.1)
ddltl = TQITIYS (+ )V

The equilibria of this model are obtained by setting the right hand sides of the model equations to zero.
The system (3.1) has two equilibria, one at:

Po= (Xg, X,, Y5, Y, )=( -, 0, —, 0) which is the DFE, and P1= (Xg, X, , Yg , Y, ) the endemic
equilibrium, where:

_dN( + )
Xg = 2 ;
dN( + )
X = _
| 2
Ys = —(1 1=d)+w
2
_ N(+ )
g 2
with
gz m i+ )

mt+t m(+ )
The existence of the DFE is established. Following the Next ®neration Matrix approach (NGM) (see
Diekmann et al. (2010); van den Driessche & Watmough (2002)), the basic repduction number Ry is
computed in order to analyze local and global stability of the DFE depending onRg values. Here we use
the additional notations: x for the temporal derivative of the vector x and T for the transpose. The system
(3.2) is de ned with the rst two components corresponding to compartments of infected individuals and
the last two components corresponding to susceptible companents:

x=(X4; % Xs;Ys)" =(0;0,0,0)": (3.2)

Following the Next Generation Matrix Method (see e.g. van da Driessche & Watmough (2002)) we break
up x into F V dierentiating new infections from all other changes in population, it gives:

1 0
fNY_IXS (+ )Xl
Xy ( + )Y
F:% meYsg and V = ey
0 + fXs |+ s
0 + mYs Y+ Yg

Then, the Jacobian matrices ofF and V are evaluated at the disease-free equilibrium (DFE). Usinghe
relation: N =2 —

0 1

Flo Vio0
dF (Pg) = T’T anddV(Po):@W > :
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with 0 1 0 1
0 f +

0
= @ A = @ A
F 0 and V 0 N :

Here, W is a square matrix andl, is the unit matrix of size 2 2. So, the next generation matrix for the
model ( Diekmann et al., 1990; van den Driessche & Watmough, 2002) is given by:

1

1_ f
FV =) 0

The quantity Rg is equal to the spectral radius ofF V 1, thus:
p__
Ro=" Rof Rom;

where
RO;f =

f m .
) and Rom = ﬁ
The basic reproduction number depends on parameters whichedcribe the dynamic of infection (clearance
rate, male and female infection rates) and on the retirementate. The basic reproduction number can be
less than unity if the infection rate is lower than the sum of the clearance rate and of the rate of exit of the
sexually active population for each sex. This correspondstdiseases which clear quickly with low infection
rates. Please note thatRg is the geometric mean of two values. In a one-sex modeRos = Rom, we
nd Ro= =( + ) which is a classic expression dRg in simple Susceptible-Infected-Susceptible model
(Hethcote, 2000). The quantity Ros is the number of secondary infections generated by one infeecl
woman in a population of susceptible men during her infectios period. Then, each infected man can
infect a mean number ofRo., susceptible women during his infectious period. We do not kw how many
secondary infections are generated by one infected individl in a population of susceptibles. Theoretical
computation based on the HPV model may thus provide the meansf estimating the basic reproduction
number. In section 5, the value of the reproduction number foHPV epidemic is estimated using estimates
of parameters involved in the expression oRg. In addition, the basic reproduction number is a threshold
value for the global dynamics of the model. We obtain the glohl stability of either disease-free or endemic
steady state in terms of the basic reproduction number.
Now, the following Theorems focus on the stability of the Digase Free Equilibrium. Detailed proofs can
be found in the Appendix.

Theorem 3.1 if Rg < 1then the DFE is locally asymptotically stable.

To prove this result, we prove that all eigenvalues of the jaobian matrix evaluated at the DFE have
strictly negative real parts.

Theorem 3.2 The DFE is globally asymptotically stable if and only if Rg 1.

This Theorem is proved using a suitable Lyapunov function.
We proved the local and global stability of the DFE whenRg 1 in the model without vaccination. Now,
the endemic equilibrium of the model without vaccination isconsidered. Using the expression dRg, we
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can rewrite P, as:

Xg = — R(2)+ Ro: 1
R(2)+ RO;m Ro;f
N RS 1
! R3+ R,
0 o;m
1+ Royt
Y - __ @00
S RZ + Ry
RZ 1
Y, = _7R23-R :
0 o;f

X, > 0andY, > 0 and then Py is feasible inD, if and only if Rg > 1 (P = Pg when Rp = 1).
Previously, we proved that the model without vaccination reaches a steady-state which is a Disease Free
Equilibrium when Rg 1. The asymptotic behavior of the model has to be studied wherRg > 1. The
following theorem provides the condition for local stabilty of the endemic equilibrium:

Theorem 3.3 The endemic equilibrium is locally asymptotically stabe if and only if Rg > 1.

To prove this result, we use the same method that for the DFE. V& prove that eigenvalues of the jacobian
matrix of the linearized system have strictly negative realparts when Rg > 1. Also the endemic equilib-

rium is probably globally asymptotically stable for Rg > 1, but the Lyapunov function used in Theorem

3.2 does not work. Numerical calculations suggest asymptiot stability (see numerical simulations in

section 4). Now, let us consider the model including vaccirteon compartments.

3.2 The model with vaccination

Here we focus on the model including vaccination. As we did ithe previous sections, we want to study
stability of DFE and endemic equilibrium. In a rst step, we compute the vaccinated reproduction
number. The DFE of (2.1) is given by:

Qo= (1 '"#)=0@ '"m)—0"¢t—0"m—;0

The Next Generation approach uses only equations of infectiepersons. We de nex = ( X4; \V4; Y W) T
We break upy into F; V ; and compute the Jacobian matrices of; and V4, linearized around the DFE
Qo. The matrices F1 and V; are de ned by:

0 0 0 (@ @ !
0 0 T De'e @ )¢
- Y S T TC NS B /
T Jm'm @ )m'm
0 4y o 1
0 (+ ) 0 0
Vl:dvl(QO): 0 0 (+ ) 0
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The next generation matrix is de ned as F1V; ! with

0 . . 1
0 0 5@ ') =@ ")
0 0 1 - 1 —
Flvl]-: ( )(+)f ( )(+)f
¢ +m)(l lm) (+m)(:L lm) 0 0
(1 )% m (1 )% m 0 0

An estimate of the vaccinated reproduction numberR, which is the spectral radius ofF1V; Lis:

q q
Rv= Ri(f)Rm(m)=Ro [ "m)+@ )ml@ "£)+@ )+l

with Re (" £) = Rof[(1  "¢)+ (1 ) fland Rn(' m) = Rom[(1 "m)+(1 )" ml

This result is close to the expression for the vaccinated repduction number using a S-I-R model for HPV
found in Elbasha (2006, 2008). The vaccinated reproductiomumber depends on:

The basic reproduction numberRg,
Male and female vaccine coverage ¢, and"' ¢),

E cacy of vaccine

Please note that the terms inside brackets are less than onep R, < R g. The term under the square root
shows how much the vaccination reduceRg. The vaccinated reproduction number is a threshold quantiy
taking into account vaccination, its expression may assisin the identi cation of important parameters on
which we can act. Bringing the vaccinated reproduction numbe under unity will lead to the eradication
of the virus if the DFE is globally asymptotically stable.

The following theorems provide properties of the system 2.1

Theorem 3.4 The DFE is locally asymptotically stable if and only if R, < 1.

When Ry < 1 the DFE is probably also globally asympotically stable. Nurerical calculations suggest
global asymptotic stability (see simulations in section 4) When R, > 1, we prove the existence and
uniqueness of endemic equilibrium of the vaccination model

Theorem 3.5 If R, > 1 the endemic equilibrium exists and is unique.
If Ry < 1 there isn't any endemic equilibrium.

To prove these results (Theorem 3.4 and Theorem 3.5), we usbd same method as Elbasha (2006), the
HPV model developed therein is quite similar to our model, tke dierence is the use of a SIR struc-
ture which is more convenient for oncogenic HPV types. In oumodel, a SIS structure is developed
corresponding to non-oncogenic HPV types. Proofs are prosdéd in the Appendix.

Finally, we have proved that if the endemic equilibrium exids, it must be unique. Furthermore, if R, > 1
the endemic equilibrium is probably globally asymptoticaly stable. Numerical calculations suggest this
asymptotic behaviour (see simulations in section 4).

We proved that if R, < 1, the vaccination model has a disease free equilibrium whicts locally asymp-
totically stable and the endemic equilibrium does not exist whereas ifR, > 1 the endemic equilibrium
exists and is unique.

4  Simulations

In this section, we studied the global stability of the DFE in the model with vaccination (Qg) and of
endemic equilibrium in both models (2.1) and (3.1) (with and without vaccination) Q1 and P; using
numerical simulations.
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Figure 2: Some trajectories in the phase plane portrait for he model with vaccination and considering
several sets of initial male and female prevalences whdd, < 1
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4.1 Stability of DFE and of the endemic equilibrium in the mod el with vaccination

In the model with vaccination, we did not nd any Lyapunov fun ction to show that the DFE Qg is glob-
ally asymptotically stable, thus we conducted analyses usg simulations in order to study the asymptotic
behavior of the model (2.1) (with vaccination) when the vacinated reproduction humber is less than one
(Ry < 1). We used Scilab-5.1.1 software.

In section 3.2, we found an expression foBg, considering several initial conditions (according to paam-
eters which satised R, < 1). We simulated a set of 10,000 combinations for initial prealences with
the conditions Ny = 500;000 and N, = 500;000. We considered several combinations of parameters
such as the female and male infection rates, the clearanceteaand the vaccination rate that satis ed the
condition: R, < 1. Thereafter, we compared the size of compartments at t=100 gars to the expression
of Qq. Results suggest the stability of the DFEQg when Ry < 1 (Figures 2 and 3).
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Figure 3: Some trajectories for the model with vaccination ad considering several sets of initial male and
female prevalences wheiR, < 1 (to test that Qg is globally asymptotically stable).
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50000 — T
o 0 50

number of years

We used the same method to study the asymptotic behavior of th model with vaccination whenR, > 1
to study the hypothesis that Q; is globally asymptotically stable. The same set of 10,000 cabinations for
initial prevalences was used. Several sets of parametersfgction rates, clearance rates, vaccine coverage,
e cacy of vaccine, retirement rate) were chosen to verify the condition: R, > 1. Results suggest that the
endemic equilibrium is globally asymptotically stable when R, > 1 (Figure 4).

Figure 4. Some trajectories in the phase plane portrait for he model with vaccination and considering
several sets of parameters values whelR, > 1. The system reaches a steady-state which is an endemic
equilibrium
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Based on this simulations, we expect the vaccination model toeach a steady-state depending orR,
values : Qo when Ry < 1 and Q; when R, > 1 (Figure 5).
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Figure 5: Some trajectories in the phase plane portrait forlhe model with vaccination considering the same
initial female and male prevalences and several initial vales for parameters (female and male infection
rates, female and male vaccine coverage). The model with veination reaches a steady-state equilibrium
which is: the DFE Q, whenR, = 0:71, the DFE Q, whenR, = 0:44, the endemic equilibrium Q; when
Ry = 1:21, the endemic equilibrium Q; whenR, =4:58
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4.2 Global stability of the endemic equilibria Py

We considered the model without vaccination. As describedni the previous section, we simulated sev-
eral set of initial conditions according to initial prevalences and parameters which veri ed the condition:
Ro > 1. Results are shown on Figure 6 and suggest thd®, is probably also globally asymptotically stable
when Rg > 1.

Figure 6: Some trajectories in the phase plane portrait for he model without vaccination considering
several sets of initial male and female prevalences whdgy > 1
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5 Application to Human Papillomavirus types 6/11

The model without vaccination (3.1) is used to t the data of HPV 6/11 prevalences in male and female
in order to assess the impact of HPV vaccination on HPV 6/11 pevalence.
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5.1 Calibration

Table 1 describes the values used for the parameters and infsuof the model. We set the population
size in the model to N=1,000,000 individuals, equally divigdd into females Ny = 500;000 and males
(Nm =500;000. We used the following values for the size of the 4 compartms at t=0 year (initial
values):

X 5(0) = 470; 000

X (0) = 30; 000 corresponding to a female HPV 6/11 prevalence of 6% (Ralstqr2009)
Ys(0) = 487;000

Y, (0) = 13; 000 corresponding to a male HPV 6/11 prevalence of 2.6% (Nielsqr2009)

Male and female infection rates are unknown and have to be asssed in the calibration step. Parameters
which have to be assessed are not stochastic variables, thtisey do not have a probability distribution
describing the probabilities of di erent values occurring The method which is used is as follows: a set of
250,000 pairs of infection rates were tested, per capita anal infection rates were selected in the interval
[0,5]. Each value for the per capita annual male infection ree in the interval [0,5] was tested with 500
values of per capita annual female infection rates in the irgrval [0,5]. This procedure enables us to test
all combinations of infection rates in the space[0; 5. The combinations of male and female infection
rates which reproduced endemic prevalence of HPV 6/11 (befe introduction of vaccination) in males and
females within a precision of 10% are shown on Figure 7. On thi gure, we can see that it is not possible
to give a con dence interval for the estimation of the infecton rates. Nonetheless, for some combinations
of male and female infection rates which reach the target dened in calibration, several female infection
rates could be linked with one male infection rate.

Figure 7: Combinations of annual infection rates for males ad females estimated in calibration step.

075 —

Male Infection Rates
\\\\\\\\\\\T\\\\\\\\\\\

045 T T T T T T T T T T T T T T T T T T T T ]

»
>
»
®
©
°

32 34
Female Infection Rates



5 APPLICATION TO HUMAN PAPILLOMAVIRUS TYPES 6/11 14

Remark 5.1 (on the calibration results): Male infection rates whit match with HPV 6/11 prevalences
were lower than female infection rates; the explanation istiat male HPV 6/11 prevalences used in the
tting procedure are lower than female HPV 6/11 prevalences In order to t HPV prevalence, we observed
that the product of male and female infection rates was stald; its range was 1.86 to 1.89. This product
appears in the expression of the basic reproduction numbenisection 3. Female and male infection rates
which were used in the analysis above are respectively 2.68a0.71.

Using estimates for infections rates and expression d®g, we found an estimation for the basic repro-
duction number: Rg = 1:04. This value is close to unity corresponding to low prevalenes used in the
tting procedure. In the analytical formula for the basic re production number, there are two kinds of
parameters: the clearance rate and the retirement rate are estimated using data from the litterature,
whereas female and male infection rates are assessed in théng procedure, these estimates depend on
epidemiological data which are used to t the model. This shavs the importance in choosing data, they
should be as representative as possible of the epidemiologi reality of the infection or disease. HPV is
a sexually transmitted infection, thus we need to consider rale and female prevalences corresponding to
the same sexually active population or the same country in afer to model heterosexual transmission for
HPV. There is very few published data on male HPV 6/11 prevalaces, this is why we used data from
the USA (Ralston et al., 2009; Nielsonet al., 2009).

5.2 Impact of vaccination

Table 2 describes the expected reduction in HPV 6/11 prevalece in each scenario of vaccination in an
horizon of 10, 20, 30 and 50 years after introduction of vacnation.

Table 2. Impact of vaccination on HPV 6/11 prevalence

Number of years after Female prevalence Male prevalence
initiation of vaccination

Scenario 1

10 3.55% 1.98%

20 1.52% 0.88%

30 0.005% 0.31%

50 4:10 3% 2:10 %
Scenario 2

10 4.74% 2.54%

20 3.68% 2.00%

30 2.83% 1.53%

50 1.75% 0.95%

Initial prevalences are 6% (Ralstonet al., 2009) in females and 2.6% in males (Nielsoet al., 2009).
Vaccine coverage is assumed to be constant in time in each segio. E cacy of vaccine is assumed to
be of 90% (Future /1l study group, 2010). We considered 2 saearios of vaccination: in scenario 1, we
assume that 30% of women (who enter annually in the sexuallydive population) received the 3 doses
of vaccine and are protected, this scenario corresponds ttné vaccine coverage observed in France at the
launch of the vaccination campaign in 2007 (Fagoet al., 2011). In scenario 2, we considered that 10% of
women received 3 doses of vaccine, corresponding to the dease in vaccine coverage observed in France
a few years after HPV vaccine introduction (Fagotet al., 2011). Considering the rst scenario (30% of
women who enter annually in the model are protected by the vagine), a 50% reduction of female HPV
6/11 prevalence is expected 10 years after vaccine introdtion, and the male HPV 6/11 prevalence is
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reduced by one quarter. Thirty years after vaccine introdugion, HPV 6/11 prevalences in males and
females are expected to be very low (respectively 0.005% artd31%). Considering scenario 2, a lower
vaccine coverage leads to a slower decrease in HPV prevalen@able 2 and Figure 8).

According to R estimates and expression oR,, the minimum female vaccine coverage which is necessary
to eradicate HPV 6/11 (i.e. to have R, < 1) varies between 8.2% and 11%. Thus, if current vaccine
coverage in France is maintained, HPV 6/11 will be eradicatd.

Figure 8. HPV 6/11 Prevalence in males and females. At t=0 (yar), introduction of vaccination con-
sidering scenario 1 (30% of women who enter annually in the nael are vaccinated) and scenario 2 (10%
of women who enter annually in the model are vaccinated). Dimond and triangle represent respectively
female and male prevalences in scenario 1, + and X represengspectively female and male prevalences
in scenario 2
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6 Summary and Discussion

The developed model in our paper may help to appreciate impacof prophylactic vaccination against
HPV on HPV 6/11 prevalence. In this paper, we developed a deteninistic model of heterosexually HPV
6/11 transmission. A mathematical analysis of the model wasarried out. We identify the vaccinated
reproduction number Ry as a threshold quantity for the stability of equilibria: if Ry > 1, the endemic
equilibrium exists and is globally asymptotically stable whereas ifR, < 1, the infection-free equilibrium
exists and is globally asymptotically stable and HPV will beeliminated. The yielded vaccinated reproduc-
tion number from our model represents a reliable parameterstablishing whether an epidemic can spread
or die out. Its expression depends on other parameters suchs asaccine coverage for each sex. Thus,
such parameters represent consistent tools which can be usby Public Health policy-makers to improve
policies that aim to control HPV epidemic. As an example, leel of vaccine coverage can be targeted in
order to yield a vaccinated reproduction number that precludes the spread of epidemic. However, driving
out the basic reproduction number below one is not always sucient to eradicate the disease (Zhang &
Liu, 2009). It is necessary to study the asymptotic behaviorof the model. Our analyses found that our
model was asymptotically stable and supported the consistey of the derived parameters.

In a second part, we tted the model on HPV 6/11 prevalences inorder to estimate male and female
infection rates. We studied the impact of French vaccine stategies on the prevalence of HPV 6/11. The
basic reproduction number for these non-oncogenic HPV typewas estimated at 1.04. As this value is
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close to unity, a low proportion of individuals have to be vacinated in order to eradicate HPV 6/11
in the population. We estimated that if more than 12% of womenwere vaccinated against HPV using
guadrivalent vaccine, the non-oncogenic HPV 6/11 types woldl be eradicated. Non-oncogenic HPV types
are responsible for 90% of genital warts, and the lesions caed by non-oncogenic HPV-6/11 types appear
between 2 and 8 months after HPV infection. Therefore, we carmexpect a dramatic reduction in the
occurrence of genital warts caused by HPV 6/11 types.

Yielded results are based on assumptions made in the modedjriprocess. Vaccine coverage was assumed to
be constant in the time in each scenario. French data did not jgecify vaccine coverage for each available
vaccine; we therefore used global vaccine coverage in Frénfemales as a parameter in our model. As only
one vaccine prevent HPV 6/11 infections, we were likely to ogrestimate vaccine coverage against HPV
6/11. French recommendations on HPV vaccination changed ir2010. Previously, quadrivalent vaccine
was recommended; while since 2010 French guidelines no lengreferentially support any vaccine.

In addition, infection rates were assessed in the calibrabin step and depend on HPV 6/11 prevalence in
males and females. In the absence of reliable French data fefPV 6/11 prevalence in males and females,
we used prevalence from studies completed in the USA (Ralstoet al., 2009; Nielsonet al., 2009) which
represent consistent data to model the heterosexual transission of this infection.

In Australia a high vaccine coverage (70%) is reached due toschool-based program for HPV vaccination.
They observe a dramatic reduction of the number of genital wes (approximately a reduction of 90%) in
young women (under 21 years) and in heterosexual young men aw years after initiation of vaccination
(Read et al., 2011). This observed e ect of vaccination matches with reglts of our modeling. In France,
lower vaccine coverage was observed at the launch of the vatation campaign and the vaccine coverage is
currently decreasing (Fagotet al., 2011). Thus, the reduction in HPV 6/11 and in genital warts prevalence
will be expected to slow down. Our modeling suggests that intte horizon of 10 years after introduction
of vaccination, HPV 6/11 prevalence in females will be halvd and HPV 6/11 prevalence in males will
be reduced by one quarter, assuming a sustained vaccine coage of 30% among females (annual rate).
In this case, HPV 6/11 will be eradicated within 50 years afte vaccine introduction. However, these
reductions will be slower if vaccine coverage is decreasing

In our modeling, we did not assess directly the impact of vadnation on the occurrence of Recurrent
Respiratory Papillomatosis (RRP). RRP is caused by HPV 6/11 and is observed usually in young chil-
dren but also among adults. RRP in children is due to HPV 6/11 nfection in the respiratory area due
to mother-to-child transmission of HPV 6/11 during delivery ( D'Souza et al., 2011). Thus, if female
prevalence for HPV 6/11 is decreasing due to vaccination, aeduction of RRP can be expected. However,
prevalence of RRP is very low compared to genital warts ( D'Soza et al., 2011). To study speci cally
the impact of quadrivalent vaccine on RRP, a model includingvertical transmission could be developed
in future research.

In order to study the asymptotic behavior of the model, we didnot include age structure nor sexual be-
havior in the model. Thus a simplest model was developed whesasymptotic behavior could be assessed.
Nonetheless, the majority of HPV dynamic models take into acount age or sexual behavior, in future
research the vaccinated reproduction number could be ass#sl in more complex models including age
structure.

To conclude, vaccination against HPV, using quadrivalent accine, represents a strong tool to prevent HPV
6/11 infections. A dramatic decrease of genital warts occuence may be expected in France, especially
among young individuals.
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Appendix: Technical proofs

Local and global stability of Disease Free Equilibrium sedbn:

Theorem (3.1):
if Rg < 1 then the DFE is locally asymptotically stable.

Proof. The Jacobian matrix of the system without vaccination (x = (0;0;0;0)" (3.2)) is evaluated at
the DFE Py:

0 1
(+) f 0 O
N SO {
m 0
We de ne: ( |
_ + f
Ar= m(*)

Tr(A1) < Oand det(A1) > 0if Rg< 1. Thus, if Rg < 1, all eigenvalues of the jacobian matrix linearized
system around the DFE have strictly negative real parts, hege by the Routh-Hurwitz Criterion (Gant-
macher, 1959) the DFE, Py, is locally asymptotically stable if Rg < 1.

If Rg > 1, one eigenvalue has positive real part and the DFE is locallynstable.

Theorem (3.2):
The DFE is globally asymptotically stable if and only if Rp 1.

Proof. Consider the Lyapunov function in D:

V=X + Ro;fY|:

The derivative of V along the solution of (3) is given by

V0= X2+ Ros Y°
Y. X
= Rormp> (+ ) Xi+ 1> Ror(+ ) Yi:

m

Using Ys Yg (becauseYs Ys+ Y, Yg+Y, ) Xs XgandN¢ =Np=—:

VO (RO;f m (+ ))XI+(f RO;f( + ))YI
VO (+ )RE DXi:

If Ro 1lthenV® 0.
We denoteA = Ro; m;j—f (+ ) andB= x> Ros( + ) .WecanrewriteV?= AX+BY;.
We can prove thatA OandB 0.
If Rg< 1, then A< 0and B < 0, the equality V°= 0 holds only at the DFE (when X; =0 and Y, =0).
If Ro=1, V%=0 if and only if:
Xy =0 and Y, =0

or A=0 and Y, =0

or B=0 and X, =0

or A=0 and B=0
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The four cases considered lead t&, thus, V=0 only in Pg.

The Lasalle-Liapunov theory (Hale, 1969) implies that all paths in D approach the largest positively in-
variant subset of the set E where V'=0. Here, we have proved irthat the only positively invariant subset

is f Pog so Py is globally asymptotically stable for Rg 1.

Theorem (3.3):
The endemic equilibrium is locally asymptotically stable f and only if R > 1.

Proof. The Jacobian matrix of the system (3.1) is evaluated at the edemic equilibrium Pq:

0 1
(+ ) ﬁxs ﬁ\ﬁ 0
ﬁYs (+ ) 0 ﬁxl
I (P = Xs Y, 0
Nm Nm
Vs 0 X,

The charasteristic polynomial is:

X f £ Y, mX
X)=( +x)% (+ +x)2+ 2% (+ +x M’ X VYo + ' + 4+ x+ 2L
PO =( +x)? ( 2+ A ) NN ks Ys t N,
Thus is a double eigenvalue of this matrix. The two other eigenvales are the roots of the following
polynomial:
— 2 m f
X)=x°+ 2( + )+ —X; + —Y X
o(x) (+ )+ X+ Y
+ (+ )2+ ( + My, o+ Ly o+ T Mx Y, XY
(+ %+ + ) g+ g P Y XsYs)
2
- o+ Y+ My o4ty 4 (+ 2+( + ) "X, + 1y LM x, v,
(+ ) X+ gV C+ 2+ + ) X+ g e
2
The discriminant is positive: =  —TX, LY,  +4-" ' X v .
N¢ Nm N¢ N
I {z b 1z }
>0 >0

Therefore the 2 solutions of gq,x1 and x, are eigenvalues ofl (P1).
M:[ﬂ+)+ﬁ%|+ﬁﬂl _

? p
Xp + 5=y 1+

[
2

2( + )+
X2 =

X1 iS negative, we have to study the sign ofk,. We prove that x, is negative if and only if Rp > 1 in

Lemma 6.1. Therefore, the endemic equilibrium is locally asnptotically stable if and only if Rg > 1.

XsYs ) :
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Lemma 6.1 x, < Oif and only if Rg > 1.

Proof. We denote the charasteristic polynomialp(x) = x? + bx + ¢ with

b=2( + )+ X+ Y ande=( 4 P+ ) X+ S O Y Xs Ys)

\F Nm \F
X b+ & 4c_ b 1+ 1 ac
27 2 T2 2
r 4
c
<0 1 <1
X2 ; 2
Let us prove thatc > 0, Rg> 1.
Using values ofXg ;Yg ; X, ;Y, and Nt = Ny, = —, we have:
Rom R3+ Ro. RZ2 + Ry
— 2 2 Om Mo 0;f 0 O;m
c=( + +( + Ro: f—— 1
( ) ( ) O;m RO;f R(2)+ RO;m o;f R(2)+ RO;f
2 2
+( + )ZR% 1 1 R20 + Ro;f R%‘l' Ro;m 1
Ro;f Ro+ Ro;m R0+ Ro;f RO;f
2 2
( + )ZR% 1 RZO + RO,f 1 + 1 R%‘l' RO;I’T'I
RO;f Ro+ Ro;m Ro;f Ro+ RO;f
Rearranging and after simplifying
Rom + Rof + R3+1
c=(+ )ZRS RZOTR = R2+OR ) RS !
0; 0;f
| ¢ 2% 90 }
>0
c is the product of a strictly positive number and (R3  1).
We conclude that: ¢c> 0i Rp> 1
In the model with vaccination, we prove the following resuls:
Theorem 3.4:
The DFE is locally asymptotically stable if and only if R, < 1.
Proof. We de ne the system
(X4 Ve Ve Wy s X5 Vs Ys; W) T = (0;0,0;0;0;0;0;0)" (6.1)
We compute the Jacobian matrix of the system (6.1) at its DFE Q.
_ A1 O
B1= A, Dy
with A1 = F; ViandDi= | 4, |4 being identity matrix of size 4; A, being a square matrix of size 4;

Therefore, (- ) is an eigenvalue ofl; of order four. We consider the matrix Aj:
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() 0 @ o e ol

0 (+) @ e @ )i
A p@ Tm) m@ Tw) (+ ) 0
@ Jmm @ )m'm 0 (+)

All diagonal elements of Aj are non-negative and all o -diagonal entries are non-posive. Therefore,
A1 is a Z-matrix. Principal minors of A are:

Ci= +
Co=( + )?
(+) 0 (L")
Cs= 0 (+ ) L )¢
m(l "m) ml "m) (+)
C4 = det( Aj):

After some calculations, we express more simpl€3z and C4 to determine their signs, therefore:

Ca=CiC2 1 RI+Ri( "5 )

Ca=( + )*1 R

C3 and C4 are positive if and only if R, < 1. If Ry < 1, all principal minors of the Z-matrix A; are
positive, so A1 is a M-matrix (Hashimoto, 2009). The real parts of each eigevalues of ( A;) are strictly
positive, thus real parts of each eigenvalues ofA(;) are strictly negative. Then, the DFE Qg is locally
asymptotically stable if Ry, < 1. Otherwise, if Ry > 1. C4 < 0, thus det( A;) < 0, the determinant of
( A1) is equal to the product of 4 eigenvalues. Hence, at least ore the eigenvalues of the matrix ( A1)
has strictly negative real part, and at least one of the eigevalues of the matrix (A1) has strictly positive
real part. Therefore, Qg is locally asymptotically unstable. We proved that the DFE of the model with
vaccination is locally asymptotically stable if and only if Ry < 1.

Theorem 3.5:
If Ry > 1 the endemic equilibrium exists and is unique.
If Ry < 1 there isn't any endemic equilibrium.

Proof. We solve the system (2.1) in terms of + and .
We obtain:

f T )+
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We de ne 2 level curves:

. _ . m ' (1 )m .
Grleim= ot ¢ @ "m e gy
o , f : T )

Gm(f: m)= m+ m (1 f)f+ +  F @ )+ +

The 2 levels curves go through the origin andim > 0 when E go to in nity. To prove the existence
and uniqueness of endemic equilibrium, we have to prove thahese 2 level curves intersect only once in
the rst positive quadrant ( ¢ > 0; , > 0), ¢ is on the x-axis . Following the method described by
Elbasha (2006), we prove that : ifR, > 1 the level curve G, is above G¢ around the origin, and the
slopes of level curves are positive. Furthermore, each ldveurve intersects only once a ray from the origin.
So, if Ry > 1, the endemic equilibrium exists.

In our modeling, we assumed that vaccination immunity is lielong, this particular case was studied by
Elbasha (2006), whenR, > 1, the both curves are monotically increasing in the positivequadrant, thus
the two level curves intersect only once in the positive quadnt, therefore the endemic equilibrium is
uniqgue whenRy > 1.

If Ry < 1, following the proof described by Elbasha (2006), there is @ positive endemic equilibrium.



