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We consider the four-boson and 3+1 fermionic problems with a model Hamiltonian which encap-
sulates the mechanism of the Feshbach resonance involving the coherent coupling of two atoms in
the open channel and a molecule in the closed channel. The model includes also the pair-wise direct
interaction between atoms in the open channel and in the bosonic case, the direct molecule-molecule
interaction in the closed channel. Interactions are modeled by separable potentials which makes it
possible to reduce the four-body problem to the study of a single integral equation. We take ad-
vantage of the rotational symmetry and parity invariance of the Hamiltonian to reduce the general
eigenvalue equation in each angular momentum sector to an integral equation for functions of three
real variables only. A first application of this formalism in the zero-range limit is given elsewhere
[Y. Castin, C. Mora, L. Pricoupenko, Phys. Rev. Lett. 105, 223201 (2010)].

Résumé : Équations intégrales pour le problème à quatre corps

Nous considérons les problèmes à quatre bosons et à 3+1 fermions en utilisant un Hamiltonien
modèle incluant le mécanisme de la résonance de Feshbach avec un couplage cohérent entre deux
atomes dans la voie ouverte et une molécule dans la voie fermée. Le modèle comprend aussi une
interaction directe entre atomes dans la voie ouverte, et dans le cas bosonique, l’interaction entre
deux molécules de la voie fermée. Les interactions sont modélisées par des potentiels séparables, ce
qui permet de ramener le problème à quatre corps à la résolution d’une équation intégrale unique.
L’invariance par rotation et par parité du Hamiltonien permet de réduire l’équation aux valeurs
propres générale dans chaque secteur de moment cinétique fixé à une équation intégrale portant sur
des fonctions de trois variables réelles seulement. Une première application de ces considérations a
déjà été mise en œuvre dans [Y. Castin, C. Mora, L. Pricoupenko, Phys. Rev. Lett. 105, 223201
(2010)].

I. INTRODUCTION

The few-body problem is the object of a renewed interest [1], considering the possibility to study experimentally
this problem in a resonant regime with cold atoms close to a Feshbach resonance [2]. In this resonant regime, the
s-wave scattering length a describing the interaction between the particles is much larger (in absolute value) than the
range b of the interaction potential, which may be estimated by the van der Waals length of a few nanometers [3].
The three-body resonant problem, initiated in particular in Refs. [4–6], has been the subject of numerous studies

[1]. Two distinct situations have been identified, depending on the quantum statistics and the mass ratios of the
particles. In the first case, there exists a zero-range limit, where both the true range b and the effective range re of
the interaction tend to zero. The interactions may then be replaced by contact conditions on the wavefunction, which
define the so-called Bethe-Peierls [7, 8] or zero-range model. The interaction is then described by a as the single
parameter. The paradigm of this first case is three spin-1/2 fermions with equal masses for the two spin states. In
the second case, the Efimovian case, the zero-range limit does not exist and is replaced by a limit cycle. The minimal
model is then a modified zero-range model supplemented with three-body contact conditions involving the three-body
parameter Rt that depends on the microscopic details of the interaction. Then the interaction is described by only
two parameters: a and Rt. The archetype of the second case is three indistinguishable bosons. The second case leads
to the Efimov effect, that is for |a| = ∞ there is an infinite number of weakly bound trimers with an accumulation
point in the spectrum at zero energy.
In reality, the physics of the Feshbach resonance is not exhausted by the zero-range model [3]. In particular, a

Feshbach resonance involves two channels in the interaction between two low-energy atoms, one channel being open
and the other one being closed due to energy conservation. In the specific case of ultra-narrow Feshbach resonances,
where the effective range re is negative and much larger in absolute value than the true range b, re becomes an
important parameter. It may be taken into account by modified Bethe-Peierls contact conditions [9–11], the so-called
effective range approach, or more straightforwardly by use of a two-channel model [12–20]. In the general case,
Feshbach resonances are richer, as e.g. a form or potential resonance may take place in the open channel, in which
case the background scattering length abg is large and the modified Bethe-Peierls conditions [9–11] may not reproduce
correctly the momentum dependence of the two-body scattering amplitude at low energy [41] [20–23]. Using a two-
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channel model, with the description of the direct atomic interaction in the open channel by a separable potential, is
then the simplest way to have a reasonably accurate description of the atomic physics behind the Feshbach resonance,
while keeping the simplicity of the integral equations resulting from zero-range models.
The four-body problem is now under active investigation. The situation is more open, since no analytical solution is

available (contrary to the three-body case). In the absence of Efimov effect, the plain Bethe-Peierls model may be used
for broad Feshbach resonances [24, 25]. In principle exact numerical calculation of the resulting integral equation may
be done, and was indeed performed to determine a dimer-dimer scattering length in Ref. [25]. Also efficient numerical
methods have been used to solve the case of four or more harmonically trapped two-component fermions [26–28] In the
Efimovian case, for four bosons, finite range real space models, specified by an interaction potential V (rij), have been
recently used in the context of cold atoms but have been solved only in an approximate way [29]. As a consequence, the
tetramer states predicted in [29] that have (negative) energies larger than the trimer ground state energy are actually
resonances rather than genuine stationary states. In the nuclear physics context, however, exact numerical solutions
of the four-body problem with real space interaction potentials V (rij) can be obtained thanks to the reformulation
in terms of momentum-space Faddeev-Yakubovsky integral equations [30, 31]. A numerical solution of a low-energy
effective theory based on this integral formulation was used in Ref. [32] to predict universal properties of the ground
four-boson state of that theory. The Faddeev-Yakubovsky integral formulation may also be used to solve the four-body
problem with a separable potential interaction and to calculate the energy width of the resonances corresponding to
the tetramers of [29], as recently done in [33]. A limitation of the present Faddeev-Yakubovsky formulation seems to
be, however, that it does not encapsulate the atomic physics of the Feshbach resonance.
To answer as quantitatively as possible current questions on the four-body problem, we use in this paper a four-

parameter two-channel model to derive without approximation a simple integral equation in momentum space for
the four-body problem, involving an unknown function of two atomic momenta only. No solution of the equation is
presented here, but we presented elsewhere a first application of this formalism in the limiting case of a zero-range
interaction [34] and we expect that other applications will come. In this paper, we take as specific examples first
the case of four spinless bosons, in section II, and then the so-called 3 + 1 fermionic problem of three same spin
state fermions of mass m interacting with a distinguishable particle of mass M , in section III. The reduction of
the integral equation thanks to the rotational symmetry of the Hamiltonian is performed in section IV, leading to
unknown functions of three real variables only. We conclude in section V.

II. THE FOUR-BOSON PROBLEM

A. Model Hamiltonian and two-body scattering amplitude

Our model is a two-channel model of a magnetic Feshbach resonance [12, 13]. This means that the atoms may
actually exist in two different forms in the model, either as atoms in the open channel, treated as elementary bosons,
or as molecules in the closed channel, the so-called closed channel molecules. Since these molecules have a size of the
order of the van der Waals length b, usually smaller than the mean distance between them, they are also treated as
elementary bosons. There exists a short-range coupling between the two channels, due in particular to the existence
of hyperfine atomic degrees of freedom, so that two atoms may coherently be converted to a closed-channel molecule,
and vice versa. This coherent interconversion leads to an effective interaction between the atoms, that may be made
resonant by tuning with a magnetic field the energy Emol of a closed-channel molecule counted with respect to the
dissociation limit of the open channel potential. Even in the absence of this interconversion, atoms in the open channel
can interact via the van der Waals potential, and this so-called background interaction is sometimes also resonant
and cannot be neglected.
Our model Hamiltonian thus involves two coupled bosonic fields, one for the open channel atoms and one for the

closed-channel molecules. For simplicity, we assume that there is no trapping potential and we perform calculations
directly in momentum space without any quantization volume (the real space version of the Hamiltonian was written

in Ref. [35]). The creation a†
k
and annihilation ak operators of one atom of wave vector k, and the creation b†

k
and

annihilation bk operators of one closed channel molecule of center-of-mass wave vector k then obey the canonical
commutation relations

[ak, a
†
k′ ] = [bk, b

†
k′ ] = (2π)3δ(k− k

′). (1)

The other commutators are zero, in particular ak and a†
k
commute with bk and b†

k
. The Hamiltonian may be split in

four terms,

H = Hat +Hmol +Hopen +Hat−mol. (2)
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The first two terms contain the kinetic energy (and the internal energy) of non-interacting atoms and molecules,

Hat =

∫

d3k

(2π)3
Eka

†
k
ak (3)

Hmol =

∫

d3k

(2π)3
(Emol +

1

2
Ek)b

†
k
bk. (4)

We have introduced the convenient notation for the kinetic energy of an atom of wave vector k,

Ek =
~
2k2

2m
, (5)

and we shall use in what follows the parity invariance Ek = E−k.
The third term in Eq. (2) describes the direct interaction between atoms in the open channel. In principle, one

should describe this interaction using true binary potentials V (rij) with a 1/r6ij Van der Waals tail [36–38]. This
however precludes the derivation of a simple integral equation for the four-body problem. We thus rather take the
convenient form of a separable potential, see e.g. [39]:

Hopen =
g0
2

∫

d3k1
(2π)3

d3k2
(2π)3

d3k3
(2π)3

d3k4
(2π)3

χ(
k3 − k4

2
)χ(

k2 − k1

2
)(2π)3δ(k1 + k2 − k3 − k4)a

†
k3
a†
k4
ak2

ak1
. (6)

It involves a bare coupling constant g0 and a cut-off function χ making the theory well defined. In practice, we take
as in Ref. [14, 18] a real Gaussian cut-off function, which is both a smooth and rapidly decreasing function of k,

χ(k) = e−k2b2/2, (7)

where b is of the order of the van der Waals length. The Gaussian choice is of course arbitrary, and may be replaced
by any rapidly decreasing function of k. An important point is that the separable potential is able to capture the
essential features of the Feshbach resonance, such as the dependance of the scattering length with the magnetic field
(12), or the structure (18) of the effective range.
The last term in Eq. (2) describes the coherent interconversion of pairs of atoms into closed-channel molecules,

responsible for the Feshbach resonance:

Hat−mol = Λ

∫

d3k1
(2π)3

d3k2
(2π)3

[

χ(
k2 − k1

2
)b†

k1+k2
ak2

ak1
+ χ(

k2 − k1

2
)a†

k1
a†
k2
bk1+k2

]

(8)

It involves a coupling amplitude Λ between the two channels, taken to be real, and (for simplicity) the same cut-off
function χ of the relative momentum of two bosons, implementing in momentum space the fact that, in real space, the
conversion process is non-local over a radius ≈ b only, that is two atoms are converted to a closed-channel molecule
with an appreciable probability amplitude only if their interatomic distance is of the order of b or less. This cut-
off function is actually required to make Hat−mol mathematically sound. Note that each of the four terms of the
Hamiltonian conserves the total momentum and preserves Galilean invariance, as it should be.
It appears that our model Hamiltonian depends on four bare parameters b, g0, Emol and Λ. Apart from the true

range b, the other three parameters are more physically expressed in terms of the scattering length a, the background
scattering length abg and the always positive Feshbach length R∗ [10]. The link is performed thanks to the solution of
the two-atom scattering problem, that was detailed in [35] for two opposite spin fermions, and that is adapted to the
present bosonic case by replacing Λ2 in the result of [35] by 2Λ2. The resulting expression of the two-body T matrix
is then

〈kf |T (E + i0+)|ki〉 = −4π~2

m
χ(kf )χ(ki) f(E + i0+) (9)

where ki and kf are the wave vectors of the incoming wave and outgoing wave in the center of mass frame, E is the
energy in that frame and we have defined the function of energy f(E + i0+) such that:

−m
4π~2f(E + i0+)

=

[

g0 +
2Λ2

E − Emol

]−1

−
∫

d3k

(2π)3
χ2(k)

E + i0+ − 2Ek

. (10)

The calculation in [35] was done on shell, that is for k2i = k2f = mE/~2, and E ≥ 0. In this case, the function f(E) is

simply related to the s-wave scattering amplitude fk at that energy, with k = (mE)1/2/~, by the relation

fk = χ(kf )χ(ki)f(E + i0+). (11)
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By an analytic continuation argument, Eq. (9) actually also holds off shell, for all values of ki, kf and E. Assuming
that Emol is an affine function of the magnetic field B, a good approximation if B remains close to the Feshbach
resonance location B0, one extracts from Eq. (9) the standard formula for the magnetic field dependence of the
scattering length a ≡ limk→0 −fk,

a = abg

[

1− ∆B

B −B0

]

, (12)

where abg is the background scattering length and ∆B is the width of the Feshbach resonance. The Feshbach length
is connected to this width by

R∗ =
~
2

mabgδµ∆B
, (13)

where δµ = dEmol/dB. The physical parameters of the Feshbach resonance are finally found to be related to the bare
ones by

1

abg
=

4π~2/m

g0
+

1

b
√
π

(14)

1

a
=

4π~2/m

g0 − 2Λ2/Emol
+

1

b
√
π

(15)

R∗ =
g20

8πΛ2a2bg
, (16)

which allows a direct connection with the experimental parameters. The expression of the function f(E) of our model
for E ≥ 0, and of its analytic continuation to E < 0, is also quite simple in terms of the physical parameters [35],

− ek
2b2

f(E + i0+)
= − 1

fk
=
ek

2b2

a

[

1−
(

1− a

abg

)

k2

k2 −Q2

]

− ik erf (−ikb) + ik (17)

where erf is the error function, we have set k = (mE)1/2/~ for E ≥ 0 and k = i(−mE)1/2/~ for E < 0, and we have
introduced Q2 such that −1/Q2 = abgR∗(1 − abg/a). This allows in particular a direct calculation of the effective
range re of the model [35], defined as −1/fk = 1

a + ik − 1
2k

2re + o(k2) for k → 0,

re = −2R∗

(

1− abg
a

)2

+
4b√
π
− 2b2

a
. (18)

Another quantity of interest for what follows is the internal energy Emol of a decoupled closed-channel molecule.
It may be expressed in terms of b and of the three physical parameters a, abg and R∗ using Eqs. (14,15,16). For
simplicity, we give this expression only at resonance 1/a = 0 :

Eres
mol = − ~

2

mR∗(abg − b
√
π)
. (19)

Since R∗ is positive, Eres
mol is negative if and only if abg > b

√
π.

B. Four-body ansatz and coupled equations

We consider for simplicity a four-body eigenvector of our model Hamiltonian in free space with an eigenenergy E
obeying the two conditions

E < 0 and E − 2Emol < 0. (20)

The case of E > 0 is a four-atom scattering problem that may be treated along the lines of e.g. [18], including in
particular an incoming free four-atom state. For the same reason of simplicity, to avoid the treatment of the scattering
problem of two closed-channel molecules, we also impose E− 2Emol < 0 [42] In the two-channel model, the four-body
state vector is in general a coherent superposition of a component with four atoms in the open channel, a component
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with two atoms in the open channel and one closed-channel molecule, and a component with two closed-channel
molecules,

|Ψ〉 = |ψ4 at〉+ |ψ2 at+1mol〉+ |ψ2mol〉. (21)

Restricting without loss of generality to a zero total momentum state, we obtain the ansatz

|ψ4 at〉 =

∫

d3k1
(2π)3

d3k2
(2π)3

d3k3
(2π)3

d3k4
(2π)3

(2π)3δ(k1 + k2 + k3 + k4)A(k1,k2,k3,k4)a
†
k1
a†
k2
a†
k3
a†
k4
|0〉, (22)

|ψ2 at+1mol〉 =

∫

d3k1
(2π)3

d3k2
(2π)3

B(k1,k2)b
†
−(k1+k2)

a†
k1
a†
k2
|0〉, (23)

|ψ2mol〉 =

∫

d3k

(2π)3
C(k)b†

k
b†−k

|0〉. (24)

Thanks to the bosonic symmetry, ensuring that all the creation operators commute, we can impose that the amplitude
A is a symmetric function of its four arguments, the amplitude B is a symmetric function of its two arguments, and
C(k) is an even function of k.
It remains to calculate H |Ψ〉 and to project Schrödinger’s equation 0 = (H−E)|Ψ〉 on the three relevant subspaces.

Projection in the sector with four open channel atoms yields

0 =

∫

d3k1
(2π)3

d3k2
(2π)3

d3k3
(2π)3

d3k4
(2π)3

(2π)3δ(k1 + k2 + k3 + k4)F4(k1,k2,k3,k4)a
†
k1
a†
k2
a†
k3
a†
k4
|0〉 (25)

with the function

F4(k1,k2,k3,k4) =

[

−E +
4

∑

n=1

Ekn

]

A(k1,k2,k3,k4) + χ(
k1 − k2

2
)[6g0B̃(k3,k4) + ΛB(k3,k4)]. (26)

The first term in the right-hand side clearly contains the kinetic energies of the four atoms. In the second term,
the occurrence of the B amplitude of the ansatz is due to the conversion of a closed-channel molecule into two open
channel atoms, as is revealed by the presence of the factor Λ. Finally, the term proportional to g0 is due to the direct
pair-wise interaction between the four atoms in the open channel. Since this interaction is modeled by a separable
potential, it involves a function of two momenta only, obtained by contracting the four-boson amplitude A with the
cut-off function χ,

B̃(k1,k2) ≡
∫

d3k3
(2π)3

d3k4
(2π)3

(2π)3δ(k1 + k2 + k3 + k4)χ(
k3 − k4

2
)A(k3,k4,k1,k2). (27)

We have introduced the notation B̃ to underline the formal similarity of this term in Eq. (26) with the two-channel
contribution ΛB. Eqs. (25,26) allow to express the four-boson amplitude A in terms of two-body amplitudes B and

B̃. Because of bosonic symmetry, Eq. (25) does not imply that F4 is identically zero, it only implies that the totally
symmetric component of F4, symmetrized over the 4! permutations σ of the four arguments k1,2,3,4, is zero. This
leads to

A(k1,k2,k3,k4) =
1

4!

∑

σ∈S4

χ(
kσ(1) − kσ(2)

2
)
6g0B̃(kσ(3),kσ(4)) + ΛB(kσ(3),kσ(4))

E −∑4
n=1Ekn

. (28)

The unknown amplitude A can thus be eliminated in the remaining part of the calculation. Insertion of Eq. (28) in
the definition (27) gives

B̃(k1,k2) =

∫

d3k3
(2π)3

d3k4
(2π)3

(2π)3δ(
∑4

n=1 kn)

E −∑4
n=1 Ekn

1

4!

∑

σ∈S4

χ(
k3 − k4

2
)χ(

kσ(1) − kσ(2)

2
)[6g0B̃ + ΛB](kσ(3),kσ(4)). (29)

Collecting permutations giving identical contributions, up to a relabeling of the integration variables, gives the more
explicit form [43]

B̃(k1,k2) =

∫

d3k3
(2π)3

d3k4
(2π)3

(2π)3δ(
∑4

n=1 kn)

E −∑4
n=1Ekn

1

6
χ(

k3 − k4

2
)

{

χ(
k3 − k4

2
)[6g0B̃ + ΛB](k1,k2)

+χ(
k1 − k2

2
)[6g0B̃ + ΛB](k3,k4) + 2

[

χ(
k3 − k1

2
)[6g0B̃ + ΛB](k2,k4) + 1 ↔ 2

]}

. (30)
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This equation is the first important equation of this subsection.
We now project Schrödinger’s equation 0 = (H − E)|Ψ〉 in the sector with two open channel atoms and one

closed-channel molecule. We obtain

0 =

∫

d3k1
(2π)3

d3k2
(2π)3

F2(k1,k2)b
†
−(k1+k2)

a†
k1
a†
k2
|0〉 (31)

with

F2(k1,k2) = [Ek1
+ Ek2

+
1

2
Ek1+k2

+ Emol − E]B(k1,k2) + 12ΛB̃(k1,k2)

+ χ(
k1 − k2

2
)[2ΛC(k1 + k2) + g0β(k1 + k2)]. (32)

In the first term in the right-hand side of F2, we recognize the kinetic energies of two atoms, plus the kinetic and
internal energies of a closed-channel molecule of wavevector −(k1+k2). The contributions ΛB̃ and ΛC are due to the
interchannel coupling, respectively converting a pair of atoms into a closed-channel molecule and vice versa. The fact
that the same contraction B̃ defined in Eq. (27) appears as in the four-atom sector is due to the choice of the same
cut-off function in the separable potential and the open-to-closed-channel coupling. Finally, the term proportional
to g0 in Eq. (32) results from the direct open channel interaction between the two open channel atoms present in
|ψ2 at+1mol〉. This involves the contraction of B with the cut-off function χ, that we call β,

β(K) =

∫

d3k1
(2π)3

d3k2
(2π)3

(2π)3δ(k1 + k2 −K)χ(
k1 − k2

2
)B(k1,k2). (33)

Since F2 is a symmetric function of k1 and k2, Eq. (31) directly imposes F2(k1,k2) = 0.
Finally, projecting Schrödinger’s equation 0 = (H − E)|Ψ〉 in the sector with zero open channel atom and two

closed-channel molecules gives

0 =

∫

d3k

(2π)3
F0(k)b

†
k
b†−k

|0〉 (34)

with

F0(k) = (2Emol + Ek − E)C(k) + Λ[β(k) + β(−k)]. (35)

The first term in the right-hand side contains the kinetic and internal energies of the two closed-channel molecules,
and the last term originates from the conversion of two atoms into a closed-channel molecule. The direct open channel
interaction does not enter here. The fact that the same contracted function β appears as in Eq. (32) is due to the
fact that the same cut-off function χ is used in Hopen and Hat−mol. Since F0(k) is an even function of k, Eq. (34)
directly imposes F0(k) = 0, which allows to eliminate C,

C(k) = Λ
β(k) + β(−k)

E − Ek − 2Emol
. (36)

We used the condition Eq. (20) to ensure that the energy denominator in that expression cannot vanish. Reporting
this into the equation F2 = 0 gives the second important equation of this subsection,

− 12ΛB̃(k1,k2) = [Ek1
+ Ek2

+
1

2
Ek1+k2

+ Emol − E]B(k1,k2)

+ χ(
k1 − k2

2
)

[

g0β(k1 + k2) + 2Λ2β(k1 + k2) + β(−k1 − k2)

E − Ek1+k2
− 2Emol

]

. (37)

C. A single integral equation

We now show that, remarkably, the rather involved set of equations (30) and (37) can be reduced to a single explicit
integral equation on the unknown function D(k1,k2) defined as:

ΛD(k1,k2) = 6g0B̃(k1,k2) + ΛB(k1,k2). (38)
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We note that this function naturally appears in the right-hand side of Eq. (30). The left-hand side of Eq. (30) involves

B̃, which is a linear combination of the functions D and B. The only non trivial step is thus to express B as a function
of D using Eq. (37). We rewrite Eq. (37) introducing an effective β function,

βeff(K) ≡ β(K) +
2Λ2

g0

β(K) + β(−K)

E − EK − 2Emol
, (39)

and introducing what we call the relative energy for a reason that will become clear in the final result,

Erel(k1,k2) ≡ E − Ek1
− Ek2

− 1

2
Ek1+k2

. (40)

Eliminating B̃ in terms of D and B thanks to Eq. (38), we transform Eq. (37) into

D(k1,k2)

u(k1,k2)
= B(k1,k2)−

g20
2Λ2

χ(
k1 − k2

2
)
βeff(k1 + k2)

u(k1,k2)
(41)

with the notation

u(k1,k2) ≡ 1− g0
2Λ2

[Emol − Erel(k1,k2)]. (42)

Eq. (41) does not immediately give B in terms of D because of the occurrence of βeff in the right-hand side. Conse-
quently, one has first to express βeff in terms of D. We note that the Hamiltonian H of the system is invariant by
parity. We can thus without loss of generality assume that the eigenstate |Ψ〉 of H that we consider is of well defined

parity η, with η = 1 (even state) or −1 (odd state). Hence, the functions B, B̃ and thus D, β have also the parity η.
For example,

D(−k1,−k2) = ηD(k1,k2) and β(−K) = ηβ(K). (43)

This makes Eq. (39) local in K, expressing βeff(K) as the product of β(K) and of a known η-dependent function
of K. Since β(K) results from the contraction of B(k1,k2) with the cut-off function χ, see Eq. (33), it remains to
multiply Eq. (41) by δ(k1 + k2 −K)χ

(

k1−k2

2

)

and to integrate over k1 and k2. In the left-hand side of Eq. (41) the
contraction of D/u with χ immediately appears, we call it

∆(K) ≡
∫

d3k1
(2π)3

d3k2
(2π)3

(2π)3δ(k1 + k2 −K)χ(
k1 − k2

2
)
D(k1,k2)

u(k1,k2)
. (44)

We finally obtain the desired expression βeff in terms of D,

βeff(K) = v(K)∆(K) (45)

where we have introduced the parity dependent notation

v(K) =

{

[

1 +
(1 + η)2Λ2/g0
E − EK − 2Emol

]−1

− g20
2Λ2

∫

d3k

(2π)3
χ2(k)

u(12K− k, 12K+ k)

}−1

. (46)

Eq. (41) thus now gives B explicitly as a functional of D. This, combined with Eq. (38), immediately gives B̃ as a
functional of D. The left-hand side of Eq. (30) is then also expressed in terms of D. Since the right-hand side of
Eq. (30) is directly a functional of D, Eq. (30) (multiplied for convenience by the factor 6/Λ) reduces to the desired
closed integral equation for the unknown function D. Collecting in the right-hand side of that integral equation the
two terms involving D(k1,k2), that is one term originating from B̃ and the other term originating from the right-hand
side of Eq. (30), we get as a prefactor of D(k1,k2) the function

prefactor = − 1

g0

(

1− 1

u(k1,k2)

)

+

∫

d3k3
(2π)3

d3k4
(2π)3

(2π)3δ(
∑4

n=1 kn)

E −∑4
n=1Ekn

χ2(
k3 − k4

2
). (47)

This may be transformed using the explicit expression of the function u, the identity

(2π)3δ(
∑4

n=1 kn)

E −∑4
n=1Ekn

=
(2π)3δ(k1 + k2 + k3 + k4)

Erel(k1,k2)− 2E(k4−k3)/2
(48)
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and performing the change of variable of unit Jacobian, k3,4 = K

2 ± k. Remarkably, the prefactor can then be linked
to the function f appearing in the two-body T matrix at the energy Erel,

prefactor =
m

4π~2f [Erel(k1,k2)]
. (49)

This justifies the name relative energy for Erel. To conclude, we give the final equation for D, which is the main result
of this section:

0 =
mD(k1,k2)

4π~2f [Erel(k1,k2)]
+

g0
2Λ2

χ(
k1 − k2

2
)
v(k1 + k2)

u(k1,k2)
∆(k1 + k2) +

∫

d3k3
(2π)3

d3k4
(2π)3

{ (2π)3δ(
∑4

n=1 kn)

E −∑4
n=1Ekn

χ(
k3 − k4

2
)

[

χ(
k1 − k2

2
)D(k3,k4) + 2χ(

k3 − k1

2
)D(k2,k4) + 2χ(

k3 − k2

2
)D(k1,k4)

]

}

. (50)

This has to be solved for a bosonic symmetry of D, D(k1,k2) = D(k2,k1). We note that the second term in the
right-hand side of Eq. (50) has no equivalent in zero-range theories and is to our knowledge new.

D. Including closed-channel molecule interaction

In the previous subsections, any direct interaction between closed-channel molecules was neglected. Here we derive
a modified closed integral equation for the function D(k1,k2), including the intermolecular s-wave interaction in the
form of a separable potential with the previously introduced cut-off function χ(k) and a bare coupling constant gmol

0 .
This amounts to adding to the model Hamiltonian Eq. (2) the term

H2mol =
1

2
gmol
0

∫

d3K

(2π)3
d3k

(2π)3
d3k′

(2π)3
χ(k)χ(k′)b†1

2
K+k′

b†1
2
K−k′

b 1
2
K+kb 1

2
K−k. (51)

This term H2mol has a non-zero action only on the component |ψ2mol〉 of the four-body state vector |Ψ〉 in Eq. (21).
Projecting Schrödinger’s equation in that two closed-channel molecule sector gives Eq. (34) with the function F0(K)
modified as

F0(K) = (2Emol + EK − E)C(K) + Λ [β(K) + β(−K)] + gmol
0

∫

d3K ′

(2π)3
χ(K)χ(K′)C(K′). (52)

Since F0 is an even function, Schrödinger’s equation requires F0(K) = 0. This leads to an integral equation of the
Lippmann-Schwinger type:

C(K) = C0(K) + gmol
0 G0

mol(K)χ(K)

∫

d3K ′

(2π)3
χ(K′)C(K′), (53)

where C0(K) = ΛG0
mol(K) [β(K) + β(−K)] , and G0

mol(K) = 1/(Erel
mol − Ek) is the free Green’s function of the two

closed-channel molecules at the relative energy Erel
mol ≡ E − 2Emol. We recall that here E < 2Emol, see Eq. (20). To

solve the Lippmann-Schwinger equation (53), one multiplies it by χ(K) and one integrates over K. A closed equation

is then obtained for γ ≡
∫

d3K
(2π)3χ(K)C(K). This leads to the expression of C(K) as a functional of C0(K), and thus

of the contracted pair function β(K):

C(K) = C0(K) + gmolG0
mol(K)χ(K)

∫

d3K ′

(2π)3
χ(K′)C0(K

′), (54)

where gmol is the effective molecular coupling constant defined by

gmol ≡
(

1

gmol
0

−
∫

d3K ′

(2π)3
G0

mol(K
′)χ2(K′)

)−1

. (55)

Similarly to the previous subsection, the four-body problem at an energy satisfying Eq. (20) can be reduced to
an integral equation for the function D(k1,k2) defined in Eq. (38). Remarkably, one finds that the only change to
perform to Eq. (50) is the substitution

v(K)∆(K) → v(K)∆(K) +
gmolχ(K)v(K)

1 +
[

2(1+η)Λ2

g0
G0

mol(K)
]−1

{ − 2Λ2

g2
0

∫

d3K′

(2π)3
χ(K′)G0

mol(K
′)∆(K′)

R(K′)I(K′)

1 + 2(1+η)Λ2gmol

g0

∫

d3K′

(2π)3
[χ(K′)G0

mol
(K′)]2

R(K′)

}

(56)
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where we have introduced the functions:

R(K′) = 1 +
2(1 + η)Λ2

g0
G0

mol(K
′)− 2Λ2

g20I(K
′)

and I(K′) =

∫

d3k

(2π)3
χ2(k)

u(12K
′ − k, 12K

′ + k)
. (57)

As expected, the odd states (η = −1) are not affected by the s-wave closed-channel molecule interaction. For even
states (η = 1), the term added by the substitution is in general non zero. It may significantly affect the integral
equation for D, that is even for the low-energy eigenstates |E| ≪ ~

2/(mb2), when the following resonance condition
is met:

∣

∣

∣

∣

1 +
4Λ2gmol

g0

∫

d3K ′

(2π)3
[χ(K′)G0

mol(K
′)]2

R(K′)

∣

∣

∣

∣

≪ 1. (58)

To obtain Eq. (56), we had to recalculate the function βeff ≡ β(K)+(2Λ/g0)C(K), now including the closed-channel
molecule interaction. For this purpose, we used the expression of ∆ in terms of β and βeff :

∆(K) = β(K) − βeff(K)× g20
2Λ2

∫

d3k

(2π)3
χ2(k)

u(12K− k, 12K+ k)
(59)

Introducing as in the previous subsection the parity η of the state one can write:

βeff(K) =

[

1 +
2(1 + η)Λ2G0

mol(K)

g0

]

β(K) +
2(1 + η)Λ2gmol

g0
G0

mol(K)χ(K)

∫

d3K ′

(2π)3
χ(K′)G0

mol(K
′)β(K′). (60)

Simple algebra on this expression and comparison of the result to Eq. (45) finally lead to the prescribed substitution
Eq. (56). An interesting extension of this subsection would be to include a direct interaction between the closed-
channel molecules and the open-channel atoms, to see if there still exists a closed integral equation for D(k1,k2).

III. THE 3+1 FERMIONIC PROBLEM

We now consider the four-body problem corresponding to the interaction of three same spin state fermions of mass
m with an extra, distinguishable particle of mass M , for example of another atomic species. There is no possible
s-wave interaction among the fermions, and we assume that their interaction in odd angular momentum waves (in
particular the p-wave) is negligible. The fermions thus interact only with the extra particle, either directly in the open
channel, or indirectly through the creation of a closed-channel molecule. Since the extra particle is alone, there is no
need to specify the statistical nature of that particle, nor of the closed-channel molecule. An important difference with
the previous four-body bosonic case is that the subspace with two closed-channel molecules will not be populated, and
also that there is no direct open channel interaction in the subspace with two atoms and one closed-channel molecule.
All this simplifies the problem.

A. Model Hamiltonian and two-body scattering amplitude

The fermionic annihilation and creation operators are called ck and c†
k
, they obey the usual free space anticommu-

tation relations {ck, c†k′} = (2π)3δ(k−k
′). They are assumed to commute with the extra particle creation operator a†

k

and with a closed-channel molecule creation operator b†
k
, that also commute among themselves. The total Hamiltonian

H = Hat +Hmol +Hat−mol +Hopen with

Hat =

∫

d3k

(2π)3

[

Ekc
†
k
ck + αEka

†
k
ak

]

(61)

Hmol =

∫

d3k

(2π)3

(

Emol +
α

1 + α
Ek

)

b†
k
bk (62)

Hat−mol = Λ

∫

d3k1d
3k2

[(2π)3]2
χ(k12)[b

†
k1+k2

ak1
ck2

+ a†
k1
c†
k2
bk1+k2

] (63)

Hopen = g0

∫

d3k1d
3k2d

3k3d
3k4

[(2π)3]4
χ(k12)χ(k43)(2π)

3δ(k1 + k2 − k3 − k4)a
†
k4
c†
k3
ck2

ak1
. (64)



10

We have introduced the free fermion dispersion relation Ek = ~
2k2/(2m) and the mass ratio of a fermion to the extra

particle:

α ≡ m

M
. (65)

As compared to the bosonic case, we have dropped the factor 1/2 in front of g0 in Hopen since the extra particle is
distinguishable from the fermions. More important, to maintain the Galilean invariance, the argument of the cut-off
function χ is now the relative wave vector of a fermion (of momentum ~k2) with respect to the extra particle (of
momentum ~k1):

k12 ≡ µ

(

k2

m
− k1

M

)

=
k2 − αk1

1 + α
, (66)

where µ = mM/(m +M) is the reduced mass. In this notation for the relative wavevector k12, it is important to
keep in mind that the first index refers to the extra particle and the second index to a fermion.
The two-body scattering of the extra particle with a fermion is similar to the two-body bosonic problem of subsection

IIA. In the bosonic formulas Eqs. (14,15,16), one simply has to replace m with 2µ and 2Λ2 with Λ2. The two-body
T matrix is now given by

〈kf |T (E + i0+)|ki〉 = −2π~2

µ
χ(kf )χ(ki) f(E + i0+) (67)

where ki and kf are relative wavevectors and the function f now reads

−µ
2π~2f(E + i0+)

=

[

g0 +
Λ2

E − Emol

]−1

−
∫

d3k

(2π)3
χ2(k)

E + i0+ − ~2k2/(2µ)
. (68)

The connection of f with the s-wave scattering amplitude fk on shell is still given by Eq. (11) with now k = ki =
kf = (2µE)1/2/~. Also relation Eq. (17) still holds, with k = (2µE)1/2/~ for E ≥ 0 and k = i(−2µE)1/2/~ for E < 0.

B. Four-body ansatz and coupled equations

The ansatz for the four-body state is now simplified to |Ψ〉 = |ψ4 at〉+ |ψ2 at+1 mol〉 with

|ψ4 at〉 =

∫

d3k1
(2π)3

d3k2
(2π)3

d3k3
(2π)3

d3k4
(2π)3

(2π)3δ(k1 + k2 + k3 + k4)A(k1,k2,k3,k4)a
†
k1
c†
k2
c†
k3
c†
k4
|0〉 (69)

|ψ2 at+1mol〉 =

∫

d3k1
(2π)3

d3k2
(2π)3

B(k1,k2)b
†
−(k1+k2)

c†
k1
c†
k2
|0〉. (70)

Taking advantage of the fermionic symmetry, we impose that A is an antisymmetric function of its last three vectorial
arguments, and that B is an antisymmetric function of its two vectorial arguments.
By projecting Schrödinger’s equation 0 = (H − E)|Ψ〉 in the four-atom sector, where we impose E < 0 so as to

avoid, as in the bosonic case, vanishing energy denominators, we obtain

0 =

∫

d3k1
(2π)3

d3k2
(2π)3

d3k3
(2π)3

d3k4
(2π)3

(2π)3δ(k1 + k2 + k3 + k4)F4(k1,k2,k3,k4)a
†
k1
c†
k2
c†
k3
c†
k4
|0〉 (71)

with

F4(k1,k2,k3,k4) =

[

−E + αEk1
+

4
∑

n=2

Ekn

]

A(k1,k2,k3,k4) + χ(k12)[3g0B̃(k3,k4) + ΛB(k3,k4)]. (72)

We have defined B̃ by a contraction of A with the cut-off function χ,

B̃(k3,k4) =

∫

d3k1d
3k2

[(2π)3]2
χ(k12)(2π)

3δ(k1 + k2 + k3 + k4)A(k1,k2,k3,k4). (73)
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Similarly to the bosonic case, the unknown function in the final integral equation will be a linear combination of B̃
and of B:

ΛD(k3,k4) ≡ 3g0B̃(k3,k4) + ΛB(k3,k4). (74)

Since the antisymmetric part of F4 with respect to its last three vectorial arguments is zero by virtue of Eq. (71), we
obtain A as a function of D:

A(k1,k2,k3,k4) =
Λ/3

E − (αEk1
+
∑4

n=2Ekn
)
[χ(k12)D(k3,k4)− χ(k13)D(k2,k4) + χ(k14)D(k2,k3)] . (75)

This we insert in the definition of B̃. After the renumbering 1234 → 3412 in Eq. (75), the extra particle now having

the index 3, we also obtain B̃ as a function of D:

3

Λ
B̃(k1,k2) =

∫

d3k3d
3k4

[(2π)3]2
(2π)3δ(

∑4
n=1 kn)

E − (αEk3
+
∑

n6=3Ekn
)
χ(k34)

×[χ(k34)D(k1,k2)− χ(k31)D(k4,k2) + χ(k32)D(k4,k1)]. (76)

By projecting 0 = (H − E)|Ψ〉 in the subspace with two fermions and one closed-channel molecule, we obtain

0 =

∫

d3k1
(2π)3

d3k2
(2π)3

F2(k1,k2)b
†
−(k1+k2)

c†
k1
c†
k2
|0〉 (77)

with

F2(k1,k2) =

(

−E + Ek1
+ Ek2

+
α

1 + α
Ek1+k2

+ Emol

)

B(k1,k2) + 3ΛB̃(k1,k2). (78)

Since F2 is an antisymmetric function, Schrödinger’s equation directly imposes F2 = 0. As in the bosonic case, we
then introduce the relative energy

Erel(k1,k2) ≡ E −
(

Ek1
+ Ek2

+
α

1 + α
Ek1+k2

)

, (79)

and the function u(k1,k2) ≡ 1− (g0/Λ
2)[Emol −Erel(k1,k2)]. Then we obtain a second expression of B̃ as a function

of D:

3

Λ
B̃(k1,k2) = g−1

0

(

1− 1

u(k1,k2)

)

D(k1,k2). (80)

C. A single integral equation

To obtain the desired integral equation on D, it remains to eliminate B̃ in between Eq. (76) and Eq. (80). Diagonal
and non-diagonal contributions appear. In the diagonal contribution, to recover the two-body T matrix, we perform
the usual change of variables of unit Jacobian, that introduces the relative wave vector k34 and the center-of-mass
wave vector K34 = k3 + k4 of the extra particle of index 3 and one fermion of index 4:

k3 =
1

1 + α
K34 − k34 (81)

k4 =
α

1 + α
K34 + k34. (82)

Then, from the identity (1 + α)/m = 1/µ, we obtain the simple relation

(2π)3δ(
∑4

n=1 kn)

E − (αEk3
+
∑

n6=3Ekn
)
=

(2π)3δ(K34 + k1 + k2)

Erel(k1,k2)− ~2k234/(2µ)
. (83)

Finally, the integral equation for D in the three fermions plus one extra particle problem is
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0 =
µD(k1,k2)

2π~2f [Erel(k1,k2)]
−
∫

d3k3
(2π)3

d3k4
(2π)3

(2π)3δ(
∑4

n=1 kn)

E − (αEk3
+
∑

n6=3 Ekn
)
χ(k34) [χ(k31)D(k4,k2)

+χ(k32)D(k1,k4)] , (84)

where the function f(E) is the fermionic one given by Eq. (68). The integral equation (84) is the main result of this
section. It has to be solved with a fermionic exchange symmetry for D, D(k1,k2) = −D(k2,k1).
An instructive limiting case is to take the zero-range limit b → 0 in Eq. (84), assuming that abg and R∗ are O(b)

whereas the scattering length a is fixed. Then the scattering amplitude of the model tends to the usual zero-range
expression

fk → − 1
1
a + ik

. (85)

In Eq. (84) one replaces the function χ with unity, and one performs the integral over the extra particle momentum
k3. Setting E = −~

2q2/(2µ), q ≥ 0, one obtains the integral equation for the zero-range Bethe-Peierls model for three
same spin state fermions and one extra particle:

{

[

q2 +
1 + 2α

(1 + α)2
(k21 + k22) +

2α

(1 + α)2
k1 · k2

]1/2

− 1

a

}

D(k1,k2)

+

∫

d3k4
2π2

D(k1,k4) +D(k4,k2)

q2 + k21 + k22 + k24 +
2α
1+α (k1 · k2 + k1 · k4 + k2 · k4)

= 0. (86)

This differs from the integral equation derived in [24] by numerical constants [44]. The zero energy q → 0 and unitary
1/a = 0 limits of Eq. (86) were recently used in [34] to study the emergence of a pure four-body Efimov effect (without
three-body Efimov effect) in the system of three fermions plus one extra particle, as a function of the mass ratio α.

IV. TAKING ADVANTAGE OF ROTATIONAL INVARIANCE

In practice, integral equations such as Eqs. (50,84) are heavy to solve numerically because the unknown function
a priori depends on 6 real variables. A significant reduction of the problem can be achieved by using the rotational
symmetry of the Hamiltonian. This rotational symmetry implies the existence of degenerate eigenenergy subspaces of
well defined total angular momentum l. Such a degenerate subspace is associated to an irreducible representation of the
SO(3) rotation group of spin l, and it is generated in Dirac’s notation by 2l+1 functions |l,ml〉, with |l,ml〉 of angular
momentum ml~ along the arbitrary quantization axis z. The general solution D(k1,k2) is a linear superposition of
the particular solutions

Dml
(k1,k2) ≡ 〈k1,k2|l,ml〉. (87)

In this section we show that a general ansatz for D0(k1,k2) may be obtained in terms of 2l+1 unknown functions of
the moduli k1, k2 of k1, k2, and of the angle θ ∈ [0, π] between k1 and k2. We also consider constraints on these 2l+1
functions imposed by the invariance by parity, and by the exchange (bosonic or fermionic) symmetry of D(k1,k2).

A. Ansatz for an angular momentum l

Consider a general rotation R of SO(3). In the functional space in which D(k1,k2) lives, it is represented by the
unitary operator R, R−1 = R†, such that

R|k1,k2〉 = |Rk1,Rk2〉. (88)

Within the degenerate eigenenergy subspace of angular momentum l, the matrix elements of R form the unitary
matrix ρ of the irreducible representation of R of spin l:

〈l,ml|R|l,m′
l〉 = ρmlm′

l
. (89)
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This matrix ρ is well known from group theory, where it is expressed by means of the Euler representation of R [40]:

R = Rz(δ1)Ry(δ2)Rz(δ3), (90)

with δ2 ∈ [0, π], 0 ≤ δ1, δ3 < 2π, and Rν(φ) in SO(3) is the rotation of angle φ around axis ν, ν = x, y, z.
A well-known fundamental relation is then

D (Rk1,Rk2) = ρ∗ D (k1,k2) =
tρ−1

D (k1,k2) (91)

where the spinor D is the 2l + 1 vector of components Dml
, ρ∗ is the complex conjugate of the matrix ρ, tρ is its

transpose, ρ−1 its inverse [45] . For fixed non-zero wave vectors k1,k2, one then choose the matrix R such that

Rk1 = k1ex (92)

Rk2 = k2(cos θ ex + sin θ ey), (93)

where θ is the non-oriented angle between k1 and k2,

cos θ =
k1 · k2

k1k2
, θ ∈ [0, π], (94)

and eν is the unit vector along axis ν, ν = x, y, z. This choice, together with the fact that R is a symmetric matrix
of determinant unity, implies

R(k1 ∧ k2) = ||k1 ∧ k2||ez. (95)

Remarkably, from Eq. (91) we see that the spinor D for arbitrary k1,k2 is totally determined if one knows the spinor
f
(l) which is a function of three real variables only,

f
(l)(k1, k2, θ) ≡ D [k1ex, k2(cos θ ex + sin θ ey)]. (96)

Eq. (91) indeed gives

D (k1,k2) =
tρ f (l)(k1, k2, θ). (97)

To make the ansatz more explicit, we set D(k1,k2) = Dm′

l
=0(k1,k2) without any loss of generality, so that

D(k1,k2) =
∑l

ml=−l ρml0f
(l)
ml

(k1, k2, θ). Using the relation (8.6-1) of [40] we find the expression of the matrix element

ρml0 in terms of the spherical harmonics Y ml

l (θ, φ) where θ is the polar angle and φ the azimuthal angle. This leads
to

D(k1,k2) =

(

4π

2l+ 1

)1/2 l
∑

ml=−l

[Y ml

l (δ2, δ1)]
∗
f (l)
ml

(k1, k2, θ). (98)

The last step is to calculate the angles δ1 and δ2 that enter the Euler representation of R. From Eq. (90) it is
apparent that δ1 and δ2 are the azimuthal and polar angles of the vector Rez in the spherical coordinates of axis z.
The Cartesian coordinates (X,Y, Z) of that vector are readily evaluated using eν · Rez = ez · R−1

eν , ν = x, y, z, and
the identities Eqs. (92,93,95) after their multiplication by the matrix R−1:

X = sin δ2 cos δ1 =
k1 · ez
k1

(99)

Y = sin δ2 sin δ1 =

(

k2 · ez
k2

− cos θ
k1 · ez
k1

)

/ sin θ (100)

Z = cos δ2 = ez ·
k1 ∧ k2

||k1 ∧ k2||
. (101)

We note that, in the most common case l = 0, one has Y 0
0 (θ, φ) = 1/

√
4π so that the general ansatz reduces to the

usual form D(k1,k2) = f
(0)
0 (k1, k2, θ).
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B. Inclusion of parity and exchange symmetry

Let us apply the parity operator to the function D(k1,k2). The change (k1,k2) → (−k1,−k2) transforms (X,Y, Z)
into (−X,−Y, Z) so that the angle δ2 is unchanged whereas δ1 is transformed into δ1 + π modulo 2π. This changes
Y ml

l (δ2, δ1) into (−1)mlY ml

l (δ2, δ1). This allows to decouple the even ml terms of Eq. (98), that correspond to an
even-parity η = +1 component of D, from the odd ml terms of Eq. (98), that correspond to an odd-parity η = −1
component of D. E.g. if one considers the ansatz of l = 1 with η = +1, one has Y 0

1 (θ, φ) = [3/(4π)]1/2 cos θ so that

D(k1,k2) = ez · k1∧k2

||k1∧k2||
f
(1)
0 (k1, k2, θ).

Let us now consider the bosonic or fermionic symmetry requirement. Under the exchange (k1,k2) → (k2,k1), we
find that (X,Y, Z) is transformed into (X ′, Y ′, Z ′) with

X ′ = X cos θ + Y sin θ (102)

Y ′ = X sin θ − Y cos θ (103)

Z ′ = −Z. (104)

Then the polar δ′2 and azimuthal δ′1 angles of (X ′, Y ′, Z ′) are given by δ′1 = θ − δ1 modulo 2π and δ′2 = π − δ2. From
the following properties of the spherical harmonics,

Y m
l (π − θ, φ+ π) = (−1)lY m

l (θ, φ) (105)

Y −m
l (θ, φ) = (−1)mY m∗

l (θ, φ) (106)

Y m∗
l (θ, φ) = Y m

l (θ,−φ), (107)

we obtain Y m
l (π − δ2, θ − δ1) = (−1)leimθY −m

l (δ2, δ1). The bosonic (ǫ = 1) or fermionic (ǫ = −1) symmetry imposes

D(k2,k1) = ǫD(k1,k2) so that the unknown functions f
(l)
ml

in the ansatz must satisfy

f (l)
ml

(k2, k1, θ) = ǫ(−1)leimlθf
(l)
−ml

(k1, k2, θ). (108)

A more convenient form is obtained by the change of unknown functions,

f̃ml
(k1, k2, θ) ≡ e−imlθ/2fml

(k1, k2, θ). (109)

The exchange symmetry then imposes

f̃ml
(k2, k1, θ) = ǫ(−1)lf̃−ml

(k1, k2, θ), (110)

which easily allows to restrict the calculation to the domain k2 ≥ k1.
By inserting the general ansatz (98) into the integral equations Eq. (50) or Eq. (84), one may obtain general

equations for the f
(l)
ml

. This was done in Ref. [34] in the particular case of the 3+1 fermionic problem with zero-range
interactions, infinite scattering length and at zero energy. We shall not pursue this general issue here.

V. CONCLUSION

In the frame of a quite realistic two-channel model for the interaction Hamiltonian close to a magnetic Feshbach
resonance, with three physical parameters and a potential range, we have shown that, for two relevant problems in
the current few-body physics with cold atoms (four bosons, or three same spin state fermions plus an extra particle)
it is possible to derive exactly simple integral equations for an unknown function of six real variables. Furthermore,
using the rotational symmetry of the Hamiltonian and its invariance by parity, for an angular momentum l, we have
shown that the problem may be reduced to integral equations for l or l+1 unknown functions of 3 real variables only,
two wave vector moduli and one angle.
Within the considered model Hamiltonian, this makes the exact numerical solution of the four-body problem

tractable. We presented elsewhere a first application of this formalism in the limiting case of a zero-range interaction
[34]. We expect that other applications will appear, in particular in the regimes where the zero-range limit with no
extra three-body parameter is ill-defined, as it is the case for four bosons, or for the 3 + 1 fermionic problem with a
fermion to extra particle mass ratio larger than ≃ 13.607.



15

Acknowledgements

The group of Y.C. is a member of IFRAF. The cold atom group of LPTMC is associated with IFRAF. We
acknowledge useful discussions with F. Werner, and we thank him for having pointed out the work of Minlos [24].

[1] E. Braaten, H.-W. Hammer, Phys. Rep. 428, 259 (2006).
[2] T. Kraemer, M. Mark, P. Waldburger, J. G. Danzl, C. Chin, B. Engeser, A. D. Lange, K. Pilch, A. Jaakkola, H.-C. Nägerl,
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