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tNumerous time series admit weak autoregressive-moving average (ARMA)representations, in whi
h the errors are un
orrelated but not ne
essarily in-dependent nor martingale di�eren
es. The statisti
al inferen
e of this general
lass of models requires the estimation of generalized Fisher information ma-tri
es. We give analyti
 expressions and propose 
onsistent estimators ofthese matri
es, at any point of the parameter spa
e. Our results are illus-trated by means of Monte Carlo experiments and by analyzing the dynami
sof daily returns and squared daily returns of �nan
ial series.Key words: Asymptoti
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lass of the standard ARMA models with independent errors is oftenjudged too restri
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titioners, be
ause they are inadequate for timeseries exhibiting a nonlinear behavior. Even when the independen
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The 
lass of the so-
alled weak ARMA models with un
orrelated but notne
essarily independent errors is mu
h more general and a

ommodates manynonlinear data-generating pro
esses (see Fran
q, Roy and Zakoïan, 2005, andthe referen
es therein).For standard ARMA models, it is well known that the asymptoti
 vari-an
e of the least squares estimator (LSE) is of the form σ2J−1
θ0
, where σ2is the varian
e of the errors and Jθ0 is an information matrix depending onthe ARMA parameter θ0 (see e.g. Bro
kwell and Davis, 1991). For weakARMA models, the asymptoti
 varian
e of the LSE takes the sandwi
h form

J−1
θ0
Iθ0J

−1
θ0

where Iθ0 is a se
ond information matrix depending on θ0 and onfourth-order moments of the errors. The estimation of the asymptoti
 in-formation matri
es Jθ0 and Iθ0 is thus ne
essary to evaluate the asymptoti
a

ura
y of the LSE of weak ARMA models.In the framework of (Gaussian) linear pro
esses, the problem of 
omput-ing the Fisher information matri
es and of their inverses has been widelystudied. Various expressions of these matri
es have been given by Whittle(1953), Siddiqui (1958), Durbin (1959) and Box and Jenkins (1976). M
Leod(1984), Klein and Mélard (1990, 2004) and Godolphin and Bane (2006) havegiven algorithms for their 
omputation. For few parti
ular 
ases of weakARMA models, the matri
es Iθ0 and Jθ0 have been 
omputed by Fran
qand Zakoian (2000, 2007) and Fran
q, Roy and Zakoian (2005). In all theabove-mentioned referen
es, the information matri
es are always 
omputedat the true parameter value θ0. For some appli
ations, in parti
ular to de-termine Bahadur's slopes under alternatives, it is ne
essary to 
ompute theinformation matri
es at θ 6= θ0.The aim of the present paper is to 
ompute and estimate the informationmatri
es Jθ and Iθ at a point θ whi
h is not ne
essarily equal to θ0.The rest of the paper is organized as follows. In Se
tion 2, we presentthe weak, strong and semi-strong ARMA representations and re
all results
on
erning the estimation of the weak ARMA models. Se
tion 3 displaysthe main results. We des
ribe how to obtain numeri
al evaluations of Iθand Jθ, up to some toleran
e, and we propose 
onsistent estimators for theseinformation matri
es. Se
tion 4 studies the �nite sample behavior of theestimators and 
ompare the Bahadur slopes of two versions of the Lagrangemultiplier test for testing linear restri
tions on θ0. For the latter appli
ation,it is ne
essary to 
ompute Jθ at θ 6= θ0. Con
luding remarks are proposed inSe
tion 5. The proofs of the main results are 
olle
ted in the appendix.2



2. NotationsWe �rst introdu
e the notions of weak and strong ARMA representa-tions, whi
h di�er by the assumptions on the error terms. We then re
allresults 
on
erning the estimation of the weak ARMA models, and introdu
eextended information matri
es.2.1. Strong, semistrong and weak ARMA representationsFor a linear model to be quite general, the error terms must be the linearinnovations, whi
h are un
orrelated by 
onstru
tion but are not indepen-dent, nor martingale di�eren
es, in general. Indeed, the Wold de
omposition(see Bro
kwell and Davis (1991), Se
tion 5.7) stipulates that any purely nondeterministi
 stationary pro
ess 
an be expressed as
Xt =

∞
∑

ℓ=0

ϕℓǫt−ℓ, (ǫt) ∼ WN(0, σ2), (1)where ϕ0 = 1, ∑∞
ℓ=0 ϕ

2
ℓ < ∞, and the notation (ǫt) ∼ WN(0, σ2) signi�esthat the linear innovation pro
ess (ǫt) is a weak white noise, that is a station-ary sequen
e of 
entered and un
orrelated random variables with 
ommonvarian
e σ2. In pra
ti
e the sequen
e ϕℓ is often parameterized by assumingthat Xt admits an ARMA(p, q) representation, i.e. that there exist integers

p and q and 
onstants a01, . . . , a0p, b01, . . . , b0q, su
h that
∀t ∈ Z, Xt −

p
∑

i=1

a0iXt−i = ǫt +

q
∑

j=1

b0jǫt−j . (2)This representation is said to be a weak ARMA(p, q) representation under theassumption (ǫt) ∼ WN(0, σ2). For the statisti
al inferen
e of ARMA mod-els, the weak white noise assumption is not su�
ient and is often repla
edby the strong white noise assumption (ǫt) ∼ IID(0, σ2), i.e. the assump-tion that (ǫt) is an independent and identi
ally distributed (iid) sequen
eof random variables with mean 0 and 
ommon varian
e σ2. Sometimes anintermediate assumption is 
onsidered for the noise. The sequen
e (ǫt) issaid to be a semistrong white noise or a martingale-di�eren
e white noise,and is denoted by (ǫt) ∼ MD(0, σ2), if (ǫt) is a stationary sequen
e satisfying
E (ǫt | ǫu, u < t) = 0 and Var(ǫt) = σ2. An ARMA representation (2) will be
alled strong under the assumption (ǫt) ∼ IID(0, σ2) and semistrong underthe assumption (ǫt) ∼ MD(0, σ2). 3



Obviously the strong white noise assumption is more restri
tive thanthat of semistrong white noise, and the latter is more restri
tive than theweak white noise assumption, be
ause independen
e entails unpredi
tabil-ity and unpredi
tability entails un
orrelatedness, but the reverses are nottrue. Consequently the weak ARMA representation are more general thatthe semistrong and strong ones, what we s
hematize by
{Weak ARMA} ⊃ {Semistrong ARMA} ⊃ {Strong ARMA}. (3)Any pro
ess satisfying (1) is the limit, in L2 as n→ ∞, of a sequen
e of pro-
esses satisfying weak ARMA(pn, qn) representations (see e.g. Fran
q andZakoïan, 2005, page 244). In this sense, the sub
lass of the pro
esses admit-ting weak ARMA(pn, qn) representations is dense in the set of the purely nondeterministi
 stationary pro
esses. Simple illustrations that the last in
lusionof (3) is stri
t are given by the vast 
lass of volatility models. Indeed GARCH-type models are generally martingale di�eren
es (be
ause �nan
ial returnsare generally assumed to be unpredi
table) but they are not strong noises(in parti
ular, be
ause of the volatility 
lustering, the squared returns arepredi
table). Many nonlinear models, su
h as bilinear or Markov-swit
hingmodels, illustrate the �rst in
lusion in (3), sin
e they admit weak ARMArepresentation (see Fran
q, Roy and Zakoïan, 2005, se
tion 2.3) whi
h arenot semistrong, be
ause the best predi
tor is generally not linear when thedata generating pro
ess (DGP) is nonlinear. To �x ideas, we give belowa simple illustrative example, whi
h was not given by the above-mentionedreferen
es.Example 2.1 (Integer-valued AR(1) and MA(1)). M
Kenzie (2003)reviews the literature on models for integer-valued time series. Let ◦ be thethinning operator de�ned by

a ◦X =

X
∑

i=1

Yj,where (Yj) is an iid 
ounting series, independent of the integer-valued randomvariable X, with Bernoulli distribution of parameter a ∈ [0, 1). The integer-valued autoregressive (INAR) model of order 1 is given by
∀t ∈ Z, Xt = a ◦Xt−1 + Zt (4)4



where Zt is an integer-valued iid sequen
e, independent of the 
ounting series,with mean µ and varian
e σ2. Clearly the best predi
tor of Xt is linear sin
e
E (Xt | Xu, u < t) = aXt−1 + µ. Moreover we have Var (Xt | Xu, u < t) =
(1− a)aXt−1 + σ2. We thus have the semistrong AR(1) representation

Xt = aXt−1 + µ+ ǫt, (ǫt) ∼ IID

(

0,
aµ

1− a
+ σ2

)

.Similarly to (4) the integer-valued moving-average INMA(1) is de�ned by
∀t ∈ Z, Xt = Zt + a ◦ Zt−1.Straightforward 
omputations show that EXt = µ(1 + a), Var(Xt) = σ2 +

a(1 − a)µ + a2σ2 and Cov(Xt, Xt−1) = aσ2, from whi
h we dedu
e the weakMA(1) representation
Xt = µ(1 + a) + ǫt + bǫt−1, (ǫt) ∼ WN

(

0, σ2
ǫ

)

,where b ∈ [0, 1) and σ2
ǫ > 0 are solutions of b/(1 + b2) = ρX(1) and

(1 + b2)σ2
ǫ = Var(Xt). This MA(1) representation is not semistrong be
ause

E(Xt | Xt−1 = 0) = E(Xt | Zt−1 = 0) = µ does not 
oin
ide with the linearpredi
tion given by the MA(1) model when a 6= 0.Finally we have shown that an INMA(1) is a weak MA(1) and that aINAR(1) is a semistrong AR(1).2.2. Estimating weak ARMA representationsWe now present the asymptoti
 behavior of the LSE in the 
ase of weakARMA models. The LSE is the standard estimation pro
edure for ARMAmodels and it 
oin
ides with the maximum-likelihood estimator in the Gaus-sian 
ase. It will be 
onvenient to write (2) as φ0(B)Xt = ψ0(B)ǫt, where
B is the ba
kshift operator, φ0(z) = 1 −∑p

i=1 a0iz
i is the AR polynomialand ψ0(z) = 1 +

∑q
j=1 b0jz

j is the MA polynomial. The unknown parame-ter θ0 = (a01, . . . , a0p, b01, . . . , b0q) is supposed to belong to the interior of a
ompa
t subspa
e Θ∗ of the parameter spa
e
Θ :=

{

θ = (θ1, . . . , θp+q) = (a1, . . . , ap, b1, . . . , bq) ∈ R
p+q :

φ(z) = 1−
p
∑

i=1

aiz
i and ψ(z) = 1 +

q
∑

i=1

biz
ihave all their zeros outside the unit disk} .5



Sin
e θ ∈ Θ, the polynomials φ0(z) and ψ0(z) have all their zeros outside theunit disk. We also assume that φ0(z) and ψ0(z) have no zero in 
ommon, that
p+q > 0 and a20p+b20q 6= 0 (by 
onvention a00 = b00 = 1). These assumptionsare standard and are also made for the usual strong ARMA models.For all θ ∈ Θ, let

ǫt(θ) = ψ−1(B)φ(B)Xt = Xt +

∞
∑

i=1

ci(θ)Xt−i.Given a realization of length n, X1, X2, . . . , Xn, ǫt(θ) 
an be approximated,for 0 < t ≤ n, by et(θ) de�ned re
ursively by
et(θ) = Xt −

p
∑

i=1

θiXt−i −
q
∑

i=1

θp+iet−i(θ)where the unknown starting values are set to zero: e0(θ) = e−1(θ) = . . . =
e−q+1(θ) = X0 = X−1 = . . . = X−p+1 = 0. The random variable θ̂n is 
alledLSE if it satis�es, almost surely,

Qn(θ̂n) = min
θ∈Θ∗

Qn(θ), Qn(θ) =
1

2n

n
∑

t=1

e2t (θ).The asymptoti
 behavior of the LSE is well known in the strong ARMA
ase, i.e. under the assumption (ǫt) ∼ IID(0, σ2). This assumption beingvery restri
tive, Fran
q and Zakoïan (1998) 
onsidered weak ARMA repre-sentations of stationary pro
esses satisfying the following assumption.A1 : E|Xt|4+2ν <∞ and ∑∞
k=0 {αX(k)}

ν
2+ν <∞ for some ν > 0,where αX(k) , k = 0, 1, . . . , denote the strong mixing 
oe�
ients of the pro-
ess (Xt) (see e.g. Bradley, 2005, for a review on strong mixing 
onditions).As noted by Fran
q and Zakoïan (2005), Assumption A1 
an be repla
ed byA1' : E|ǫt|4+2ν <∞ and ∑∞

k=0 {αǫ(k)}
ν

2+ν <∞ for some ν > 0.A straightforward extension of Fran
q and Zakoïan (1998) thus gives thefollowing result.
6



Lemma 2.1 (Fran
q and Zakoïan, 1998). Let (Xt) be a stri
tly station-ary and ergodi
 pro
ess satisfying the weak ARMA model (2) with (ǫt) ∼
WN(0, σ2). Under the previous assumptions and Assumption A1 or A1',

√
n
(

θ̂n − θ0

)

d
; N (0,Ω = J−1IJ−1) as n→ ∞, (5)where I = Iθ0, J = Jθ0 = J∗

θ0
, with

Iθ =
+∞
∑

h=−∞

Cov{ǫt(θ)∂ǫt(θ)
∂θ

, ǫt−h(θ)
∂ǫt−h(θ)

∂θ′

}

,

Jθ = E
∂ǫt(θ)

∂θ

∂ǫt(θ)

∂θ′
, J∗

θ = Eǫt(θ)
∂2ǫt(θ)

∂θ∂θ′
+ E

∂ǫt(θ)

∂θ

∂ǫt(θ)

∂θ′
.In the strong ARMA 
ase, we have I = Is := σ2J and Ω = Ωs := σ2J−1. Inthe semistrong ARMA 
ase, i.e. under the assumption (ǫt) ∼ MD(0, σ2), wehave

I = Iss := Eǫ2t
∂ǫt(θ0)

∂θ

∂ǫt(θ0)

∂θ′
.Note that we introdu
e the two versions Jθ and J∗

θ be
ause the following twoestimators of J 
an be 
onsidered
Ĵn =

1

n

n
∑

t=1

∂et(θ̂n)

∂θ

∂et(θ̂n)

∂θ′
, Ĵ∗

n =
1

n

n
∑

t=1

et(θ̂n)
∂2et(θ̂n)

∂θ∂θ′
+ Ĵn. (6)The matri
es Jθ, J∗

θ and Iθ 
an be 
alled information matri
es. As we will seein Se
tion 4.2 they determine the asymptoti
 behavior of test pro
edures on
θ0. They are also involved in other inferen
e steps, su
h as in portmanteauadequa
y tests (see Fran
q, Roy and Zakoian, 2005).3. Main resultsM
Leod (1978) gave a ni
e expression for J , as the varian
e of a VARmodel involving only the ARMA parameter θ0 (see (8.8.3) in Bro
kwell andDavis, 1991). Fran
q, Roy and Zakoïan (2005) obtained an expression of Iinvolving the ARMA parameter θ0 and the fourth-order moments of the weaknoise (ǫt) (with their notations, J = Λ

′
∞Λ∞ and I = Λ

′
∞Γ∞,∞Λ∞ where Λ∞depends on θ0 and Γ∞,∞ depends on moments of (ǫt)). For 
ertain statisti
alappli
ations, it is interesting to obtain similar expressions for Iθ, Jθ and J∗

θwhen θ 6= θ0. This is the subje
t of the next subse
tion.7



3.1. Theoreti
al expressions for the information matri
es3.1.1. Matrix JθDi�erentiating the two sides of the equation φ(B)Xt = ψ(B)ǫt(θ), for
i, k = 1, . . . , p and j, ℓ = 1, . . . , q, we obtain

−Xt−i = ψ(B)
∂

∂ai
ǫt(θ), 0 = ǫt−j(θ) + ψ(B)

∂

∂bj
ǫt(θ)

0 = ψ(B)
∂2

∂ai∂ak
ǫt(θ), 0 =

∂

∂ai
ǫt−j(θ) + ψ(B)

∂2

∂bj∂ai
ǫt(θ)

0 =
∂

∂bℓ
ǫt−j(θ) +

∂

∂bj
ǫt−ℓ(θ) + ψ(B)

∂2

∂bj∂bℓ
ǫt(θ).We thus have

∂

∂ai
ǫt(θ) = −ψ−1(B)Xt−i = −ψ−1φ−1

0 ψ0(B)ǫt−i := −
∞
∑

h=0

cahǫt−i−h

∂

∂bj
ǫt(θ) = −ψ−2φ−1

0 φψ0(B)ǫt−j := −
∞
∑

h=0

cbhǫt−j−h,

∂2

∂bj∂ai
ǫt(θ) = ψ−2φ−1

0 ψ0(B)ǫt−i−j :=
∞
∑

h=0

cabh ǫt−i−j−h,

∂2

∂bj∂bℓ
ǫt(θ) = 2ψ−3φ−1

0 φψ0(B)ǫt−j−ℓ :=

∞
∑

h=0

cbbh ǫt−j−ℓ−h,and ∂2ǫt(θ)/∂ai∂ak = 0. Moreover
ǫt(θ) = ψ−1φ−1

0 φψ0(B)ǫt :=
∞
∑

h=0

chǫt−h.The following result immediately follows.
8



Proposition 3.1. The elements of the matrix Jθ and J∗
θ are given by

Jθ(i, k) = J∗
θ (i, k) = σ2

∞
∑

s=0

cas+k−ic
a
s ,

Jθ(p+ j, p+ ℓ) = σ2

∞
∑

s=0

cbs+ℓ−jc
b
s,

J∗
θ (p+ j, p+ ℓ) = σ2

∞
∑

s=0

cs+j+ℓc
bb
s + Jθ(p+ j, p+ ℓ),

Jθ(i, p+ ℓ) = σ2
∞
∑

s=max{0,i−ℓ}

cas+ℓ−ic
b
s,

J∗
θ (i, p+ ℓ) = σ2

∞
∑

s=0

cs+i+ℓc
ab
s + Jθ(i, p+ ℓ),for 1 ≤ i ≤ k ≤ p and 1 ≤ j ≤ ℓ ≤ q.On the web page of the authors, programs written in R are availablefor 
omputing the information matri
es de�ned in this paper, as well astheir estimates. For example, the following fun
tion infoJ() 
omputes Jθwhen, in R language, θ0<-
(ar0,ma0) and θ<-
(ar1,ma1). The trun
ationparameter M is dis
ussed in Se
tion 3.2 below. This fun
tion uses the fun
tionprod.poly() whi
h makes the produ
t of the 2 polynomials, and the fun
tionARMAtoMA() of the pa
kage stats.# Produ
t of 2 polynomialsprod.poly<- fun
tion(a,b) {p<-length(a); q<-length(b)if(p<=0|q<0)stop("a or b is invalid")
<-rep(0,(p+q))for(h in 2:(p+q)){imin<-max(1,h-q); imax<-min(p,h-1)for(i in (imin:imax))
[h℄<-
[h℄+a[i℄*b[h-i℄}
[2:(p+q)℄}# Computation of the information matrix J at \theta=(ar1,ma1)infoJ<- fun
tion(ar0,ma0,ar1,ma1,M=200){p<-length(ar1); q<-length(ma1); p0<-length(ar0); q0<-length(ma0)matJ.theta<-matrix(0,nrow=(p+q),n
ol=(p+q))if(p>0){ # 
_h^a + top-left 
orner of Jp1<-p0+qif(p1==0) ar2 <- 
()if(p1>0) ar2 <- -prod.poly(
(1,-1*ar0),
(1,ma1))[2:(p1+1)℄9




h.a<-
(1,ARMAtoMA(ar =ar2, ma=ma0, M))for(i in (1:p)){for(k in (1:p)){matJ.theta[i,k℄<-sum(
h.a[(abs(k-i)+1):(M+1)℄*
h.a[1:(M-abs(k-i)+1)℄)}}}if(q>0){ # 
_h^b + bottom-right 
orner of Jp1<-p0+2*qif(p1==0) ar2 <- 
()if(p1>0) ar2 <- -prod.poly(prod.poly(
(1,ma1),
(1,ma1)),
(1,-1*ar0))[2:(p1+1)℄q1<-p+q0if(q1==0) ma2 <- 
()if(q1>0) ma2 <- prod.poly(
(1,-1*ar1),
(1,ma0))[2:(q1+1)℄
h.b<-
(1,ARMAtoMA(ar =ar2, ma=ma2, lag.max=M))for(j in (1:q)){for(l in (1:q)){matJ.theta[p+j,p+l℄<-sum(
h.b[(abs(l-j)+1):(M+1)℄*
h.b[1:(M-abs(l-j)+1)℄)}}}if(p>0&q>0){ # 
ross blo
ksfor(i in (1:p)){for(l in (1:q)){indmin1<-max(0,i-l)+l-i+1indmin2<-max(0,i-l)+1indmax1<-M-max(0,i-l)indmax2<-indmax1-l+imatJ.theta[i,p+l℄<-sum(
h.a[indmin1:indmax1℄*
h.b[indmin2:indmax2℄)matJ.theta[p+l,i℄<- matJ.theta[i,p+l℄}}}matJ.theta}3.1.2. Matrix IθWe now sear
h similar tra
table expressions for Iθ. Let
Γ(m,m′) =

+∞
∑

h=−∞

Cov (ǫtǫt−m, ǫhǫh−m′) . (7)In the strong 
ase, we have
Γ(0, 0) = µ4 − σ4, Γ(m,m) = Γ(m,−m) = σ4, Γ(m′, m′′) = 0, (8)with µ4 = Eǫ41, m 6= 0 and |m′| 6= |m′′|. Simpli�
ations may also hold insemistrong 
ases. Indeed, 
onsider the 
ase (ǫt) ∼ WN(0, σ2

ǫ ) under thefollowing symmetry assumption
Eǫt1ǫt2ǫt3ǫt4 = 0 when t1 6= t2, t1 6= t3 and t1 6= t4. (9)10



A similar assumption is made in Fran
q and Zakoian (2009b). In this paper,it is shown that, in parti
ular, GARCH models with fourth-order momentsand symmetri
 innovations satisfy (9). Many other martingale di�eren
essatisfy this assumption. In this semistrong 
ase, we have
Γ(0, 0) =

∞
∑

h=−∞

Cov(ǫ2t , ǫ2t−h), Γ(m,m) = Eǫ2t ǫ
2
t−m, Γ(m′, m′′) = 0 (10)when m 6= 0 and |m′| 6= |m′′|.Example 3.1. For a GARCH(1,1) model of the form

{

ǫt =
√
htηt, t = 1, 2, . . .

ht = ω + αǫ2t−1 + βht−1, (ηt) ∼ IID (0, 1)with ω > 0, α ≥ 0, β ≥ 0 and α2Eη41 + β2 + 2αβ < 11 we obtain
Γ(0, 0) = Eν2t

(1− β)2

(1− α− β)2
,

Γ(1, 1) = Eν2t

(

α +
α2(α + β)

1− (α+ β)2

)

+
(

Eσ2
t

)2

Γ(m,m) = (α + β)Γ(m− 1, m− 1) + ωEσ2
t , m > 1,with Eν2t = Eη41 (Eσ

4
t + 1− 2Eσ2

t ),
Eσ2

t =
ω

1− α− β
, Eσ4

t =
ω2(1 + α + β)

(1− α2Eη41 − β2 − 2αβ)(1− α− β)
.Proposition 3.2. The elements of the matrix Iθ are given by

Iθ(i, k) =

+∞
∑

h1,h2,h3,h4=0

ch1c
a
h2
ch3c

a
h4
Γ(h2 + i− h1, h4 + k − h3),

Iθ(j, ℓ) =
+∞
∑

h1,h2,h3,h4=0

ch1c
b
h2
ch3c

b
h4
Γ(h2 + j − h1, h4 + ℓ− h3),

Iθ(i, ℓ) =
+∞
∑

h1,h2,h3,h4=0

ch1c
a
h2
ch3c

b
h4
Γ(h2 + i− h1, h4 + ℓ− h3),1The latter 
onditions and ne
essary and su�
ient for the existen
e of a nonanti
ipa-tive stationary solution with fourth-order moments (see e.g. Example 2.3 in Fran
q andZakoian, 2010). 11



for 1 ≤ i ≤ k ≤ p and 1 ≤ j ≤ ℓ ≤ q.Note that c0 = 1 and that, at θ = θ0, we have ch = 0 for h > 0. Theexpression of I = Iθ0 thus simpli�es to that given in Fran
q, Roy and Zakoian(2005). There is also a slight simpli�
ation in the strong and semistrongARMA 
ases be
ause, in view of (8) and (10), Iθ is then obtained by summingover 3 indi
es instead of 4.3.1.3. Examples of analyti
 and numeri
al 
omputations of Jθ and IθLet us 
ompute the information matri
es of an ARMA(1,1) model atthe point θ∗ = (a, 0)′ when θ0 = (0, b0)
′ (i.e. the DGP is a MA(1)). Wehave ǫt(θ) =

∑∞
h=0(−b)h(Xt−h − aXt−h−1). It follows that ǫt(θ∗) = ǫt +

(b0 − a)ǫt−1 − ab0ǫt−2, ∂ǫt(θ∗)/∂a = −ǫt−1 − b0ǫt−2, ∂ǫt(θ
∗)/∂b = −ǫt−1 −

(b0 − a)ǫt−2 + ab0ǫt−3, ∂
2ǫt(θ

∗)/∂a2 = 0, ∂2ǫt(θ∗)/∂a∂b = ǫt−2 + b0ǫt−3 and
∂2ǫt(θ

∗)/∂b2 = 2ǫt−2 + 2(b0 − a)ǫt−3 − 2ab0ǫt−4.Thus
Jθ∗ = σ2

(

1 + b20 1 + b0(b0 − a)
1 + b0(b0 − a) 1 + (b0 − a)2 + a2b20

)

,

J∗
θ∗ = Jθ∗ + σ2

(

0 −ab0
−ab0 −2ab0

)

.Now assume that ǫt is the weak white noise 
onsidered by Romano andThombs (1996), de�ned by
ǫt = ηtηt−1 · · · ηt−k, (ηt) ∼ IID N (0, 1), k ≥ 0. (11)It seems impossible to obtain Iθ∗ expli
itly, but the information matri
es 
anbe obtained expli
itly at θ0:

Jθ0 = J∗
θ0
=

(

1 1
1 1/(1− b20)

)

,

Iθ0 = 3k

(

1 1

1 1−(b2/3)k+1

1−b2/3
+ b2(k+1)

3k(1−b2)

)

.Note that Iθ0 = Jθ0 in the strong 
ase (i.e. when k = 0). For more 
omplexmodels or at some point θ∗ 6= θ0 the evaluation of these information matri
esis not feasible analyti
ally but they 
an be easily obtained numeri
ally. For12



instan
e, on this example with k = 3, θ0 = (0, 0.5)′ and θ∗ = (−0.4,−0.5)′,we have
Jθ∗ =

(

2.33 4.33
4.33 11.25

)

, J∗
θ∗ =

(

2.33 6.33
6.33 17.65

)

, Iθ∗ =

(

1161.92 2177.66
2177.66 4187.63

)

.3.2. Approximation of the information matri
es by �nite sumsIn pra
ti
e the in�nite sums involved in Jθ, J∗
θ and Iθ are trun
ated.This se
tion 
on
entrates on the 
hoi
e of the trun
ation parameter for Iθ,the problem being similar, and somewhat simpler, for the other matri
es.Matrix Iθ is trun
ated by the matrix IMθ of M4 terms, de�ned by

IMθ (i, k) =
M
∑

h1,h2,h3,h4=0

ch1c
a
h2
ch3c

a
h4
Γ(h2 + i− h1, h4 + k − h3),when 1 ≤ i ≤ k ≤ p, and whose the other elements are de�ned similarly.The following proposition de�nes a value of M su
h that IMθ be equal to Iθup to an arbitrarily small toleran
e number ε. Let the matrix norm de�nedby ‖A‖ =

∑

i,j |A(i, j)| with obvious notations.Proposition 3.3. Let ρ be the inverse of the largest modulus of the zeroesof the polynomials φ0 and ψ, let
Γ = max

m,m′≥0
|Γ(m,m′)| , π =

(

1 +

q
∑

j=1

|b0j |
)

max
i=0,...,p

|ai|with |a0| = 1, and let
K =

√
2(p+ q + 1)πΓ

1/4
(−2(p+ 2q − 1)

log ρ

)(p+2q−1)

ρ −0.5−(p+2q−1)/ log ρ.For all ε > 0, if
M ≥Mǫ :=

log
√
ε(1−√

log ρ)2/K2

log ρthen
∥

∥Iθ − IMθ
∥

∥ ≤ (p+ q)2ε.13



3.3. Estimation of the information matri
esLet Jθ,n and J∗
θ,n be de�ned as in (6), repla
ing θ̂n by θ in Ĵn and Ĵ∗

n, sothat Ĵn = Jθ̂n,n and Ĵ∗
n = J∗

θ̂n,n
. The following result shows that an estimatorof Jθ∗ is trivially dedu
ed from one of θ∗.Proposition 3.4. Under the assumptions of Lemma 2.1, as n→ ∞,if θ∗n → θ∗ a.s. then Jθ∗n,n → Jθ∗ and J∗

θ∗n,n
→ J∗

θ∗ a.s.The estimation of the long-run varian
e Iθ is more 
ompli
ated. In theliterature, two types of estimators are generally employed: Heteroskedasti
-ity and Auto
orrelation Consistent (HAC) estimators (see Newey and West(1987) and Andrews (1991) for general referen
es, and Fran
q and Zakoian(2007) for an appli
ation to testing strong linearity in weak ARMA models)and spe
tral density estimators (see e.g. den Haan and Levin (1997) for ageneral referen
e and Fran
q, Roy and Zakoian (2005) for estimating I inthe present 
ontext). We will extend the results of Fran
q, Roy and Zakoian(2005) for estimating Iθ when θ is not ne
essarily equal to θ0.3.3.1. An estimator based on a spe
tral density form for IθNote (2π)−1Iθ∗ is the spe
tral density at frequen
y 0 (see Bro
kwell andDavis (1991) p. 459) of the pro
ess
∇t = St −ESt, St = ǫt(θ

∗)
∂ǫt(θ

∗)

∂θ
. (12)For any given θ∗ ∈ Θ, St is a measurable fun
tion of {Xu, u ≤ t}. Let Ŝt beobtained by repla
ing the unknown initial values {Xu, u ≤ 0} by 0 and θ∗ by

θ∗n in St. Let also
∇̂t = Ŝt −

1

n

n
∑

t=1

Ŝt.The stationary pro
ess (∇t) admits the Wold de
omposition ∇t = ut +
∑∞

i=1Biut−i, where (ut) is a (p + q)-variate weak white noise with 
ovari-an
e matrix Σu. Assume that Σu is non-singular, that ∑∞
i=1 ‖Bi‖ < ∞, andthat det (Ip+q +

∑∞
i=1Biz

i) 6= 0 when |z| ≤ 1. Then (∇t) admits an AR(∞)representation of the form
A(B)∇t := ∇t −

∞
∑

i=1

Ai∇t−i = ut, (13)14



su
h that ∑∞
i=1 ‖Ai‖ <∞ and det {A(z)} 6= 0 for all |z| ≤ 1, and we obtain

Iθ = A−1(1)ΣuA
′−1(1). (14)In the framework of univariate linear pro
esses with independent innovations,Berk (1974) showed that the spe
tral density 
an be 
onsistently estimatedby �tting autoregressive models of order r = r(n), whenever r → ∞ and

r3/n → 0 as n → ∞. It 
an be shown that this result remains valid forthe multivariate linear pro
ess (∇t), though its innovation (ut) is not anindependent pro
ess. Another di�eren
e with Berk (1974), is that (∇t) isnot dire
tly observed and is repla
ed by (∇̂t).Consider the regression of ∇t on ∇t−1, . . . ,∇t−r de�ned by
∇t =

r
∑

i=1

Ar,i∇t−i + ur,t, ur,t ⊥{∇t−1 · · ·∇t−r} . (15)The least squares estimators of Ar = (Ar,1 · · ·Ar,r) and Σur
= Var(ur,t) arede�ned by

Âr = Σ̂∇̂,∇̂r
Σ̂−1

∇̂r

and Σ̂ur
=

1

n

n
∑

t=1

(

∇̂t − Âr∇̂r,t

)(

∇̂t − Âr∇̂r,t

)′where ∇̂r,t = (∇̂′
t−1 · · · ∇̂′

t−r)
′,

Σ̂∇̂,∇̂r
=

1

n

n
∑

t=1

∇̂t∇̂
′

r,t, Σ̂∇̂r
=

1

n

n
∑

t=1

∇̂r,t∇̂
′

r,t,with by 
onvention ∇̂t = 0 when t ≤ 0, and assuming Σ̂∇̂r
is non singular(whi
h holds true asymptoti
ally).Under mild regularity 
onditions (the pre
ise statement of the result andits proof are available from the authors under request), it 
an be shown thatif θ∗n → θ∗ almost surely,

Iθ∗n,n = Â−1
r (1)Σ̂ur

Â′−1
r (1) → Iθ∗ (16)in probability when r = r(n) → ∞ and r3/n→ 0 as n→ ∞.For the implementation of Iθ∗n,n, AR(r) models are obtained re
ursivelyfor r = 0, 1, . . . , rmax (with rmax = 15 for the forth
oming appli
ations),using the e�
ient Whittle's (1963) generalization of the Durbin-Levinsonalgorithm, des
ribed for instan
e in Bro
kwell and Davis (1991) Theorem5.2.1. The order r is then sele
ted using the AIC 
riterion.15



4. Appli
ationsA �rst set of experiments illustrates the �nite sample behavior of ourestimators of the information matri
es Iθ∗ , Jθ∗ and J∗
θ∗ , for strong and weakARMA models. We then study the impa
t of the estimator of J , i.e. thee�e
t of 
hoosing Ĵn or Ĵ∗

n de�ned by (6), on the asymptoti
 behavior oftests of linear restri
tions on the ARMA parameters. For this study it willbe ne
essary to evaluate Jθ∗ at θ∗ 6= θ0. Finally, an appli
ation to �nan
ialdata is presented.4.1. Finite sample behavior of estimators of the information matri
esTo investigate the �nite sample performan
e of the estimators, we simu-lated N = 1, 000 independent traje
tories of size n = 1, 000 and n = 10, 000of an ARMA(1,1) model with parameter θ0 = (0.5, 0.7), in whi
h the noise isde�ned by (11). Note that when k = 0 in (11), the ARMA model is strong,whereas the model is weak when k > 0.4.1.1. Estimating the information matri
es at a given point θ∗The information matri
es Jθ∗ , J∗
θ∗ and Iθ∗ have been 
omputed and esti-mated at 3 points θ∗ 
hosen randomly in (−1, 1)2. The estimators are Jθ∗,n,

J∗
θ∗,n and Iθ∗,n de�ned in Proposition 3.4 and (16). Table 1 displays theaverage, over the N repli
ations, of the relative estimation errors

‖Jθ∗,n − Jθ∗‖
‖Jθ∗‖

,

∥

∥J∗
θ∗,n − J∗

θ∗

∥

∥

‖J∗
θ∗‖

and ‖Iθ∗,n − Iθ∗‖
‖Iθ∗‖

.From Table 1, one 
an note that: 1) although the information matri
es varya lot with θ∗, the relative errors are not very sensitive to the value of θ∗;2) as expe
ted the relative errors de
rease when n in
reases; 3) it is moredi�
ult to estimate the information matri
es when k is large; 4) it is easierto estimate Jθ∗ than J∗
θ∗ , and easier to estimate J∗

θ∗ than Iθ∗ .4.1.2. Estimating the asymptoti
 varian
e of the LSESeveral estimators of the asymptoti
 varian
e Ω involved in (5) 
an be
onsidered. In view of Proposition 3.4 and (16), two estimators that are
onsistent under very general assumptions are
Ω̂ = J−1

θ̂n,n
Iθ̂n,nJ

−1

θ̂n,n
and Ω̂∗ = J∗−1

θ̂n,n
Iθ̂n,nJ

∗−1

θ̂n,n
.16



Table 1: Average relative error for the estimators of the information matri
es, over
N = 1000 repli
ations.

n = 1, 000 n = 10, 000
k θ∗ Jθ∗ J∗

θ∗ Iθ∗ Jθ∗ J∗
θ∗ Iθ∗(-0.9,-0.7) 0.10307 0.13466 0.34958 0.03472 0.04466 0.13070

0 (0.5,-0.6) 0.07817 0.10840 0.28935 0.02635 0.03655 0.11602(0.7,0.9) 0.16050 0.23238 0.62677 0.05105 0.07239 0.35446(-0.9,-0.7) 0.15183 0.17483 0.54247 0.04835 0.05592 0.23380
1 (0.5,-0.6) 0.13454 0.15691 0.52612 0.04225 0.04979 0.22927(0.7,0.9) 0.19607 0.25395 0.81663 0.06119 0.08024 0.41813(-0.9,-0.7) 0.24941 0.26726 1.01021 0.07945 0.08502 0.48073
2 (0.5,-0.6) 0.23188 0.25324 1.02312 0.07372 0.08064 0.48426(0.7,0.9) 0.25566 0.29135 0.88026 0.08983 0.10374 0.52578(-0.9,-0.7) 0.36007 0.37685 1.13567 0.13339 0.13941 0.80758
3 (0.5,-0.6) 0.34200 0.36553 1.11668 0.12598 0.13487 0.80077(0.7,0.9) 0.38990 0.41912 1.35145 0.13595 0.14663 0.76092(-0.9,-0.7) 0.49452 0.50613 1.19581 0.20527 0.21180 1.11480
4 (0.5,-0.6) 0.47746 0.49784 1.19473 0.19569 0.20733 1.10979(0.7,0.9) 0.54117 0.55883 1.95453 0.21114 0.21816 1.07556(-0.9,-0.7) 0.67610 0.68923 1.42507 0.31757 0.32562 1.66401
5 (0.5,-0.6) 0.66101 0.68331 1.44809 0.30515 0.32038 1.67812(0.7,0.9) 0.69161 0.70621 1.77970 0.29799 0.30403 1.15614

In view of the 
onsisten
y of the LSE stated in Lemma 2.1 and Proposi-tion 3.1, the matrix J 
an be estimated by plugging. We then de�ne thealternative estimator
Ω(θ̂n) = J−1

θ̂n
Iθ̂n,nJ

−1

θ̂n
.Other estimators of Ω that should be 
onsistent in the strong ARMA 
aseare de�ned by

Ω̂s = σ̂2J−1

θ̂n,n
and Ωs(θ̂n) = σ̂2J−1

θ̂n
, with σ̂2 =

1

n

n
∑

t=1

e2t (θ̂n).17



Finally, in the semi-strong 
ase, an estimator is given by
Ω̂ss = J−1

θ̂n,n
ÎssJ

−1

θ̂n,n
, Îss =

1

n

n
∑

t=1

e2t (θ̂n)
∂et(θ̂n)

∂θ

∂et(θ̂n)

∂θ′
.Table 2 indi
ates that, for all the 
onsistent estimators (i.e. all estimatorswhen k = 0, and Ω̂, Ω̂∗, Ω(θ̂n) and Ω̂ss when k > 0) the relative errorsde
rease when n in
reases. As expe
ted from Table 1, the estimation of theasymptoti
 matri
es be
omes more di�
ult when k in
reases. When k > 0the estimator Ω̂ss is mu
h more a

urate than Ω̂s and Ωs(θ̂n) (whi
h area
tually not 
onsistent in this semi-strong setting) and also slightly morea

urate than the other ones. In the strong 
ase (i.e. when k = 0 in (11)),the estimators Ω̂s and Ωs(θ̂n) are mu
h more a

urate than the other ones,but they are not 
onsistent when k > 0 (the relative errors are almost thesame for n = 1, 000 and n = 10, 000). This not surprising, be
ause the noisede�ned in (11) is a semistrong one.Table 2: Relative error of the asymptoti
 varian
e matri
es of the LSE. The numberof repli
ations is N = 1000.

n k Ω̂ Ω̂∗ Ω(θ̂n) Ω̂s Ω̂s(θ̂n) Ωss

0 0.13327 0.18264 0.15751 0.06353 0.07496 0.09014
1 0.35768 0.36452 0.42471 0.47470 0.48099 0.24168
2 0.52599 0.53392 0.65840 0.79349 0.79581 0.43806

1, 000 3 0.69808 0.70883 0.84601 0.92835 0.92945 0.62591
4 0.83908 0.85469 0.97604 0.97497 0.97583 0.76076
5 0.92800 0.92828 0.95288 0.99173 0.99213 0.87238
10 1.00805 0.99961 0.99892 1.00006 0.99983 1.02399
0 0.04344 0.05567 0.05006 0.02002 0.02327 0.02906
1 0.14336 0.14478 0.16351 0.47000 0.47020 0.08734
2 0.31212 0.31412 0.35461 0.79448 0.79442 0.23533

10, 000 3 0.50658 0.51049 0.58767 0.92943 0.92913 0.43183
4 0.65129 0.66057 0.78561 0.97604 0.97626 0.62521
5 0.76824 0.77414 0.88845 0.99198 0.99212 0.72576
10 0.99694 0.99672 0.99761 0.99996 0.99996 0.99331
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4.2. Bahadur's slopes of two versions of the Lagrange-Multiplier testLet R be a given matrix of size s0× (p+ q) and rank s0, and let r0 and r1be given ve
tors of size s0 su
h that r1 6= r0. Consider the testing problem
H0 : Rθ0 = r0 against H1 : Rθ0 = r1. (17)When the model is mu
h simpler under the null than under the alternative,the Lagrange-Multiplier (LM) test is very attra
tive be
ause, 
ontrary toother tests, in parti
ular the Wald and Likelihood-Ratio tests, the LM pro-
edure only requires the estimation of the ARMA model under H0 (see Engle(1984) for a general presentation of these tests). Let λ ∈ R

s0 be a Lagrangemultiplier and let θ̂cn be the LSE 
onstrained by H0:
(θ̂cn, λ̂) = arg min

θ∈Θ,λ∈Rs0
Qn(θ)− λ′(Rθ − r0).For simpli
ity, 
onsider the strong ARMA 
ase. The asymptoti
 varian
e ofthe LSE 
an then be estimated either by

Ω̂c = σ̂2c
(

Ĵc
n

)−1 or Ω̂∗c = σ̂2c
(

Ĵ∗c
n

)−1where
Ĵc
n =

1

n

n
∑

t=1

∂ǫt(θ̂
c
n)

∂θ

∂ǫt(θ̂
c
n)

∂θ′
, Ĵ∗c

n =
1

n

n
∑

t=1

ǫt(θ̂
c
n)
∂2ǫt(θ̂

c
n)

∂θ∂θ′
+ Ĵc

nand σ̂2c = n−1
∑n

t=1 e
2
t (θ̂

c
n). This leads to two versions of the LM statisti


LM :=
n

σ̂2c

∂Qn(θ̂
c
n)

∂θ′

(

Ĵc
n

)−1 ∂Qn(θ̂
c
n)

∂θ
,

LM
∗ :=

n

σ̂2c

∂Qn(θ̂
c
n)

∂θ′

(

Ĵ∗c
n

)−1 ∂Qn(θ̂
c
n)

∂θ
.The two versions have the same asymptoti
 distribution under the null:

LM
d→ χ2

s0
and LM

d→ χ2
s0

under H0but behaves di�erently under the alternative:
LM

n
→ c := D′

θc0

(

σ2cJθc0
)−1

Dθc0
,

LM
∗

n
→ c∗ := D′

θc0

(

σ2cJ∗
θc0

)−1

Dθc019



under H1 as n→ ∞, where
Dθ = Eǫt(θ)

∂ǫt(θ)

∂θ
, σ2c = Eǫ21(θ

c
0)when θ̂cn → θc0 a.s., where θc0 is su
h that Jθc0 and J∗

θc0
are positive-de�nite.Note that Jθc0 is always positive-semide�nite, but this is not the 
ase for

J∗
θc0
. When J∗

θc0
is not positive-de�nite, the LM∗-test (i.e. the test of reje
tionregion {LM∗ ≥ χ2

1(1−α)}, where α is the asymptoti
 level and χ2
k(α) denotesthe α-quantile of the 
hi-square distribution with k degrees of freedom) maybe in
onsistent.Thanks to the 
omputation of Se
tion 3, for any given alternative, we areable to determine whi
h version is 
onsistent and we are able to 
omputethe Bahadur slopes. We now give a simple example in whi
h hand-made
omputation of Bahadur's slopes is possible.4.2.1. Testing an AR(1) against an ARMA(1,1)We now 
onsider an ARMA(1,1) model and we test for an AR(1). Wethus have R = (0, 1), r0 = 0 and θc0 = (ac0, 0)

′ where
ac0 = argmin

a
E(Xt − aXt−1)

2 = ρ(1),where ρ(h) = γ(h)/γ(0) and γ(h) = Cov(Xt, Xt−h) denote respe
tively theauto
orrelation and auto
ovarian
e of (Xt) at lag h. Standard 
omputationsshow that the 
onstrained estimator satis�es
θ̂cn =

(

âc

0

)

,
∂Qn(θ̂

c
n)

∂θ′
=

(

0

λ̂

)witĥ
ac =

∑n
t=2XtXt−1
∑n

t=2X
2
t−1

, λ̂ = âc
1

n

n
∑

t=3

XtXt−2 − (âc)2
1

n

n
∑

t=3

Xt−1Xt−2.
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Other tedious 
omputations show that
σ2c =

{

1 + (ac0)
2} γ(0)− 2ac0γ(1),

Dθc0
= −E (Xt − ac0Xt−1)

(

Xt−1

Xt−1 − ac0Xt−2

)

=

(

0

− (ac0)
2 γ(1) + (ac0) γ(2)

)

,

Jθc0 =

(

γ(0) γ(0)− ac0γ(1)

γ(0)− ac0γ(1) γ(0) + (ac0)
2 γ(0)− 2ac0γ(1)

)

,

J∗
θc0

= Jθc0 + E(Xt − ac0Xt−1)

(

0 Xt−2

Xt−2 2 (Xt−2 − ac0Xt−3)

)

= Jθc0 +

(

0 γ(2)− ac0γ(1)

γ(2)− ac0γ(1) 2
{

1 + (ac0)
2} γ(2)− 2ac0 {γ(1) + γ(3)}

)

.The Bahadur slopes of the two versions of the LM tests are thus
c =

(ac0γ(1)− γ(2))2 γ(0)

{γ2(0)− γ2(1)}σ2cand, under the assumption that the denominator is stri
tly positive,
c∗ =

(ac0γ(1)− γ(2))2 γ(0)
{

γ2(0) + 2γ(0)γ(2)− 2γ(0)γ(3)
ac0

− γ2(2)
ac20

− 4γ2(1) + 4γ(1)γ(2)
ac0

}

σ2c
.In parti
ular, it follows that, in the Bahadur sense, the LM∗ version is moree�
ient than the LM one for MA(1) alternatives of the form Xt = ǫt +

b0ǫt−1. Moreover, the asymptoti
 relative e�
ien
y c∗/c tends to in�nity as
|b0| appro
hes 1. For strong ARMA(1,1) alternatives of the form

Xt − 0.5Xt−1 = ǫt + b0ǫt−1, ǫt iid N (0, 1), (18)tedious 
omputations show that the LM
∗ version is in
onsistent for b0 ≤

−0.5807... but is more e�
ient than the LM version when b0 > −0.5807....Figure 1 shows the per
entage of Bahadar asymptoti
 relative e�
ien
y(ARE) gain of LM
∗ with respe
t to LM, as measured by 100(c∗ − c)/c,when b0 varies from -0.45 to 0.55. 21
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Figure 1: Relative improvement (in per
entage) of the Bahadur slope of the LM
∗test with respe
t to that of the LM-test, when the null is AR(1) and the alternativeis the ARMA(1,1) model (18).4.2.2. Finite sample 
omparison of the two versionsIn order to determine whether the ARE 
omputed in the previous se
tionprovide valuable insights on the a
tual behavior of the two tests, we simulated

N = 1 000 independent traje
tories of size n = 100, n = 1 000 and n =
10 000 of the ARMA(1,1) models (18). Table 3 displays the averaged p-values of the LM and LM

∗ tests of the null hypothesis of an AR(1), i.e.
H0 : b0 = 0. The two lines in bold 
orrespond to the null hypothesis H0. Forthe line b0 = 0, the DGP is an AR(1) and the test statisti
s LM and LM

∗are asymptoti
ally χ2
1-distributed be
ause

Jθc0 = J∗
θc0
= γ(0)

(

1 1− a20
1− a20 1− a20

)

, a0 = 1/2,is invertible and the arguments of Se
tion 4.2.1 apply. For the line b0 = −0.5,the DGP is a white noise, whi
h 
an also be written as an ARMA(1,1) with
a0 = b0 = 0, but the arguments of Se
tion 4.2.1 do not apply be
ause

Jθc0 = J∗
θc0
= γ(0)

(

1 1
1 1

)is singular. As expe
ted, the average p-value of the LM and LM
∗ tests are
lose to 0.5 when b0 = 0. We also note the average p-value of the LM-test is22




lose to 0.5 when b0 = −0.5, and is 
lose to zero under the alternative when
n is large. In a

ordan
e with the theoreti
al results of the previous se
tion,we also note that the LM

∗-test is in
onsistent for b0 < −0.5 be
ause the p-values do not tend to zero as n in
reases. When n is small and b0 > 0.5, thep-values of the LM∗-test are slightly smaller than those of the LM-test, butthese p-values tend rapidly to zero as n in
reases. For an easier 
omparisonof the empiri
al behavior of the two tests, Table 4 reports the averages ofthe estimated Bahadur slopes LM/n and LM
∗/n. As expe
ted from theasymptoti
 theory illustrated by Figure 1, the LM

∗ statisti
 is in averagelarger than the LM statisti
 for alternatives su
h that b0 > −0.5. Note alsothat the LM statisti
 is always positive, whereas negative values of LM∗ areobserved, be
ause Ĵc
n is semi-de�nite positive, whereas it is not the 
ase for

Ĵ∗c
n .To 
on
lude this se
tion, although the LM

∗ version may be asymptoti-
ally more e�
ient in Bahadur's sense than the LM version for parti
ularalternatives, the LM version seems globally preferable be
ause it is unbiasedand 
onsistent for a larger set of alternatives.4.3. Testing weak ARMA models for sto
k returnsWe now 
onsider an appli
ation to the daily returns of 10 sto
k marketindi
es (CAC, DAX, FTSE, HSI, Nikkei, NSE, SMI, SP500, SPTSX andSSE). The observations 
over the period from the starting date of ea
h indexto July 26, 2010. In Finan
ial E
onometri
s, the returns are often assumed tobe martingale in
rements, and the squares of the returns have often se
ond-order moments 
lose to those of an ARMA(1,1) (whi
h is 
ompatible with aGARCH(1,1) model for the returns).We will test these hypotheses by �tting weak ARMA models on the re-turns and on their squares. In view of Se
tion 4.1.2, let Ω̂ = J−1

θ̂n,n
Iθ̂n,nJ

−1

θ̂n,n
,

Ω̂s = σ̂2J−1

θ̂n,n
and Ω̂ss = J−1

θ̂n,n
ÎssJ

−1

θ̂n,n
. We will 
onsider three versions of theWald test of the null hypothesis de�ned in (17). Under the assumptions ofProposition 3.4 and the assumption that I and Iss are invertible, the Waldstatisti
s

WS = n(R0θ̂n − r0)
′(R0Ω̂sR

′
0)

−1(R0θ̂n − r0),

WSS = n(R0θ̂n − r0)
′(R0Ω̂ssR

′
0)

−1(R0θ̂n − r0),

WW = n(R0θ̂n − r0)
′(R0Ω̂R

′
0)

−1(R0θ̂n − r0)23



Table 3: Averages of the p-values of LM and LM
∗ for testing the null hypothesisof an AR(1), i.e. H0 : b0 = 0, in the ARMA(1,1) model (18). The number ofrepli
ations is N = 1000.

n = 100 n = 1, 000 n = 10, 000
b0 LM LM

∗
LM LM

∗
LM LM

∗-0.9 0.14185 0.82045 0.00000 0.98700 0.00000 1.00000-0.8 0.19998 0.78249 0.00028 0.94300 0.00000 1.00000-0.7 0.32798 0.77807 0.00917 0.81042 0.00000 0.98900-0.6 0.46288 0.81641 0.18710 0.67573 0.00004 0.61900-0.5 0.49549 0.85000 0.50789 0.84556 0.51899 0.85018-0.4 0.48500 0.77410 0.29030 0.48105 0.00252 0.01066-0.3 0.46271 0.65144 0.14221 0.13635 0.00000 0.00000-0.2 0.44848 0.50338 0.15298 0.14171 0.00000 0.00000-0.1 0.49491 0.51222 0.29239 0.28933 0.00368 0.003450.0 0.50143 0.49780 0.51095 0.50941 0.51854 0.518300.1 0.44112 0.42938 0.17563 0.17287 0.00003 0.000030.2 0.29159 0.27676 0.00483 0.00388 0.00000 0.000000.3 0.14343 0.12986 0.00005 0.00000 0.00000 0.000000.4 0.05982 0.04610 0.00000 0.00000 0.00000 0.000000.5 0.01696 0.01194 0.00000 0.00000 0.00000 0.000000.6 0.00752 0.00758 0.00000 0.00000 0.00000 0.000000.7 0.00227 0.01223 0.00000 0.00000 0.00000 0.000000.8 0.00156 0.01510 0.00000 0.00000 0.00000 0.000000.9 0.00112 0.01109 0.00000 0.00000 0.00000 0.00000
asymptoti
ally follow a χ2

s0
distribution under H0. At the asymptoti
 level

α, ea
h Wald test 
onsists in reje
ting H0 when its statisti
 is greater than
χ2
s0
(1− α).4.3.1. Testing a white noise against an AR(1)In this se
tion, we �t AR(1) models on ea
h series of daily returns, andwe apply the above-mentioned Wald tests for testing the hypothesis thatthe returns 
onstitute a white noise. This testing problem 
an be triviallywritten under the form (17). Table 5 displays the p-values of the standard and24



Table 4: Estimated Bahadur slopes of the LM and LM
∗ tests, when the nullhypothesis is an AR(1) and the alternative is the ARMA(1,1) model (18). Thenumber of repli
ations is N = 1000.

n = 100 n = 1, 000 n = 10, 000
b0 LM LM

∗
LM LM

∗
LM LM

∗-0.9 0.04712 4.17203 0.03717 -0.05981 0.03631 -0.04923-0.8 0.03654 -0.13111 0.02654 5.93785 0.02589 -0.04407-0.7 0.02320 0.98988 0.01376 -0.03605 0.01269 -0.04327-0.6 0.01280 -0.00635 0.00404 0.01628 0.00313 0.00297-0.5 0.01035 -0.00211 0.00102 0.00020 0.00010 0.00001-0.4 0.01050 -0.01204 0.00269 0.00062 0.00186 0.00449-0.3 0.01282 0.00389 0.00482 0.00794 0.00425 0.00591-0.2 0.01240 0.01819 0.00487 0.00600 0.00417 0.00471-0.1 0.01060 0.00009 0.00271 0.00287 0.00180 0.001850.0 0.01036 0.00721 0.00092 0.00095 0.00008 0.000080.1 0.01393 0.01720 0.00422 0.00438 0.00335 0.003430.2 0.02607 0.03886 0.01600 0.01750 0.01510 0.016270.3 0.04626 0.05910 0.03781 0.04417 0.03660 0.042540.4 0.07466 0.22160 0.06637 0.08452 0.06550 0.083270.5 0.10383 0.17138 0.09796 0.13724 0.09764 0.136010.6 0.13199 0.28353 0.12860 0.19518 0.12850 0.194020.7 0.15988 0.28823 0.15401 0.25127 0.15339 0.247800.8 0.17431 0.34168 0.16972 0.29062 0.17080 0.289100.9 0.18064 0.33781 0.17949 0.31841 0.18062 0.31362
modi�ed Wald tests. For the NSE, SMI, SP500 and SPTSX series, the whitenoise hypothesis is reje
ted by the WS test at the nominal level α = 5%.This is not surprising be
ause the WS test required the iid assumption and,in parti
ular in view of the so-
alled volatility 
lustering, it is well known thatthe strong white noise model is not adequate for these series. By 
ontrast,the white noise hypothesis is not reje
ted by the modi�ed tests based on
WSS and WW . To summary, the outputs of Table 5 are in a

ordan
e withthe 
ommon belief that these series are not strong white noises, but 
ould beweak white noises (or even martingale in
rements).25



We now turn to the dynami
s of the squared returns.Table 5: For standard and modi�ed versions of Wald tests, p-values of the nullhypothesis that the returns are white noises. The p-values whi
h are less than
α = 5% are displayed in bold.Returns Length n WS WSS WWCAC 5154 0.386 0.570 0.486DAX 4966 0.343 0.521 0.349FTSE 6647 0.705 0.857 0.760HSI 5849 0.144 0.631 0.356Nikkei 6530 0.057 0.328 0.159NSE 1990 0.038 0.250 0.082SMI 4963 0.035 0.264 0.060SP500 15237 0.000 0.073 0.019SPTSX 2665 0.042 0.321 0.105SSE 2716 0.707 0.781 0.7584.3.2. Testing the ARMA(1, 1) model for the squared returnsWe �tted ARMA(p, q) models with p = 1 and q > 1, or q = 1 and p > 1,on the squares of the previous daily returns, and we applied Wald tests fortesting the null hypothesis of an ARMA(1, 1) model. The p-values of thestandard and modi�ed Wald tests are displayed in Table 6. The standardWald test frequently reje
ts the ARMA(1,1) model. The validity of this testis however questionable, be
ause the assumption of iid linear innovationsis not very plausible, as well for the squared returns than for the returnsthemselves (as was dis
ussed in the previous se
tion). If the returns areassumed to follow a GARCH(1,1), whi
h is one of the most widely used modelfor su
h series, then the squared returns follow a semi-strong ARMA(1,1),and higher-order powers follow ARMA models whi
h are only weak (see ).The tests based on the statisti
s WSS and WW thus appear as more reliable,a priori. These tests also frequently reje
t the ARMA(1,1) model in favor ofmore 
omplex models. This leads us to re
onsider the 
ommon belief that theGARCH(1,1) model is su�
ient to 
apture the dynami
s of most �nan
ialreturns, and that higher-order models would be unne
essarily 
ompli
ated.Fran
q and Zakoïan (2009a) drew the same 
on
lusion from parametri
 tests26



on GARCH models. The advantage of the present study is that it leads tore
onsider not only the GARCH(1,1) model, but also any parametri
 modelleading to a weak ARMA(1,1) for the squares.5. Con
lusionThe asymptoti
 varian
e of the LSE of ARMA models depend on infor-mation matri
es I and J 
omputed at the true value of the parameter θ0.It is sometime ne
essary to evaluate these matri
es at some point θ 6= θ0.In the 
ase of strong ARMA models, Iθ and Jθ depend only on θ0 and onthe moments σ2 = Eǫ2t and µ4 = Eǫ4t of the iid noise ǫt. In the mu
h moregeneral 
ase of weak ARMA models, Iθ also depends on the auto
ovarian
esof the weak white noise ǫ2t .We proposed here algorithms for the exa
t 
omputation of Iθ and Jθfrom the model, and for the estimation of these matri
es from the data. It ispossible to de�ne estimators of the information matri
es whi
h are 
onsistentin the general weak 
ase, or in the more restri
tive semi-strong 
ase, or only inthe strong 
ase. Simulations experiments 
on�rmed the domain of validityof the di�erent estimators, and also that an e�
ien
y loss is the pri
e topay for having more robust estimators. As an illustration of the interestof 
onsidering Iθ and Jθ at θ 6= θ0, we 
omputed and 
ompared Bahadur'sslopes of two versions of the Lagrange-Multiplier test for testing general linearrestri
tion on θ0 in the strong ARMA 
ase. The two versions are based ontwo estimators Ĵc
n and Ĵ∗c

n of J under the null. The standard estimator of Jis Ĵc
n, whereas Ĵ∗c

n 
ontains an extra term whi
h is asymptoti
ally negligibleunder the null but may have importan
e under the alternative. We showed,analyti
ally and also by means of simulations, that the version based on
Ĵ∗c
n may be asymptoti
ally mu
h more e�
ient than the standard version,but is 
onsistent for a narrower set of alternatives. Applying di�erent Waldtests based on di�erent estimators of the information matri
es, and applyingthem for testing weak ARMA spe
i�
ations on daily sto
k returns and ontheir squares, we re
onsidered models su
h as the popular GARCH(1,1) forwhi
h the squares follow a weak ARMA(1,1).

27



Table 6: As Table 5, but for the null hypothesis that the squared returns follow anARMA(1, 1) model.Alternative Returns WS WSS WWCAC 0.000 0.228 0.167DAX 0.000 0.013 0.000FTSE 0.767 0.949 0.962HSI 0.000 0.351 0.000ARMA(2, 1) Nikkei 0.483 0.922 0.940NSE 0.027 0.485 0.570SMI 0.589 0.886 0.803SP500 0.014 0.641 0.503SPTSX 0.009 0.472 0.443SSE 0.042 0.281 0.139CAC 0.000 0.288 0.064DAX 0.000 0.060 0.013FTSE 0.828 0.957 0.941HSI 0.000 0.005 0.000ARMA(1, 2) Nikkei 0.594 0.936 0.938NSE 0.053 0.305 0.191SMI 0.668 0.897 0.863SP500 0.069 0.737 0.793SPTSX 0.001 0.312 0.571SSE 0.040 0.067 0.025CAC 0.003 0.617 0.228DAX 0.000 0.012 0.000FTSE 0.000 0.396 0.181HSI 0.000 0.000 0.000ARMA(1, 3) Nikkei 0.000 0.419 0.000NSE 0.286 0.742 0.621SMI 0.000 0.328 0.041SP500 0.000 0.000 0.000SPTSX 0.000 0.001 0.000SSE 0.006 0.022 0.001
28



A. ProofsProof of Proposition 3.3. The �rst result follows from (7) and
Iθ(i, k) =

+∞
∑

h=−∞

+∞
∑

h1,h2,h3,h4=0

ch1c
a
h2
ch3c

a
h4
Cov (ǫt−h1ǫt−h2−i, ǫt−h−h3ǫt−h−h4−k) .The other results follow similarly. 2Proof of Proposition 3.3. Let c̃h = ch for 0 ≤ h ≤ M and c̃h = 0 for

h > M . Similarly, we de�ned c̃ah and c̃bh. For 1 ≤ i ≤ k ≤ p, we have
Iθ(i, k)− IMθ (i, k) =

∞
∑

h1,h2,h3,h4=0

{

(ch1 − c̃h1)c
a
h2
ch3c

a
h4

+ c̃h1(c
a
h2

− c̃ah2
)ch3c

a
h4

+c̃h1 c̃
a
h2
(ch3 − c̃h3)c

a
h4

+ c̃h1 c̃
a
h2
c̃h3(c

a
h4

− c̃ah4
)
}

Γ(h2 + i− h1, h4 + k − h3).Note that if
max

i=1,...,k
|ρi| ≤ ρ < 1then for all |z| ≤ 1,

1
∏k

i=1(1− ρiz)
=

∞
∑

h=0

dhz
h, with |dh| ≤ (h+ 1)k−1ρh.Note also that

φ(z)ψ0(z) =

(

1−
p
∑

i=1

aiz
i

)(

1 +

q
∑

j=1

b0jz
j

)

=

p+q
∑

ℓ=0

πℓz
ℓ,where, with the 
onvention a0 = −1, b00 = 1 and ai = 0 for i < 0,

|πℓ| =
∣

∣

∣

∣

∣

q
∑

j=0

b0jaℓ−j

∣

∣

∣

∣

∣

≤ π.We thus have
max

{

|ch| , |cah| ,
∣

∣cbh
∣

∣

}

≤ (p+ q + 1)π(h+ 1)k0ρh ≤ K0ρ
h/2with

k0 = p+ 2q − 1, K0 = (p+ q + 1)π

(−2k0
log ρ

)k0

ρ −0.5−k0/ log ρ.29



We then obtain
∣

∣Iθ(i, k)− IMθ (i, k)
∣

∣ ≤ 4Γ

(

K

1− ρ1/2

)4

ρ(M+1)/2and the result follows. 2In the following proofs, K and ρ denote generi
 
onstant su
h as K > 0and ρ ∈ (0, 1), whose exa
t values are unimportant.Proof of Proposition 3.4. Note that be
ause the roots ψ and φ0 areoutside the unit 
ir
le,
max

{

|cah| ,
∣

∣cbh
∣

∣ ,
∣

∣cabh
∣

∣ ,
∣

∣cbbh
∣

∣

}

≤ Kρh. (19)Be
ause Θ∗ is 
ompa
t, this inequality holds uniformly in θ ∈ Θ∗. Note thatthis entails the existen
e of Jθ∗ and J∗
θ∗ . The ergodi
 theorem then showsthat

Jθ∗,n → Jθ∗ and J∗
θ∗,n → J∗

θ∗ a.s. (20)By the previous arguments, for all i, i = 1, . . . , p+ q, we have
E sup

θ∈Θ∗

∥

∥

∥

∥

∂

∂θ

∂ǫt(θ)

∂θi

∂ǫt(θ)

∂θj

∥

∥

∥

∥

<∞. (21)A Taylor expansion yields
Jθ∗n,n(i, j) = Jθ∗,n(i, j) + (θ∗n − θ∗)′

1

n

n
∑

t=1

∂

∂θ

{

∂ǫt(θ)

∂θi

∂ǫt(θ)

∂θj

}

(θ∗∗)for some θ∗∗ between θ∗n and θ∗. The 
onsisten
y of Jθ∗n,n follows from (20),(21) and the 
onvergen
e of θ∗n to θ∗. The 
onsisten
y of J∗
θ∗n,n

is shownsimilarly. 2Referen
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Computing and estimating informationmatri
es of weak ARMA models: a
omplementary result whi
h is not submittedfor publi
ationA. Asymptoti
 properties of the spe
tral density estimator of thelong-run varian
e Iθ∗Theorem A.1. Let the assumptions of Lemma 2.1 be satis�ed. Assumethat the pro
ess (∇t) de�ned by (12) admits the AR(∞) representation (13),where ‖Ai‖ = o (i−2) as i → ∞, the roots of det(A(z)) = 0 are outside theunit disk, and Σu is non-singular. Assume moreover that E|ǫt|8+4ν <∞ and
∑∞

k=0{αǫ(k)}ν/(2+ν) <∞ for some ν > 0. Then, if θ∗n → θ∗ almost surely,
Iθ∗n,n = Â−1

r (1)Σ̂ur
Â′−1

r (1) → Iθ∗in probability when r = r(n) → ∞ and r3/n→ 0 as n→ ∞.The proof of Theorem A.1 is based on a series of lemmas. We use themultipli
ative matrix norm de�ned by: ‖A‖ = sup‖x‖≤1 ‖Ax‖ = ̺1/2(A′A),where A is a d1×d2 matrix, ‖x‖ is the Eu
lidean norm of the ve
tor x ∈ R
d2 ,and ̺(·) denotes the spe
tral radius. This norm satis�es

‖A‖2 ≤
∑

i,j

a2i,j (22)with obvious notations. This 
hoi
e of the norm is 
ru
ial for the followinglemma to hold (with e.g. the Eu
lidean norm, this result is not valid). Let
Σ∇,∇r

= E∇t∇′
r,t, Σ∇ = E∇t∇′

t, Σ∇r
= E∇r,t∇′

r,t.In the sequel, K and ρ denote generi
 
onstant su
h as K > 0 and ρ ∈ (0, 1),whose exa
t values are unimportant.Lemma 1. Under the assumptions of Theorem A.1,
sup
r≥1

max
{

∥

∥Σ∇,∇r

∥

∥ ,
∥

∥Σ∇r

∥

∥ ,
∥

∥

∥
Σ−1

∇r

∥

∥

∥

}

≤ ∞.34



Proof. We readily have
‖Σ∇r

x‖ ≤ ‖Σ∇r+1
(x′, 0′p+q)

′‖ and ‖Σ∇,∇r
x‖ ≤ ‖Σ∇r+1

(0′p+q, x
′)′‖for any x ∈ R

(p+q)r. Therefore
0 < ‖Var (∇t)‖ =

∥

∥Σ∇1

∥

∥ ≤
∥

∥Σ∇2

∥

∥ ≤ · · ·and
∥

∥Σ∇,∇r

∥

∥ ≤
∥

∥Σ∇r+1

∥

∥ .Let f(λ) be the spe
tral density of ∇t. Be
ause the auto
ovarian
e fun
tionof ∇t is absolutely summable, ‖f(λ)‖ is bounded by a �nite 
onstant K, say.Denoting by δ = (δ′1, . . . , δ
′
r)

′ an eigenve
tor of Σ∇r
asso
iated with its largesteigenvalue, su
h that ‖δ‖ = 1 and δi ∈ R

p+q for i = 1, . . . , r, we have
∥

∥Σ∇r

∥

∥ = ̺1/2(Σ2
∇r
) = ̺(Σ∇r

) = δ′Σ∇r
δ

=

r
∑

j,k=1

δ′j

∫ π

−π

ei(k−j)λf(λ)d(λ)δk ≤ 2πK.By similar arguments, the smallest eigenvalue of Σ∇r
is greater than a positive
onstant independent of r. Using the fa
t that ‖Σ−1

∇r
‖ is equal to the inverseof the smallest eigenvalue of Σ∇r

, the proof is 
ompleted. 2Denote by ∇t(i) the i-th element of ∇t.Lemma 2. Under the assumptions of Theorem A.1, there exits a �nite 
on-stant K1 su
h that for m1, m2 = 1, . . . , p+ q

sup
s∈Z

∞
∑

h=−∞

|Cov {∇1(m1)∇1+s(m2),∇1+h(m1)∇1+s+h(m2)}| < K1.Proof. Without loss of generality, we 
an take the supremum over theintegers s > 0, and write the proof in the 
ase m1 = m2 = m. In view of(19), we have
∞
∑

h=−∞

|Cov {∇1(m)∇1+s(m),∇1+h(m)∇1+s+h(m)}|

≤ K8
∞
∑

h1,...,h8=0

ρ
∑8

i=1 hi

∞
∑

h=−∞

|Cov (Y1,h1,h2Y1+s,h3,h4, Y1+h,h5,h6Y1+s+h,,h7,h8)|35



where
Yt,h1,h2 = ǫt−h1ǫt−h2−m − Eǫt−h1ǫt−h2−m.A slight extension of Corollary A.3 in Fran
q and Zakoian (2010) 
on
ludes.

2 Let Σ̂∇r
, Σ̂∇ and Σ̂∇,∇r

be the matri
es obtained by repla
ing ∇̂t by ∇tin Σ̂∇̂r
, Σ̂∇̂ and Σ̂∇̂,∇̂r

.Lemma 3. Under the assumptions of Theorem A.1, √
r‖Σ̂∇r

− Σ∇r
‖,√

r‖Σ̂∇−Σ∇‖, and √
r‖Σ̂∇,∇r

−Σ∇,∇r
‖ tend to zero in probability as n→ ∞when r = o(n1/3).Proof. For 1 ≤ m1, m2 ≤ p + q and 1 ≤ r1, r2 ≤ r, the element of the

{(r1 − 1)(p+ q) +m1}-th row and {(r2 − 1)(p+ q) +m2}-th 
olumn of Σ̂∇ris of the form n−1
∑n

t=1 Zt where Zt = ∇t−r1(m1)∇t−r2(m2). By stationarityof (Zt), we haveVar( 1

n

n
∑

t=1

Zt

)

=
1

n2

n−1
∑

h=−n+1

(n− |h|)Cov (Zt, Zt−h) ≤
K1

n
, (23)where, by Lemma 2, K1 is a 
onstant independent of r1, r2, m1, m2 and r, n.In view of (22) and (23) we have

E
{

r‖Σ̂∇ − Σ∇‖2
}

≤ E
{

r‖Σ̂∇,∇r
− Σ∇,∇r

‖2
}

≤ E
{

r‖Σ̂∇r
− Σ∇r

‖2
}

≤ K1(p+ q)2r3

n
= o(1)as n→ ∞ when r = o(n1/3). The result follows. 2We now show that the previous lemma applies when ∇t is repla
ed by

∇̂t.Lemma 4. Under the assumptions of Theorem A.1, √
r‖Σ̂∇̂r

− Σ∇r
‖,

√
r‖Σ̂∇̂−Σ∇‖, and √

r‖Σ̂∇̂,∇̂r
−Σ∇,∇r

‖ tend to zero in probability as n→ ∞when r = o(n1/3).Proof. We �rst show that the repla
ement of the unknown initial values
{Xu, u ≤ 0} by zero is asymptoti
ally unimportant. Let Σ̂∇r,n

be the ma-trix obtained by repla
ing et(θ∗n) by ǫt(θ∗n) in Σ̂∇̂r
. Be
ause ǫt(θ) and their36



derivatives have ARMA representations (see Se
tion 3), it is easy to showthat
sup
θ∈Θ∗

|et(θ)− ǫt(θ)| ≤ Kρt, sup
θ∈Θ∗

∥

∥

∥

∥

∂

∂θ
et(θ)−

∂

∂θ
ǫt(θ)

∥

∥

∥

∥

≤ Kρt.It 
an be dedu
ed that ‖Σ̂∇̂r
− Σ̂∇r,n

‖ = OP (rn
−1). We thus have

√
r‖Σ̂∇̂r

− Σ̂∇r,n
‖ = oP (1). (24)Taylor expansions around θ∗ yield

|ǫt(θ∗n)− ǫt(θ
∗)| ≤ rt ‖θ∗n − θ∗‖ ,

∣

∣

∣

∣

∂ǫt(θ
∗
n)

∂θm
− ∂ǫt(θ

∗)

∂θm

∣

∣

∣

∣

≤ st ‖θ∗n − θ∗‖with rt = ∥∥ ∂
∂θ′
ǫt(θ)

∥

∥, st = ∥∥∥ ∂2

∂θ′∂θm
ǫt(θ)

∥

∥

∥
where θ and θ are between θ∗n and θ∗.De�ne Zt as in the proof of Lemma 3, and let Zt,n be obtained by repla
ing

∇t(m) by ∇t,n(m) = ǫt(θ
∗
n)∂ǫt(θ

∗
n)/∂θm in Zt. We have

|∇t(m)−∇t,n(m)| ≤ rt ‖θ∗n − θ∗‖
∣

∣

∣

∣

∂

∂θm
ǫt(θ

∗)

∣

∣

∣

∣

+ st ‖θ∗n − θ∗‖ |ǫt(θ∗n)|

:= ‖θ∗n − θ∗‖ dt,n,m,and thus
|Zt − Zt,n| ≤ ‖θ∗n − θ∗‖Dt,n,m1,m2,r1,r2,where

Dt,n,m1,m2,r1,r2 = |dt−r1,n,m1∇t−r2(m2)|+ |∇t−r1,n(m1)dt−r2,n,m2| .Note that E |Dt,n,m1,m2,r1,r2| ≤ K for some 
onstant K independent of
n, r1, r2, m1 and m2. Thus

‖Σ̂∇r,n
− Σ̂∇r

‖2 ≤ r2 ‖θ∗n − θ∗‖2OP (1).Sin
e ‖θ∗n − θ∗‖ = OP

(

n−1/2
), we obtain for r = o(n1/3)

√
r‖Σ̂∇r,n

− Σ̂∇r
‖ = oP (1). (25)By Lemma 3 , (24) and (25) show that √r‖Σ̂∇̂r

− Σ∇r
‖ = oP (1). The otherresults are obtained similarly. 2Write A∗

r = (A1 · · ·Ar) where the Ai's are de�ned by (13).37



Lemma 5. Under the assumptions of Theorem A.1,
√
r ‖A∗

r − Ar‖ → 0,as r → ∞.Proof. Re
all that by (13) and (15)
∇t = Ar∇r,t + ur,t = A∗

r∇r,t +

∞
∑

i=r+1

Ai∇t−i + ut := A∗
r∇r,t + u∗r,t.Hen
e, using the orthogonality 
onditions in (13) and (15)

A∗
r −Ar = −Σu∗

r ,∇r
Σ−1

∇r
(26)where Σu∗

r ,∇r
= Eu∗r,t∇′

r,t. Using arguments and notations of the proof ofLemma 2, there exists a 
onstant K2 independent of s and m1, m2 su
h that
E |∇1(m1)∇1+s(m2)| ≤ K4

∞
∑

h1,...,h4=0

ρh1+···+h4‖ǫ1‖44 ≤ K2.By the Cau
hy-S
hwarz inequality and (22), we then have
∥

∥Cov (∇t−r−h,∇r,t

)∥

∥ ≤ K2r
1/2(p+ q).Thus,

‖Σu∗

r ,∇r
‖ = ‖

∞
∑

i=r+1

AiE∇t−i∇′
r,t‖ ≤

∞
∑

h=1

‖Ar+h‖
∥

∥Cov (∇t−r−h,∇r,t

)∥

∥

= O(1)r1/2
∞
∑

h=1

‖Ar+h‖. (27)Note that the assumption ‖Ai‖ = o (i−2) entails r∑∞
h=1 ‖Ar+h‖ = o(1) as

r → ∞. The lemma therefore follows from (26), (27) and Lemma 1. 2The following lemma is similar to Lemma 3 in Berk (1974).Lemma 6. Under the assumptions of Theorem A.1,
√
r‖Σ̂−1

∇̂r

− Σ−1
∇r
‖ = oP (1)as n→ ∞ when r = o(n1/3) and r → ∞.38



Proof. We have
∥

∥

∥
Σ̂−1

∇̂r

− Σ−1
∇r

∥

∥

∥
=

∥

∥

∥

{

Σ̂−1

∇̂r

− Σ−1
∇r

+ Σ−1
∇r

}{

Σ∇r
− Σ̂∇̂r

}

Σ−1
∇r

∥

∥

∥

≤
(∥

∥

∥
Σ̂−1

∇̂r

− Σ−1
∇r

∥

∥

∥
+
∥

∥

∥
Σ−1

∇r

∥

∥

∥

)∥

∥

∥
Σ̂∇̂r

− Σ∇r

∥

∥

∥

∥

∥

∥
Σ−1

∇r

∥

∥

∥
.Iterating this inequality, we obtain

∥

∥

∥
Σ̂−1

∇̂r

− Σ−1
∇r

∥

∥

∥
≤

∥

∥

∥
Σ−1

∇r

∥

∥

∥

∞
∑

i=1

∥

∥

∥
Σ̂∇̂r

− Σ∇r

∥

∥

∥

i ∥
∥

∥
Σ−1

∇r

∥

∥

∥

i

.Thus, for every ε > 0,
P
(√

r
∥

∥

∥
Σ̂−1

∇̂r

− Σ−1
∇r

∥

∥

∥
> ε
)

≤ P







√
r

∥

∥

∥
Σ−1

∇r

∥

∥

∥

2 ∥
∥

∥
Σ̂∇̂r

− Σ∇r

∥

∥

∥

1−
∥

∥

∥
Σ̂∇̂r

− Σ∇r

∥

∥

∥

∥

∥

∥
Σ−1

∇r

∥

∥

∥

> ε and ∥∥
∥
Σ̂∇̂r

− Σ∇r

∥

∥

∥

∥

∥

∥
Σ−1

∇r

∥

∥

∥
< 1







+P
(√

r
∥

∥

∥
Σ̂∇̂r

− Σ∇r

∥

∥

∥

∥

∥

∥
Σ−1

∇r

∥

∥

∥
≥ 1
)

≤ P







√
r
∥

∥

∥
Σ̂∇̂r

− Σ∇r

∥

∥

∥
>

ε
∥

∥

∥
Σ−1

∇r

∥

∥

∥

2

+ εr−1/2

∥

∥

∥
Σ−1

∇r

∥

∥

∥







+P

(√
r
∥

∥

∥
Σ̂∇̂r

− Σ∇r

∥

∥

∥
≥
∥

∥

∥
Σ−1

∇r

∥

∥

∥

−1
)

= o(1)by Lemmas 3 and 1. This establishes Lemma 6. 2Lemma 7. Under the assumptions of Theorem A.1,
√
r
∥

∥

∥
Âr − Ar

∥

∥

∥
= oP (1)as r → ∞ and r = o(n1/3).Proof. By the triangle inequality and Lemmas 1 and 6, we have

∥

∥

∥
Σ̂−1

∇̂r

∥

∥

∥
≤
∥

∥

∥
Σ̂−1

∇̂r

− Σ−1
∇r

∥

∥

∥
+
∥

∥

∥
Σ−1

∇r

∥

∥

∥
= OP (1). (28)39



Note that the orthogonality 
onditions in (15) entail that Ar = Σ∇,∇r
Σ−1

∇r
.By Lemmas 1, 3, 6, and (28), we then have

√
r
∥

∥

∥
Âr −Ar

∥

∥

∥
=

√
r
∥

∥

∥
Σ̂∇̂,∇̂r

Σ̂−1

∇̂r

− Σ∇,∇r
Σ−1

∇r

∥

∥

∥

=
√
r
∥

∥

∥

(

Σ̂∇̂,∇̂r
− Σ∇,∇r

)

Σ̂−1

∇̂r

+ Σ∇,∇r

(

Σ̂−1

∇̂r

− Σ−1
∇r

)∥

∥

∥
= oP (1).

2Proof of Theorem A.1. In view of (14), it su�
es to show that Âr(1) →
A(1) and Σ̂ur

→ Σu in probability. Let the r × 1 ve
tor 1r = (1, . . . , 1)′ andthe r(p + q) × (p + q) matrix Er = Ip+q ⊗ 1r, where ⊗ denotes the matrixKrone
ker produ
t and Id the d×d identity matrix. Using (22), and Lemmas5, 7, we obtain
∥

∥

∥
Âr(1)−A(1)

∥

∥

∥
≤

∥

∥

∥

∥

∥

r
∑

i=1

Âr,i −Ar,i

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

r
∑

i=1

Ar,i − Ai

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∞
∑

i=r+1

Ai

∥

∥

∥

∥

∥

=
∥

∥

∥

(

Âr − Ar

)

Er

∥

∥

∥
+ ‖(A∗

r − Ar)Er‖+
∥

∥

∥

∥

∥

∞
∑

i=r+1

Ai

∥

∥

∥

∥

∥

≤ √
p+ q

√
r
{∥

∥

∥
Âr − Ar

∥

∥

∥
+ ‖A∗

r −Ar‖
}

+

∥

∥

∥

∥

∥

∞
∑

i=r+1

Ai

∥

∥

∥

∥

∥

= oP (1).Now note that
Σ̂ur

= Σ̂∇̂ − ÂrΣ̂
′
∇̂,∇̂rand, by (13)

Σu = Eutu
′
t = Eut∇′

t = E

{(

∇t −
∞
∑

i=1

Ai∇t−i

)

∇′
t

}

= Σ∇ −
∞
∑

i=1

AiE∇t−i∇′
t = Σ∇ − A∗

rΣ
′
∇,∇r

−
∞
∑

i=r+1

AiE∇t−i∇′
t.
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Thus,
∥

∥

∥
Σ̂ur

− Σu

∥

∥

∥
=

∥

∥

∥
Σ̂∇̂ − Σ∇ −

(

Âr − A∗
r

)

Σ̂′
∇̂,∇̂r

−A∗
r

(

Σ̂′
∇̂,∇̂r

− Σ′
∇,∇r

)

+
∞
∑

i=r+1

AiE∇t−i∇′
t

∥

∥

∥

∥

∥

≤
∥

∥

∥
Σ̂∇̂ − Σ∇

∥

∥

∥
+
∥

∥

∥

(

Âr −A∗
r

)(

Σ̂′
∇̂,∇̂r

− Σ′
∇,∇r

)∥

∥

∥

+
∥

∥

∥

(

Âr −A∗
r

)

Σ′
∇,∇r

∥

∥

∥
+
∥

∥

∥
A∗

r

(

Σ̂′
∇̂,∇̂r

− Σ′
∇,∇r

)∥

∥

∥

+

∥

∥

∥

∥

∥

∞
∑

i=r+1

AiE∇t−i∇′
t

∥

∥

∥

∥

∥

. (29)In the right-hand side of this inequality, the �rst norm is oP (1) by Lemma 3.By Lemmas 5 and 7, we have ‖Âr−A∗
r‖ = op(r

−1/2) = op(1), and by Lemma 3,
‖Σ̂′

∇̂,∇̂r

−Σ′
∇,∇r

‖ = op(r
−1/2) = op(1). Therefore the se
ond norm in the right-hand side of (29) tends to zero in probability. The third norm tends to zeroin probability be
ause ‖Âr−A∗

r‖ = op(1) and, by Lemma 1, ‖Σ′
∇,∇r

‖ = O(1).The fourth norm tends to zero in probability be
ause, in view of Lemma 3,
‖Σ̂′

∇̂,∇̂r

−Σ′
∇,∇r

‖ = op(1), and, in view of (22), ‖A∗
r‖2 ≤

∑∞
i=1Tr(AiA

′
i) <∞.Clearly, the last norm tends to zero, whi
h 
ompletes the proof. 2
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