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Abstract— Imperfect interfaces between two rough solids are 
known to exhibit nonlinear, anisotropic behavior under static 
normal and shear stresses.  We expect this nonlinear, anisotropic 
behavior to have a profound effect on wave propagation through 
such interfaces.  A micromechanical methodology is applied to 
explicitly model the initial normal and shear stiffness behavior of 
interfaces.  The calculated initial normal and shear stiffness are 
used to investigate plane wave propagation behavior through 
interfaces utilizing the imperfectly bonded interface model 
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I.  INTRODUCTION 
The transmission of plane waves through rough interfaces, 

such as fractures or adhesive bonds, is of significance to the 
study of geophysical behavior of rock masses and other 
fractured materials.  A number of researchers have investigated 
the transmission behavior of plane waves through rough 
surfaces in contact by treating them as imperfectly bonded 
interfaces represented by effective interface stiffness [see for 
example 1-3].  However, attempt has been made to relate the 
effective interface stiffness to the interface geometry and the 
mechanical properties of the material.  Rough interfaces are 
highly inhomogeneous, and because of the surface roughness, 
the contact between surfaces is through local contact areas or 
asperities.  The force-deformation behavior of an interface is 
determined by the behavior of asperity contacts.  Consequently, 
the transmission of acoustic waves through interfaces is 
influenced by a variety of factors such as the frequency of the 
incident wave, the surface roughness, the mechanical properties 
of the material, and the existing normal and shear stress 
conditions.   

The assumption which forms the basis of the wave 
propagation models based upon the concept of imperfectly 
bonded interfaces is that the wavelength is much larger than the 
asperity contact size and asperity contact separation.  Under 
this assumption, the effective interface stiffness corresponding 
to interface length scales smaller than the size of wavelength 
should be considered.  Thus, asperity contact stiffnesses at sub-

wavelength scales may be averaged to obtain the overall 
interface stiffness.  Asperities, at sub-wavelength scales, 
consist of different sizes and different orientations giving rise 
to variation in stiffness between different locations of the 
interface.  Micromechanical approaches that explicitly include 
interface surface topography and incorporate material 
mechanical properties and intrinsic friction may be utilized to 
obtain the overall interface stiffness.   

Recently, the author has developed a kinematically driven 
micromechanical methodology in which the stress-deformation 
behavior of an interface is obtained by considering the force-
deformation behavior of the asperity contacts and the statistical 
description of surface topography [4-5].  The micromechanical 
methodology developed by the author extends other similar 
models [see 6 for a review] by using: (1) a directional 
distribution function of asperity contact orientations 
recognizing that the asperity contacts are not equally likely in 
all directions, and (2) an iterative procedure to obtain the 
asperity contact forces at each load increment, recognizing that 
the asperity contact force distribution is not known a priori.  In 
the present paper, this micromechanical methodology for 
computing the overall interface stiffness is utilized along with 
the imperfectly bonded interface model to investigate how 
transmitted and reflected wave amplitudes are affected by the 
existing interface stress conditions.   

In the subsequent discussion, we first briefly describe the 
essence of the kinematically driven micromechanical 
methodology.  We then employ this model to study the 
behavior of wave transmission and reflection.  We find that the 
amplitudes of the reflected and transmitted waves are 
significantly influenced by the interface stress conditions.   

II. INTERFACE MICROMECHANICAL MODEL 
We consider the micromechanical methodology wherein 

the stress-deformation behavior of an interface is obtained by 
considering the force-deformation behavior of the asperity 
contacts and the statistical description of the interface 
topography [5].  At the asperity contact-level, a local force-
deformation relationship is defined that accounts for the elastic 
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deformation and inelastic sliding at the contact.  As 
schematically depicted in Fig. 1, the stress-deformation 
relationship for an interface is then derived by utilizing: (1) the 
distribution functions of asperity heights and contact 
orientations, and (2) the overall kinematic constraints and 
equilibrium conditions.  

A. Statistical Description of Interface 
The interface geometry determines the orientations and the 

number of asperity contacts under a given loading condition.  
The composite topography of contacting surfaces, described 
via statistics of asperity contact heights, orientations, and 
curvatures, may be utilized for this purpose [7-8].  In this 
paper, the statistical distribution of asperity contact heights is 
described via gamma distributions, and that of asperity contact 
orientation via spherical harmonic expansions.  It is usual to 
define the asperity contact height with reference to the highest 
peak of the composite topography such that, asperity height, r, 
represents the overlap of the interacting surfaces.  The density 
function for asperity heights, H(r), is given by a gamma 
distribution expressed as. 
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where α and β are parameters related to the mean and variance 
of the asperity heights as follows 
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Parameter α is unit less while parameter β takes the unit of 
asperity height.  Fig. 2 illustrates the distribution of asperity 

heights for surfaces with varying roughness.  Surfaces that have 
smaller average asperity height and narrow distributions of 
asperity heights are considered to be relatively smoother.  For 
an interface with N asperities per unit area, N H(r) dr denotes 
that number of asperity contacts in the interval represented by r 
and r+dr.  Thus, the total number of asperity contacts, under a 
given loading condition, is given by 

 ( )∫=
r

r drrNHN
0

 (3) 

where r represents the interface closure under a given loading. 

The asperity contact orientation is defined by considering the 
inclination of the asperity contact normal with respect to that of 
the interface normal direction.  As shown in Fig. 3, the 
orientation of an oblique asperity contact is defined by the 
azimuthal angle φ and the meridional angle θ, measured with 
respect to a Cartesian coordinate system in which direction 1 is 
normal to the interface.   

A 3-dimensional density function utilizing spherical harmonics 
expansion in spherical polar coordinates that describes the 
concentrations of asperity contact orientations was introduced 
by [4-5].  For an interface with isotropic geometry, the density 
function, ξ(Ω), of asperity contact orientations distribution in 
the domain: 0 ≤ θ ≤ 2π/a, 0 ≤ φ ≤ 2π, is given by  
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where angles φ and θ are defined in Figure 3, Ω represents the 
solid angle formed by φ and θ, and parameter a determines the 
shape of the density function ξ(Ω).  Thus, the product 
Nrξ(Ω)dΩ denotes the number of asperity contacts NΩ in the 
interval represented by solid angles Ω and Ω+dΩ, that is 

 ( ) ΩΩ=Ω dNN rξ  (5) 

The density function in (10) has the ability to model 
surfaces with varying roughness.  As discussed in [5], the 
asperity contacts for smooth interfaces have a greater tendency 
to concentrate in the direction normal to the interface than that 
for rough interfaces.  It is noteworthy that, as parameter a 
increases, the contact distribution concentrates towards the 
direction normal to the interface.  In particular, the density 

Figure 1.  Schematic of the micromechanical modeling methodology. 
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Figure 2.  Asperity height distributions with varying surface roughness 

Figure 3. Depiction of asperity contact orientation distribution functions for 
smooth and rough interfaces. 
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function, ξ(Ω), behaves like a delta function in the limit a→ ∞ 
and yields an expectation E[θ] =0, which represents a 
concentrated contact orientation, normal to the interface of a 
perfectly smooth joint.  In general, the parameter a, describes 
the extent of the asperity contacts in the meridional direction as 
well as the mean asperity contact orientation.   

B. Interface Stress-Deformation Relationship 
Considering the equilibrium of forces, the overall traction 

∆Fi on the interface is obtained from the summation of the 
forces, ∆fic, developed at asperities, which for a large number 
of asperity contacts is written as the following integral: 
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where the traction ∆Fi is given as force per unit area since N is 
measured per unit area of an interface.  The asperity contact 
forces, ∆fic, are related via the asperity contact stiffnesses, Kij

c, 
to asperity contact displacement, ∆δj

c, as follows  
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The asperity contact stiffnesses, Kij
c, generally depend upon the 

contact loading condition, such as the stiffness given by the 
Hertzian contact theory [9].  It is convenient to express the 
asperity stiffness tensor, Kij

c, in terms of asperity stiffness that 
describes the behavior along the direction of normal and 
tangent to an asperity contact, such that 
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where Kn and Ks denote nonlinear asperity stiffness along the 
normal and tangential direction of the asperity.  The unit vector 
n is normal to the asperity contact surface and vectors s and t 
are arbitrarily chosen on the plane tangential to the asperity 
contact surface, such that nst forms a local Cartesian 
coordinate system.  It is noted that the stiffness term that cross-
link normal and shear behavior are assumed to be negligible in 
accordance with the theories for contact of smooth non-
conforming bodies.  The Amonton-Coulomb’s friction law, 
expressed by the following inequality governs the sliding at an 
asperity contact: 
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ζi
c is a unit vector in the sliding direction, µ is the asperity 

friction coefficient and ni
c is a unit vector outwardly normal to 

the asperity contact.  Under a given loading condition, an 
asperity contact may be sliding, or separated.  Appropriately 
accounting for the asperity contact forces, and adopting the 
kinematic assumption that relative motion at an asperity, ∆δj

c, 
is same as the relative motion of the interface, ∆δj, the overall 
traction, ∆Fi, may be written as: 

 jiji CF δ∆=∆  (10) 

where interface stiffness tensor is denoted by, Cij.  The domain 
of sliding and separated asperity contacts is not always known 
a priori [5].  Moreover, the sliding domain evolves with 
loading.  In addition, new asperity contacts are formed and 
existing contacts lost as the interface is sheared.  Numerically, 
the asperity separation may be detected by examining the total 
relative displacement in the normal direction of an asperity 
contact.  Consequently, an incremental interface stress-
displacement relationship is obtained by numerically 
integrating the following equations for each loading step: 
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where ξ(φ,θ) is the asperity contact orientation distribution 
given by (10), and H(r) is asperity height distribution given by 
(7), r=ro+δ1, ro is the initial closure at δ1=0.  As a result, shear 
stress – shear displacement relationships may be obtained, as 
illustrated in Fig. 4.  The corresponding evolution of the 
interface stiffness is also shown in Fig. 4.  As seen, at zero 
shear stress, the interface shear stiffness is isotropic, that is 
C22=C33.  However, as the shear stresses are increased, the two 
shear stiffnesses deviate considerably leading to induced 
anisotropy.  Moreover, the coupling term, C13, between the 
normal stress and the shear displacement along the loading 
direction (3-axis) becomes non-zero and evolves with shear 
loading.  

III. WAVE PROPAGATION THROUGH INTERFACE 
The micromechanical model described above is applied to 

investigate wave propagation through rough interfaces based 
upon the imperfectly bonded interface model, also known as 
linear slip or displacement discontinuity approach [1-3].  We 
give a brief description of the imperfectly bonded interface 
methodology in order to define the appropriate quantities. 

A. Imperfectly Bonded Interface 
For convenience, we choose a coordinate system, such that 

the direction of incident wave propagation is within the 1-3 
plane shown in Fig. 3.  At an imperfect interface between two 
media, tractions at upper medium A and lower medium B are 
continuous and displacements are discontinuous, which lead to 
the following equations where n=0-3 and n=4-6 are the wave 
modes in the incident and transmitting media, respectively.   

Figure 4.  Shear stress-shear displacement behavior and evolution of 
interface stiffness. 
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We note that the interface overall traction, ∆Fi, and the relative 
motion of the interface, ∆δj, are given as 
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Equations (12) and (13) may be combined to obtain the 
amplitudes of the reflected and transmitted P and S waves for 
the interface as follows 
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where the transfer matrices [A], [B], [D] and [E] are a function 
of elastic constants of upper and lower media, and the 
nonlinear, stress-dependent interface stiffnesses derived from 
the micromechanical model described in section II.  Thus, the 
solution of (15) generates complex valued reflection, {R}, and 
transmission, {T}, coefficients which are related to interface 
stresses and roughness. 

B. Results for Reflection and Transmission at Interfaces 
We investigate the reflection and transmission of normally 

incident shear wave (propagating along 1-axis) to illustrate the 
effects of nonlinear, stress-dependent interface stiffnesses.  In 
Fig. 5, we plot, in polar coordinates, the reflection and 
transmission coefficients at several shear stress conditions of 
the interface whose stress-displacement behavior is given in 
Fig. 4.  Four shear stress levels are considered as denoted by 
different colored filled circles in Fig. 4.  The polar plots 
correspond to the incident shear-wave’s polarization direction 
given by the azimuthal angle, φ.  For instance, φ=0 corresponds 
to the polarization direction along the 3-axis.  At zero shear 
stress, denoted by the red curve in Fig. 5, normally incident 
shear wave does not suffer any mode conversion, and this is 
true for all polarization directions of the incident shear wave.   

As the shear stresses are increased, we observe that the 
normally incident shear wave suffers mode conversion to 
transmitted and reflected P and SH waves.  Similar mode 
conversion has been observed experimentally [10].  When the 
incident shear wave is polarized along the 3 axis, the SH wave 
reflected and transmitted amplitudes are zero, however, the 
corresponding mode converted P-wave amplitude is non-zero.  
When the direction of polarization of the incident shear wave is 
along the 2 axis, then both the mode converted SH and P wave 
amplitudes are zero.  For any other incident shear wave 

polarization direction, the amplitudes of the mode converted 
waves are non-zero.  Furthermore, we observe that the reflected 
and the transmitted of the mode converted waves are equal in 
amplitude.  It is noteworthy that the amplitudes of the reflected 
and transmitted waves are dependent upon the direction of 
polarization.  It is also evident that the transmitted and reflected 
wave amplitudes are critically dependent upon the state of 
shear stress.  For instance, reflectance and transmittance 
behavior of the SV wave amplitudes with the azimuthal angle φ 

changes dramatically from red to blue to green to black curves 
in Fig. 5.   
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Figure 5.  Reflection and transmission coefficients for normal incidence of 
SV waves showing mode conversion. 
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