A new ankyrin mutation (ANK1 EXON E9X) causing severe hereditary spherocytosis in the neonatal period

Florian Gundel, Stefan Eber, Axel Heep

To cite this version:
Title: A new ankyrin mutation (ANK1 EXON E9X) causing severe hereditary spherocytosis in the neonatal period

Article Type: Letter to the Editor

Keywords: Keyword 1:
Severe hereditary spherocytosis in newborn

Keyword 2:
don dominant de novo ankyrin mutation with origin in germ cell lineage

Corresponding Author: Dr. Florian Gundel, MD

Corresponding Author's Institution:

First Author: Florian Gundel, MD

Order of Authors: Florian Gundel, MD; Stefan Eber, MD; Axel Heep, MD

Abstract: As listed in the instructions for authors no abstract is needed for a letter to the editor.

Response to Reviewers: Ref.: Ms. No. AOHE-D-10-00217
A new ankyrin mutation (ANK1 EXON E9X) causing severe hereditary spherocytosis in the neonatal period
Annals of Hematology

Dear Mr. Ganser,

I revised the manuscript as required in the following points:
1. 2nd paragraph, line 4: I addes "increased" prior to MCHC.
2. 2nd paragraph, line 8: Molecular genetic (2 words) instead of moleculargentic
3. 2 paragraph, line 9: On the protein level (codon 9) the guanine/thymine substitution leads to an...

Please find the revision in the attached file.

We would be very grateful if you consider the work for publication.

Yours sincerely

Florian Gundel, MD
A new ankyrin mutation (ANK1 EXON E9X) causing severe hereditary spherocytosis in the neonatal period

Florian Gundel MDa, Stefan Eber MDb, Axel Heep MDa

aDepartment of Paediatrics
Harlaching Hospital
Sanatoriumsplatz 2
81545 Munich

bPediatric Hematologist
Waldfriedhofstr. 73
81377 München

Word count: 464

Corresponding author:
Dr. Florian Gundel
Department of Paediatrics
Harlaching Hospital
Sanatoriumsplatz 2
81545 Munich, Germany
E-mail: floriangundel@gmx.de
Phone: ++49 89 6210 2730

Key words:
- Severe hereditary spherocytosis in newborn
- dominant de novo ankyrin mutation with origin in germ cell lineage
Dear editor,

Although hereditary spherocytosis (HS) is a common disorder of the red cell membrane, it is diagnosed in only one third of affected infants during the first year of life [1] and rarely in the newborn period. The degree of hemolysis varies widely from patient to patient, even though the molecular defect appears to be similar [1]. In approximately two thirds of HS patients, inheritance is autosomal dominant. In this group of "typical" HS patients, nonsense and frameshift mutations of ankyrin are the most common cause [2], followed by mutations in band 3 and β spectrin [3]. Cases with autosomal recessive inheritance are due to defects in either alpha-spectrin or protein 4.2. Ankyrin is the principal binding site for defects in either alpha-spectrin or protein 4.2. As a result, ankyrin deficiency leads to decreased incorporation of spectrin on the membrane. In approximately one-third of patients with ankyrin deficiency, one ankyrin mRNA allele is virtually missing due to deletion, frameshift, or nonsense mutations that alter transcription, processing, or stability of ankyrin mRNA [1,4,5]. Other ankyrin mutations in dominant hereditary spherocytosis include truncated variants and one nonexpressed isoform [6,7]. Up to now, 55 distinct ankyrin mutations have been reported in human hereditary spherocytosis [8].

We report on a male neonate who was admitted to our hospital because of pallor and tachypnoea at the age of 4 weeks. On admission blood counts revealed low hemoglobin [5.1g/dl], red blood cells [1.9/pl], mean corpuscular volume (MCV) [75,8fl], increased MCHC [36,0 g/dl] and elevated reticulocytes [134‰]. The peripheral blood smear showed spherocytes. Further laboratory investigations as test with hypotonic NaCl dilutions and acidified glycerol lysis test showed the typical decreased osmotic resistance of red cells compatible with a spherocytosis.

Molecular genetic analyses of the patient and the parents were performed. A heterozygous de novo mutation E9X (p.Glu9Term, c.25G>T, GAA>TAA) in exon 1 of the ANK1-gene was detected in the patient. On the protein level (codon 9) the guanine/thymine substitution leads to an aminoacid-break (GAA codes for glutamic acid, TAA is a termination code). As the truncated amino acid chain is highly unstable, no anomalous ankyrin protein should be present in peripheral blood.
This case reports on a new de novo nonsense mutation in the ankyrin protein. In contrast to most affected infants this mutation leads to a severe hemolysis already in the newborn period [9].

Because the mutation was not present in the patient's parents, we emanate from a dominant de novo mutation surfaced during the differentiation of one of the parents' germ cell line precursors, probably late in development. This is consistent to genetic studies in which in most sporadic cases a large number of de novo mutations arises in the maternal germ line [4].

As often the requirement for transfusion was transient [6,9]. The patient reached sustained transfusion independence at an age of 6 months.
References

*Conflict of interest
Click here to download Conflict of interest: Conflict of Interest Disclosure Form.doc