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A data-flow approach to test
multi-agent ASMs
Alessandra Cavarra
Oxford University Computing Laboratory

Wolfson Building, Parks Road, Oxford OX1 3QD UK

Abstract. This paper illustrates the theoretical basis of an approach to apply data flow testing techniques
to Abstract State Machines. In particular, we focus on multi-agent ASMs extended with the seq construct
for turbo ASMs. We explain why traditional data flow analysis can not simply be applied to ASMs: data
flow coverage criteria are strictly based on the mapping between a program and its flow graph whereas in
this context we are interested in tracing the flow of data between states in ASM runs as opposed to between
nodes in a program’s flow graph. We revise the classical concepts in data flow analysis taking into account
the specific, parallel nature of ASMs, and define them on two levels: the syntactic (rule) level, and the
computational (run) level. In particular, we analyze the role played by different types of terms in ASMs and
deal with the problem of terms that are monitored by a given agent but controlled by another one, terms
that are shared between several agents, and derived terms. We also discuss what consequences the use of
the turbo ASM construct seq has on our analysis and revise the approach accordingly. Finally, we specify
a family of ad hoc data flow coverage criteria for this class of ASMs and introduce a model checking-based
approach to generate automatically test cases satisfying a given set of coverage criteria from ASM models.

Keywords: Model-based testing, Data-flow analysis, Abstract State Machines.

1. Introduction

The use of models for designing and testing software is currently one of the most noticeable industrial trends
with significant impact on the development and testing processes.

Model-based testing (MBT) is a technique for generating a suite of test cases from a model encoding
the intended behaviour of the system under test. This model can reside at various levels of abstraction.
Model-based methods from object-oriented software engineering, formal methods, and other mathematical
and engineering disciplines have now been successfully applied for automatic test case generation.

Modelling requires a substantial investment, and practical and scalable MBT solutions can help leverage
this investment; the utility of models for generating test cases is a significant element in determining the
cost effectiveness of producing formal or semi-formal specifications. In fact, the return of investment for
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model building should be evaluated not only in terms of enhanced understanding of the requirements of an
application and how its architecture is designed, but also improved effectiveness and reduced effort and cost
in test generation. Traditionally, the process of deriving tests tends to be unstructured, not reproducible,
not documented, and bound to the ingenuity of single individuals. The existence of an artifact that explicitly
encodes the intended behaviour of the system under test can help to reduce these problems in many ways—
e.g. improved test cases and regression testing [UPL06]. Testers adopting this approach shift their attention
from hand-crafting individual tests to the model of the system under test and a test generation infrastructure.

The model-based approach presented in this paper adopts specifications written using multi-agent Ab-
stract State Machines [Gur95, BS03] as oracles for data flow analysis and testing. The choice of this formal
language as a platform to define methods for generating test suites from high-level specifications is intentional
and is due to the fact that, besides having evident theoretical foundations, and clear and precise semantics,
ASMs have been successfully used in practice for design and analysis of complex hardware/software sys-
tems. We believe that our approach can help significantly in two ways: to validate large models and to test
thoroughly their final implementation.

The original idea behind data flow testing is to track input variables through a program, following them
as they are modified, until they are ultimately used to produce output values. In particular, the lifecycle
of a piece of data is monitored to detect inappropriate definitions, use in predicates, computations and
termination. Data flow coverage criteria are based on the intuition that one should not feel confident that a
variable has been updated in a correct way at some stage in the program if no test exercises a computation
path from the point where the variable is assigned a given value to the point where such value is subsequently
used (in a predicate or computation).

In general, this idea fits well the ASM approach where in a given state a number of terms are updated
and used to compute updates, provided that certain conditions are satisfied. Nevertheless, to our knowledge,
data flow coverage criteria have never been defined for ASMs.

Methods using ASM models for automatic test generation exist in literature. In particular, in [GR01] and
[GRR03] Gargantini et al. present a set of interesting coverage criteria together with two model checking-
based tools (using, respectively, SMV [McM93] and SPIN [Hol97]) to generate test suites that accomplish
the desired level of coverage. This approach focuses strictly on the structure of the ASM specification, and
can be considered as the equivalent of control flow testing for ASMs. However, full coverage of all the rules
and conditions in an ASM will not guarantee that all the possible patterns of usage of a term are exercised,
therefore missing the opportunity to find potential errors in the way the term is processed.

Classical data flow adequacy criteria cannot be directly applied to ASMs since they are based on the
one to one mapping between the code and its control flow graph. However, while control flow is usually
explicitly defined for programs written in most programming languages, it is only implicit in ASMs and
therefore the notion of flow graphs is not applicable to ASMs. We discuss here how to address this problem
by modifying traditional data flow analysis concepts taking in consideration both the structure of the machine
(i.e. its agents and rules) and its computations (i.e. the runs). Also, by varying the required combinations
of definitions and uses of terms, we define a family of test data selection and adequacy criteria based on
those illustrated in [RW85, FW88]. We also describe an approach based on model checking to generate
automatically a collection of test cases satisfying a given set of coverage criteria.

The main purpose of this work is to set sound theoretical foundations of a data flow analysis method
for ASMs. The definitions in [Cav08] and [Cav09] have been significantly revised, misconceptions in the
treatment of controlled, monitored, shared, and derived terms both at the rule and the run level have been
amended, and several imprecisions clarified. Moreover, we have extended the approach to include the seq
construct for turbo ASMs [BS00].

The remainder of this paper is organized as follow. In Section 2 we give an introduction to multi-agent
ASMs and term classification. In Section 3 we re-define the classical data-flow concepts in terms of ASMs
and present a family of test data selection and adequacy criteria. In Section 4, we discuss the consequences of
introducing the seq construct in a model, and give the definitions necessary for the approach to work also in
a sequential environment. In section 5 we illustrate a model checking based approach to derive automatically
a test suite satisfying the all-defs and all-uses coverage criteria. In section 5 we elucidate the approach by
applying it to the Production Cell case study. Finally, in Section 6 we discuss our results, and related and
future work.
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2. Multi-Agent ASMs

In this section we give an introduction to the semantics of multi-agent Abstract State Machines.
A distributed ASM is given by a set of agents each of which is assigned a module (program) consisting

of a finite number of so called transition rules of the following form:
if Cond then Assignment

where Cond is any expression (of first order logic) and Assignment is a finite set of function assignments1

f(t1, . . . , tn) := t. The states of ASMs are arbitrary structures, i.e. domains with predicates and functions
defined on them. The collection of the types of the functions (and predicates) which can occur in a given
ASM is called its signature. The computational meaning of an ASM M is that given any state S (of the
signature of M), for each transition rule such that Cond is true in S, all the assignments f(t1, . . . , tn) := t
in the set Assignments of that rule are executed simultaneously, i.e. the value of function f at the given
argument combination t1, . . . , tn, computed in S, is changed to the value t which has been computed in S.
The result of this computation step is a new state which differs from S only by some values for some of
the functions where the 0-ary functions play the role of the usual programming variables. This definition
covers the concept of “run” for basic ASMs. In the case of a distributed ASM, each agent fires its rules
independently; the overall distributed run is a partially ordered set (M,<) of rules applications–or moves–of
its agents satisfying the following conditions: [finite history ] each move has only finitely many predecessors;
[sequentiality of agents] the set of moves of any single agent is linearly ordered by <; and [coherence] if m′

is a maximal element in a finite initial segment X of moves (M,<) and Y = X \ {m′}, then the state S(X),
obtained applying all the moves in X, is the result of applying move m′ in state S(Y ).

An immediate corollary of the coherence condition is that all linearisations of an initial segment of a run
result in the same final state. Observe that this definition does not describe how to construct partially ordered
runs for a distributed ASM, therefore leaving one free to implement the described causal dependencies of
certain local actions of otherwise independent agents [BS03].

ASMs usually come together with a set of integrity constraints (on the domains, functions, rules) and
with initialization conditions representing assumptions on the intended computations.

We can view an abstract state as a memory that maps locations to values. Given a state S of a vocabulary
V, a location of S is a pair l = (f, (t1, . . . , tn)), where f is an n-ary function name in V, and t1, . . . , tn is an
n-tuple of elements of S. The value fS(t1, . . . , tn) is called the content of the location in S.

For the purpose of our analysis we will adopt the generic concept of term defined recursively as follows:
(1) a variable is a term, (2) if f is a function name of arity n, and t1, . . . , tn are terms, then f(t1 . . . , tn)
(f(t̄) for short) is a term.

Let us now introduce an ASM classification of functions (or more generally terms) that has proved to be
particularly convenient for applications specification. In a given ASM M of an agent A, functions can be
either static, i.e. never changing during any run ofM, or dynamic. Dynamic functions may change during a
run ofM as a consequence of assignments by A or assignments by the environment (i.e. by some other agent
than A). This results in the distinction of the following four subclasses of dynamic functions. Controlled
functions (for M) are dynamic functions which are directly updatable by and only by the rules of M, i.e.
functions which appear in the left hand side in assignments of rules of M and are not updatable by the
environment. Monitored functions are dynamic functions that are directly updatable by and only by the
environment. Shared functions are dynamic functions which are directly updatable by rules ofM and by the
environment. Derived functions are functions defined in terms of static and dynamic functions. Updatable
functions are controlled or shared functions, non updatable functions are static, monitored or derived.

The following example illustrates these concepts. Please, notice that despite the fact that this is a simple,
abstract model, it is appropriate for the purpose of this paper as it encloses most the features we are
discussing here.

Example 2.1. Consider the following ASM M consisting of two agents, A = {A1,A2}, each of which
executes its own set of rules, where x, y, z, v are integer variables, and st is a function defined as st :
A →{N,C,S}2.

1 We distinguish here between assignment (or definition) and update, where an update consists in the execution and effect of
an assignment.
2 Every agent can refer to its own copy of state as state(Self); however, when it is clear from the context, we omit Self.
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A1

R1:
1. if st = N then
2. if z ≥ x then
3. y := y-1
4. x := x -1
5. else
6 x := x +1
7. st := C

R2:
1. if state = C and x = 0 then
2. y := 0
3. st = S

R3:
1. if st = C and y > 0 then
2. x := x -1

A2

R1:
1. if st = N then
2. if w > z and z < x then
3. y := y -2
4. z:= x +y
5. else
6. z := z - x
7. if st(A1) = C then
8. y := y -1
9. st := C
10. v := w - v

where w ≡ x × y

R2:
1. if st = C and z > y then
2. z := z -1
3. if z ≤ 0 then
4. st := S

The variables and functions in A1 are classified as follows:
− controlled functions: st(A1), x
− shared functions: y
− monitored functions: z
The variables and functions in A2 are classified as follows:
− controlled functions: st(A2), v, z
− shared functions: y
− monitored functions: st(A1), x
− derived functions: w

2

3. Data flow analysis

In this section the main concepts of data flow analysis for ASMs, as defined in [Cav08] and later expanded in
[Cav09], have been significantly revised to amend some imprecisions and errors, especially in the treatment of
derived terms. We discuss the obstacles to adapting them to the ASM paradigm, and define ad-hoc coverage
criteria for ASMs.

The goal of traditional data flow analysis is to detect data flow anomalies and errors (in the way data
are processed and used). Data flow anomalies do not show that there is necessarily an error but indicate the
possibility of program faults. For instance, very common anomalies found in a program are:

• d-u anomalies: they occur when a defined variable has not been referenced before it becomes undefined
(e.g. out of scope or the program terminates). This anomaly usually indicates that the wrong variable
has been defined or undefined.

• d-d anomalies: they indicate that the same variable is re-defined without being used, causing a hole in
the scope of the first definition of the variable (this anomaly usually occurs because of misspelling).

• u-r anomalies: they occurs when an undefined variable is referenced. Most commonly u-r anomalies occur
when a variable is referenced without having been initialised first.

Detecting the above anomalies is particularly difficult in the case of ASMs, where the code is distributed
across several rules. Data flow analysis is very useful to uncover common types of programming errors such
as typing errors, misspelling of names, misplacing of statements, or incorrect parameters.

However, it is not possible to apply directly data flow analysis to ASMs: the concept at the core of classical
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P:
1. if st = N then
2. if z ≥ x then
3. y := y-1
4. x := x -1
5. else
6 x := x +1
7. st := C

1

2

3 5

4 6

7

Fig. 1. A control flow graph

data flow analysis is the one-to-one mapping between a program and its flow graph. Given a program P ,
the flow graph associated to it is given by G = (ns, nf , N,E), where N is the set of nodes labeled by the
statements in P , ns and nf are respectively the start and finish nodes, and E is the set of edges representing
possible flow of control between statements. Control flow graphs are built using the concept of programming
primes, i.e. sequential, conditional, and loop statements.

While, in general, for any given program it is straightforward to derive its corresponding flow graph (see
Figure 1), this is clearly not the case for ASMs, where the guards of all the rules in the model are evaluated
simultaneously and, if true, all the corresponding assignments are executed simultaneously. Therefore there
is no sequential flow between rules statements. (Although rule R1 of agent A1 in Example 6 is syntactically
equivalent to program P in Figure 1, semantically they are very different since all the statements in P will
be executed sequentially, whereas the statements in R1 will be executed simultaneously and any assignment
will take effect at the next state.) We will see that the only exception to this is when the seq construct is
used (see Section 4).

In the following, we provide our solution to this problem. We revise data flow concepts and provide ad-hoc
definitions at two different levels: at the syntactic (rule) level and at the computational (run) level. We also
provide a mapping between the concepts at different levels.

At a purely syntactic level, we introduce a sequential numbering for each rule in the ASM. To this purpose,
we assume that every line of code will contain exactly one assignment or one the following constructs: if cond3,
else, seq. Moreover, without loss of generality we assume here that the defining equation of derived terms
contains only controlled, shared, monitored, and static terms (this can simply be achieved by normalising
the machine and substituting any further derived term it may contain with its defining equation).

3.1. Data flow concepts at the rule level

Terms can appear in different contexts in ASM rules: they can be updated, used in a guard, or used to
compute a given value. However, as discussed above, terms can be used to define derived terms or, in the
case of distributed ASMs an agent can use a term that is modified outside its scope, i.e. by another agent.
In the following, we provide a number of definitions formalising the role ASM terms can play within rules.

Let M be a distributed ASM, and A the set of agents Aj each executing its own program Mj .

Definition 3.1. Given a term f(t̄), we say that it is defined—indicated as “def”—in a line k of a rule Ri
of Mj if

• it is a controlled or shared term and it appears on the LHS of an assignment in Ri (i.e. the value of f(t̄)
may be modified as a result of firing Ri)

• it is a derived term with defining equation s, i.e. f(t̄) ≡ s, and at least one of the sub-terms of s is defined
in line k of Ri

We define the following sets at the agent level:

3 Observe that then can be placed either in the same line as its corresponding if, or in the following one.
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• defRi

Aj
(f(t̄)) is the set of quadruples (f(t̄), k, Ri,Aj) such that f(t̄) is defined in line k of rule Ri in Mj

• defAj
(f(t̄)) contains all these quadruples across all the rules in Mj , i.e.

defAj
(f(t̄)) =

⋃
Ri∈Mj

defRi

Aj
(f(t̄))

At the global M level, we define the following set:
defM(f(t̄)) =

⋃
Aj∈A

defAj (f(t̄))

If f(t̄) is a term controlled by an agent Ai its def sets at the agent and at the global level will coincide.
2

To perform our analysis, we need to be able to refer to a specific position, i.e. line, where a term is
defined in a given rule. Notice that we cannot simply refer to an assignment as it is possible to have two
identical assignments at different lines in the same rule (typically under different conditions). In order to
retrieve a specific assignment, we introduce the function d which given a quadruple (f(t̄), k, Ri,Aj) returns
the assignment in line k of Ri. For instance, given the ASM in example 2.1, for (z, 4, R1,A2) ∈ defM(x),
we obtain d(z, 4, R1,A2) = z := x + y. Observe that, according to the above definition, in case f(t̄) is a
derived (and therefore not directly updatable) term the assignment returned by d(f(t̄), k, Ri,Aj), for any
f(t̄), k, Ri,Aj ∈ defM(f(t̄)), will never refer to f(t̄) itself, but only to a sub-term of the defining equation of
f(t̄). See for example, defM(w) in example 3.1.

Work involving data flow analysis generally classifies each variable occurrence as being either a definition
or a use. However, we distinguish between two substantially different types of uses. The first type directly
affects the computation being performed or allows one to see the result of some earlier assignment. This is
called “c-use”. Of course, a c-use may indirectly affect the flow of control through the program. In contrast,
the second type of use directly affects the flow of control through the program (by dictating which rules will
be allowed to fire), and thereby may indirectly affect the computations performed. This is called “p-use”
[RW85].

Definition 3.2. We say that a term f(t̄) is in predicate use—indicated as “p-use”—in line k of rule Ri of
Mj if

• it is a controlled, shared, or derived term and is used in a predicate shown in line k of Ri (i.e. f(t̄) appears
in a boolean condition in line k of Ri)

• it is a controlled, shared, or derived term and line k contains the else part of an if-then-else statement
such that f(t̄) is in p-use in the corresponding if part

• it appears in the defining equation of a derived term that is in p-use in line k of Ri
At the agent level, we define the following sets:

• p-useRi

Aj
(f(t̄)) is the set of quadruples (f(t̄), k, Ri,Aj) such that f(t̄) is in predicate use in line k of rule

Ri in Mj

• p-useAj (f(t̄)) =
⋃

Ri∈Mj

p-useRi

Aj
(f(t̄))

At the global M level, we define the following set:
p-useM(f(t̄)) =

⋃
Aj∈A

p-useAj
(f(t̄))

2

In order to retrieve a specific predicate, we introduce the function p which given a quadruple (f(t̄), k, Ri,Aj)
returns the predicate in line k of Ri, or in the case of an else will produce the negation of the predicate
shown in the line of the corresponding if. Observe that, according to the above definition, if f(t̄) appears in
the defining equation of a derived term g, the predicate p(f(t̄), k, Ri,Aj) can contain either f(t̄) or g. For
instance, given (y, 2, R1,A2), (y, 5, R1,A2) ∈ p-useM(y) in Example 3.1, p(y, 2, R1,A2) = w > z and z < x,
and p(y, 5, R1,A2) =not (w > z and z < x).
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Definition 3.3. We say that a term f(t̄) is in computation use—indicated as “c-use”—in line k of rule Ri
of M)j if

• it is a controlled, shared, or derived term and is used in a computation in line k of Ri (i.e. it appears on
the RHS of an assignment in line k of Ri)

• it appears in the defining equation of a derived term that is in c-use in line k of Ri
• it appears as an argument of a function displayed in any role in line k of rule Ri4

At the agent level, we define the following sets:

• c-useRi

Aj
(f(t̄)) is the set of quadruples (f(t̄), k, Ri,Aj) such that f(t̄) is in computation use in line k of

rule Ri in Mj

• c-useAj (f(t̄)) =
⋃

Ri∈M|

c-useRi

Aj
(f(t̄))

At the global M level, we define the following set:
c-useM(f(t̄)) =

⋃
Aj∈A

c-useAj
(f(t̄))

2

In order to refer to a specific computation, we introduce the function c which given a quadruple (f(t̄), k, Ri,
Aj) returns the assignment in line k of Ri where f(t̄) is in c-use. Observe that, according to the above defini-
tion, if f(t̄) appears in the defining equation of a derived term g, the RHS of the assignment c(f(t̄), k, Ri,Aj)
will not necessarily contain f(t̄), but also g. For instance, given (x, 10, R1,A2) ∈ c-useM(x), c(x, 10, R1,A2) =
v := w − v.

Moreover, in general, we do not regard the terms used to define a derived function as in c-use (unless the
derived term itself is used in a computation). This is because we only consider to be in c-use those terms
that change the state of a the machine, whereas derived terms are not effectively part of the state of the
ASM (see x and y in Example 3.1).

Example 3.1. Consider the ASM introduced in Example 2.1. Let us calculate the definition and use sets
for the variables x, y, z, v, and w in the program of agent A2:

def R1
A2

(x) = {} def R2
A2

(x) = {}
p-useR1

A2
(x) = {(x, 2,A2, R1), (x, 5,A2, R1)} p-useR2

A2
(x) = {}

c-useR1
A2

(x) = {(x, 4,A2, R1), (x, 6,A2, R1), (x, 10,A2, R1)} c-useR2
A2

(x) = {}

def R1
A2

(y) = {(y, 3,A2, R1), (y, 8,A2, R1)} def R2
A2

(y) = {}
p-useR1

A2
(y) = {(y, 2,A2, R1), (y, 5,A2, R1)} p-useR2

A2
(y) = {(y, 1,A2, R2)}

c-useR1
A2

(y)={(y,3,A2,R1),(y,4,A2,R1),(y,8,A2,R1),(y,10,A2,R1)} c-useR2
A2

(y) = {}

def R1
A2

(z) = {(z, 4,A2, R1), (z, 6,A2, R1)} def R2
A2

(z) = {(z, 2,A2, R2)}
p-useR1

A2
(z) = {(z, 2,A2, R1), (z, 5,A2, R1)} p-useR2

A2
(z) = {(z, 1,A2, R2), (z, 3,A2, R2)}

c-useR1
A2

(z) = {(z, 4,A2, R1), (z, 6,A2, R1)} c-useR2
A2

(z) = {(z, 2,A2, R2)}

def R1
A2

(v) = {(v, 10,A2, R1)} def R2
A2

(v) = {}
p-useR1

A2
(v) = {} p-useR2

A2
(v) = {}

c-useR1
A2

(v) = {(v, 10,A2, R1)} c-useR2
A2

(v) = {}

def R1
A2

(w) = {} def R2
A2

(w) = {}
p-useR1

A2
(w) = {(w, 2,A2, R1), (w, 5,A2, R1)} p-useR2

A2
(w) = {}

c-useR1
A2

(w) = {(w, 10,A2, R1)} c-useR2
A2

(w) = {}

4 The only exception to this is for agents used as function parameters, since we do not perform data analysis on agents as such
(see st in example 3.1).
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In this example we could simply report line numbers as members of each set since the other three elements
of the quadruples (i.e. term, agent, rule) are easily derived from the context. However, to avoid confusion,
we show here complete quadruples.

Observe that variable y is in p-use in line 2 and 5 of R1 because the derived variable w is in p-use in those
lines. However, even though x and y are used “to compute” w they are not considered to be in c-use since,
strictly speaking, this computation does not change the state of A2 (w is not actually part of the state of
A2). On the other hand, since w is used in a computation in line 10 of R1, both x and y are in computation
use in it.

At the module (agent) level, we obtain:

defA2(st(A2)) ={(st(A2),9,A2,R1), (st(A1),3,A1,R2)} defA2 (x) = {}
p-useA2(st(A2))={(st(A2),1,A2,R1),(st(A2),1,A2,R2)} p-useA2(x)={(x,2,A2,R1),(x,5,A2,R1)}
c-useA2(st(A2))={} c-useA2(x)={(x,4,A2,R1),(x,6,A2,R1),(x,10,A2,R1)}

defA2(y)={(y,3,A2,R1),(y,8,A2,R1)} defA2(v) = {(v, 10,A2, R1)}
p-useA2(y)={(y,2,A2,R1),(y,5,A2,R1),(y,1,A2,R2)} p-useA2(v) = {}
c-useA2(y)={(y,3,A2,R1),(y,4,A2,R1),(y,8,A2,R1),(y,10,A2,R1)} c-useA2(v) = {(v, 10,A2, R1)}

defA2(z)={(z,4,A2,R1),(z,6,A2,R1),(z,2,A2,R2)} defA2(w) = {{(y,3,A2,R1),(y,8,A2,R1)}
p-useA2(z)={(z,2,A2,R1),(z,5,A2,R1),(z,1,A2,R2),(z,3,A2,R2)} p-useA2(w) = {(w, 2,A2, R1), (w, 5,A2, R1)}
c-useA2(z) = {(z, 6,A2, R1), (z, 2,A2, R2)} c-useA2(w) = {(w, 10,A2, R1)}

Finally, let us calculate the sets at the global level (i.e. putting together all the definition and use sets across
the distributed ASM) for all the terms in the vocabulary of M:

defM(st(A1)) = {(st(A1), 7,A1, R1), (st(A1), 3,A1, R2)}
p-useM(st(A1)) = {(st(A1), 1,A1, R1), (st(A1), 1,A1, R2), (st(A1), 1,A1, R3), (st(A1), 7,A2, R1)}
c-useM(st(A1)) = {}

defM(st(A2)) = {(st(A2), 9,A2, R1), (st(A2), 4,A2, R2)}
p-useM(st(A2)) = {(st(A2), 1,A2, R1), (st(A2), 1,A2, R2)}
c-useM(st(A2)) = {}

defM(x) = {(x, 4,A1, R1), (x, 6,A1, R1), (x, 2,A1, R3)}
p-useM(x) = {(x, 2,A1, R1), (x, 5,A1, R1), (x, 1,A1, R2), (x, 2,A2, R1), (x, 5,A2, R1)}
c-useM(x) = {(x, 4,A1, R1), (x, 6,A1, R1), (x, 2,A1, R3), (x, 4,A2, R1), (x, 6,A2, R1), (x, 10,A2, R1)}

defM(y) = {(y, 3,A1, R1), (y, 3,A2, R1), (y, 3,A2, R1), (y, 8,A2, R1)}
p-useM(y) = {(y, 1,A1, R3), (y, 2,A2, R1), (y, 5,A2, R1), (y, 1,A2, R2)}
c-useM(y) = {(y, 3,A1, R1), (y, 4,A2, R1), (y, 8,A2, R1), (y, 10,A2, R1)}

defM(z) = {(z, 4,A2, R1), (z, 6,A2, R1), (z, 2,A2, R2)}
p-useM(z) = {(z, 2,A1, R1), (z, 2,A2, R1), (z, 5,A2, R1), (z, 1,A2, R2), (z, 3,A2, R2)}
c-useM(z) = {(z, 6,A2, R1), (z, 2,A2, R2)}

defM(w) = {(x, 4,A1, R1), (x, 6,A1, R1), (x, 2,A1, R3), (y, 3,A1, R1), (y, 3,A2, R1), (y, 3,A2, R1), (y, 8,A2, R1)}
p-useM(w) = {(w, 2,A2, R1), (w, 5,A2, R1)}
c-useM(w) = {(w, 10,A2, R1)}

Finally, the def, p-use, and c-use sets of v at the global level is the same as the agent level.

3.2. Data flow concepts at the run level

After defining the possible roles of terms in a program, the next step in traditional data flow analysis consists
in tracing through the program’s control flow graph to search for paths from nodes where a variable is assigned
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a given value, to nodes where that value is used. Since, as explained above, in this context we cannot reason
in terms of flow graphs, we need an alternative solution: we concentrate on ASM computations.

As discussed in Section 2, Abstract State Machines define a state-based computational model, where
computations (runs) are finite or infinite sequences of states {si}, obtained from a given initial state {s0}
by repeatedly executing transitions (rules) δi:

s0
δ1−→ s1

δ2−→ s2 . . .
δn−→ sn

In the case of multi-agent ASMs, each agent is dynamically equipped with its own program operating on
its own state, determining a partial view of the global system state (see Figure 2 adapted from [ITU00]).

In the following we describe how the concepts of definition and computation/predicate use at the rule
level relate to ASM states. For this purpose, we need to revisit the definitions in the previous section in
terms of ASM runs.

Definition 3.4. Let f(t̄) be a term in the vocabulary of M. We say that

• f(t̄) is in def in a state s—indicated as “defs”5—if the value of f(t̄) was modified by the execution of the
transition leading to s, i.e. ∃ (f(t̄), k, Ri,Aj) ∈ defM(f(t̄)) such that the value of f(t̄) in s results from
the execution of an assignment d(f(t̄), k, Ri,Aj) in the transition leading to s. Terms are also considered
to be in defs in the initial state of the machine (i.e. at initialisation time).

• f(t̄) is in p-use in a state s—indicated as “p-uses”—if ∃ (f(t̄), k, Ri,Aj) ∈ p-useM(f(t̄)) such that the
predicate p(f(t̄), k, Ri,Aj) evaluates to true in s.

• f(t̄) is in c-use in a state s—indicated as “c-uses”— if ∃ (f(t̄), k, Ri,Aj) ∈ c-useM(f(t̄)) such that the
assignment c(f(t̄), k, Ri,Aj) is executed when the transition leaving s is executed.

In particular, we say that term f(t̄) is in defs (respectively c-uses) in a state s w.r.t. d(f(t̄), k, Ri,Aj)
(resp. c(f(t̄), k, Ri,Aj)) if the assignment d(f(t̄), k, Ri,Aj) (resp. c(f(t̄), k, Ri,Aj) ) in rule Ri of the program
of Aj is computed as a result of the execution of the transition leading to s. We say that term f(t̄) is in
p-uses in a state s w.r.t. p(f(t̄), k, Ri,Aj) if the predicate p(f(t̄), k, Ri,Aj) in rule Ri of the program of Aj
is satisfied in s.

2

Example 3.2. To illustrate the above concepts let us consider an excerpt of a run of the ASM in Example
2.1 starting from the following state (see also Figure 3):

Si =
[A1 ] st(A1) = N, x = 5, y = 7
[A2 ] st(A2) = N, z = 5, v = 2

(Observe that, as a result, the value of the derived term w = 35.)
Since it exists a quadruple (st(A1), 1,A1, R1) ∈ p-useM(st(A1)) such that the predicate p(st(A1), 1,A1, R1) =

5 Notice that the subscript here is not a parameter, but is used only to distinguish between a definition of a term at the rule
level–labeled as def–and at the state level–defs. Similarly, for p-uses, and c-uses.
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Fig. 3. A partial run of M

(st(A1) = N) evaluates to true in Si, by definition st(A1) is in p-uses in this state. Similarly, the predicates
p(st(A2), 1,A2, R1), p(x, 2,A1, R1), p(x/y/z/w, 5,A2, R1) are satisfied in Si and therefore st(A2), x, y, z, w
are in p-uses in it. This triggers rule R1 in the module of A1 and R1 in the module of A2; the assignments
c(x, 4,A1, R1), c(y, 3,A1, R1), c(z, 6,A2, R1), c(x, 6,A2, R1), c(v, 10,A2, R1), c(w, 10,A2, R1) are executed as
part of the transition leaving Si, thus by definition x, y, z, v and w are in c-uses in Si.

The state is modified as follows

Si+1 =
[A1 ] st(A1) = N, x = 4, y = 6
[A2 ] st(A2) = N, z = 0, v = 33 (w = 24)

Since the values of x, y, z, v and w were modified by the execution of the transition incoming Si+1, according
to the definition they are in defs in Si+1.

Finally, p(st(A1), 1,A1, R1), p(x, 5,A1, R1), p(st(A2), 1,A2, R1), and p(x/y/z/w, 5,A2, R1) are satisfied
in Si+1, the variables st(A1), st(A2), x, y, z, w are in in p-uses in it.

2

Computations in which the value of a term is not modified play an important role in data-flow analysis. We
say that a sub-run is def-clear(f(t̄)) if it contains only states where f(t̄) is not re-defined, i.e. the value of
f(t̄) is not updated in any of the states of the sub-run.

Definition 3.5. For each (f(t̄), k, Ri,Aj) ∈ defM(f(t̄)), consider a state s such that f(t̄) is in defs in s
w.r.t. d(f(t̄), k, Ri,Aj). We define two sets of states:

• dpu(s, f(t̄)) includes states s′ such that there is a def-clear(f(t̄)) sub-run from s to s′ and f(t̄) is in p-uses
in s′, i.e. there is a computation that starts with an assignment to f(t̄), progresses while not reassigning
to f(t̄), and ends with a state where f(t̄) is used within a predicate that holds true
• dcu(s, f(t̄)) includes states s′ such that there is a def-clear(f(t̄)) sub-run from s to s′ and f(t̄) is in c-uses

in s′.

3.3. Data flow coverage criteria

In this section we adapt the family of coverage criteria based on data flow information proposed by Rapps
and Weyuker in [RW85] (and later extended in [FW88]). In general, such criteria require the definition of
test data which cause the traversal of sub-paths from a variable definition to either some or all of the p-uses,
c-uses, or their combination, or the traversal of at least one sub-path from each variable definition to every
p-use and every c-use of that definition.

For each term f(t̄) in the signature of M and for each state s such that f(t̄) is in def s in s, we say that

• a test suite T satisfies the all-defs criterion if it includes one def-clear(f(t̄)) run from s to some state in
dpu(s, f(t̄)) or in dcu(s, f(t̄))

• a test suite T satisfies the all-p-uses (respectively, all-c-uses) criterion if it includes one def-clear(f(t̄))
run from s to each state in dpu(s, f(t̄)) (respectively, dcu(s, f(t̄)))

• a test suite T satisfies the all-c-uses/some-p-uses if it includes one def-clear(f(t̄)) run from s to each
state in dcu(s, f(t̄)), but if dcu(s, f(t̄)) is empty, it includes at least one def-clear(f(t̄)) run from s to
some node in dpu(s, f(t̄))

• a test suite T satisfies the all-p-uses/some-c-uses criterion if it includes one def-clear(f(t̄)) run from s
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to each state in dpu(s, f(t̄)), but if dpu(s, f(t̄)) is empty, it includes at least one def-clear(f(t̄)) run from
s to some node in dcu(s, f(t̄))

• a test suite T satisfies the all-uses criterion if it includes one def-clear(f(t̄)) run from s to each state in
dpu(s, f(t̄)) and to each state in dcu(s, f(t̄))

• a test suite T satisfies the all-du-paths criterion if it includes all the cycle-free def-clear(f(t̄)) runs from
s to each state in dpu(s, f(t̄)) and to each state in dcu(s, f(t̄))

Empirical studies on traditional programming languages [Wey93, FW93] have shown that there is little
difference in terms of the number of test cases sufficient to satisfy the least demanding criterion, all-def, and
the most demanding criterion, all-du-paths. However, even if this should be the case also for ASM models,
there is a hidden cost in satisfying the all-du-paths criterion, in that it is substantially more difficult to
determine whether or not all-du-paths is actually satisfied due to the infeasibility problem: many definition-
use (du-)paths can actually be non-executable, and it is frequently a difficult and time-consuming job to
determine which du-paths are truly non-executable. For this reason, the most commonly adopted data flow
criterion is the all-uses.

4. Turbo ASMs

In [BS00] basic ASMs have been extended to integrate the standard control constructs for sequentialization
and iteration, and the notion of parameterized submachines into the classical ASM view of computations
based on global state. Turbo ASMs are obtained from basic ASMs by applying infinitely often and in any
order the operators of sequential composition, iteration, and submachine call.

We focus here on the seq operator which has been successfully applied to several problems [SSB01,
BCR00]). It has the effect of combining simultaneous atomic updates of basic ASMs in a global state with
sequential execution, i.e. all the statements in the scope of this construct will be executed sequentially but
their effect will take place only in the following state. For example, consider the following rules:

R-par
1. if x = y
2. then
3. x := x *2
4. y := y + x
5. if x > 6 ∧ y > 10
6. then z: = y

R-seq
1. if x = y
2. then
3. seq
4. x := x *2
5. y := y + x
6. if x > 6 ∧ y > 10
7. then z: = y

If we initialise the variables as follows: {x = 4, y = 4, z = 1}, rule R-par will produce the state {x = 8, y =
8, z = 1}, whereas introducing the sequential construct R-seq will yield the state {x = 8, y = 12, z = 12}
since the value of y will be calculated according to the value of x assigned at line 4, and the predicate at
line 6 will be evaluated according to the new values of x and y.

How does the use of the seq construct affect our data-flow analysis? We need to make some important
observations here.

Firstly, as we have seen in the above example, in this context we actually have sequential flow within a
rule, and therefore it is possible for a term to be defined and immediately used with the new value in the
same rule.

Secondly, it is not possible to find a def-clear(x) path from any definition of x in other rules of the ASM
to line 5 of R-seq (where x is in c-use), since the value of x will always be reassigned at line 4. Similarly,
there is no def-clear(y) path to line 6 (where y is in p-use) from any other definition of y in the ASM besides
the one at line 5. Therefore, in general we want to exclude these cases from our analysis. However, this is
not necessarily the case when a term is defined and then used in a sequential environment: if the definition
is in the scope of an if construct it may not actually be executed. For instance, in the example below if we
initialise the variables as {x = 4, y = 4, z = 1} the assignment of x at line 5 will not take place, and therefore
it is possible to find a def-clear(x) from an assignment of x in another rule to its uses in line 6 and 7 in
R-seq1.
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R-seq1
1. if x = y
2. then
3. seq
4. if x < 3
5. then x := x *2
6. y := y + x
7. if x > 6 ∧ y > 10
8. then z: = y

We now need to formalise these concepts in our data flow analysis.

Definition 4.1. Given a definition d(f(t̄), k, Ri,Aj), we say that a predicate p(f(t̄), k + l, Ri,Aj) (respec-
tively, a computation c(f(t̄), k + l, Ri,Aj)) with l > 0 sequentially depends on d(f(t̄), k, Ri,Aj), if

(1) d(f(t̄), k, Ri,Aj) and p(f(t̄), k+ l, Ri,Aj) (resp. c(f(t̄), k+ l, Ri,Aj)) are in the context of the same seq
construct, and

(2) p(f(t̄), k + l, Ri,Aj) (resp. c(f(t̄), k + l, Ri,Aj)) is within the scope of at least as many if constructs as
it is d(f(t̄), k, Ri,Aj)

2

Condition (2) guarantees that the term will always be redefined before reaching its use in the predi-
cate/computation. Moreover, we request that l > 0 to exclude cases when a term is c-used and defined in
the same line (e.g. the value of x in the computation in line 4 of R-seq is not yet affected by its definition
even within the scope of seq).

While the definitions of terms in def, p-use and c-use at the rule and run level are valid also in case turbo
ASMs with a seq operator, we need to modify the definition of dpu and dcu sets properly.

Definition 4.2. For each (f(t̄), k, Ri,Aj) ∈ defM(f(t̄)), consider a state s such that f(t̄) is in defs in s
w.r.t. d(f(t̄), k, Ri,Aj). We define two sets of states:

• dpu(s, f(t̄)) includes states s′ such that there is a def-clear(f(t̄)) sub-run from s to s′, and f(t̄) is in
p-uses in s′ in a predicate that does not sequentially depend on any assignment of f(t̄), i.e. there is a
computation that starts with an assignment to f(t̄), progresses while not reassigning to f(t̄), and ends
with a state where f(t̄) is used within a predicate that does not sequentially depend on an update of
f(t̄).

• dcu(s, f(t̄)) includes states s′ such that there is a def-clear(f(t̄)) sub-run from s to s′, and f(t̄) is in c-uses
in s′ in a statement that does not sequentially depend on any assignment of f(t̄).

2

With this new definition we exclude from the dpu(s, f(t̄)) and dcu(s, f(t̄)) sets those states where predicate
and computation uses of f(t̄) strictly depend on a value of f(t̄) updated in a sequential context. The coverage
criteria defined in section 3.3 now apply also to ASMs using the seq operator.

5. Generating test cases from ASMs

In the previous sections we have provided the theoretical basis for a data flow analysis of ASM specifications
and defined a family of coverage criteria. We now address the problem of how to generate test suites satisfying
a given set of such criteria for a multi-agent ASM model including the turbo ASM operator seq. Obviously,
the hardest problem here is the need to reason in terms of all the possible computations of a given machine,
i.e. to explore the state space of the machine. In the following, we elucidate an approach based on model
checking.

Notice that given a quadruple (f(t̄), k, Ri,Aj) ∈ def M(f(t̄)) (respectively, p-useM, c-useM(f(t̄)), for
short we use here the notation df(t̄),k

Aj ,Ri
(respect., pf(t̄),k

Aj ,Ri
, cf(t̄),k
Aj ,Ri

) in place of d(f(t̄), k, Ri,Aj) (respect. p(f(t̄), k,
Ri,Aj), c(f(t̄), k, Ri,Aj)).
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def-clear(f)

• a test suite T satisfies the all-p-uses/some-c-uses criterion if it includes one def-clear(f) run from s to
each state in dpu(s, f(t1, . . . , tn)), but if dpu(s, f(t1, . . . , tn)) is empty, it includes at least one def-clear(f)
run from s to some node in dcu(s, f(t1, . . . , tn))

• a test suite T satisfies the all-uses criterion if it includes one def-clear(f) run from s to each state in
dpu(s, f(t1, . . . , tn)) and to each state in dcu(d, f(t1, . . . , tn))

• a test suite T satisfies the all-du-paths criterion if it includes all the def-clear(f) runs from s to each
state in dpu(s, f(t1, . . . , tn)) and to each state in dcu(s, f(t1, . . . , tn))

Empirical studies [Wey93, FW93] have shown that there is little difference in terms of the number of test
cases sufficient to satisfy the least demanding criterion, all-def, and the most demanding criterion, all-du-
paths. However, there is a hidden cost in satisfying the all-du-paths criterion, in that it is substantially more
difficult to determine whether or not all-du-paths is actually satisfied due to the infeasibility problem: many
definition-use (du-)paths can actually be non-executable, and it is frequently a difficult and time-consuming
job to determine which du-paths are truly non-executable. For this reason, the most commonly adopted data
flow criterion is the all-uses.

4. Generating test cases from ASMs

In the previous section we have defined a family of data flow coverage criteria for ASM specifications. We
now address the problem of how to generate test suites satisfying a given set of such criteria for an multi-
agent ASM model. Obviously, the hardest problem here is the need to reason in terms of all the possible
computations of a given machine, i.e. to explore the state space of the machine. In the following, we elucidate
an approach based on model checking following the one proposed in [?].

Model checking

In [Cav08] the method proposed by Hong et al. in [HCL+03] was adapted to Abstract State Machines. Lately,
we have expanded it to multi-agent ASMs []. The underlying idea of this approach is to represent data flow
coverage criteria in temporal logic so that the problem of generating test suites satisfying a specific set of
coverage criteria is reduced to the problem of finding witnesses for a set of temporal formulas. The capability
of model checkers to construct witnesses [CGMZ95] enables the test generation process to be fully automatic.
In particular, in [HCL+03] the model checker SMV [McM93] is used.

When the model checker determines that a formula with an existential path quantifier is true, it will
find a computation path that demonstrates the success of the formula (witness). For this specific problem,
Hong et al. introduce a subset of the existential fragment of CTL (ECTL) [CES86], called WCTL. An ECTL
formula f is a WCTL formula if (i) f contains only EX, EF, and EU, where E (“for some path”) is an
existential path quantifier, X (next time), F (eventually), and U (until) are modal operators, and (ii) for
every subformula of f of the form f1∧ . . .∧fn, every conjunct fi except at most one is an atomic proposition.
For a full description refer to [HCL+03].

However, the original approach was designed for sequential programming languages, and therefore strongly
based on control flow graphs. We had to modify it significantly in order to adapt it to ASMs. Given any
two agents Ar and As interacting in an ASM M, and two statements df,l

Ar,Ri
(a definition of location f in

line l of rule Ri of Ar) and uf,m
As,Rj

(a computation–cf,m
As,Rj

–or predicate–pf,m
As,Rj

–use of location f in line m

of rule Rj of As), we say that a pair (df,l
Ar,Ri

, uf,m
As,Rj

) is a definition-use pair (for short, “du-pair”) if there
is a def-clear(f) path from state s to state s′ such that f is in def state in s with respect to df,l

Ar,Ri
, and in

p/c-usestate in s′ with respect to uf,m
As,Rj

(see Figure 4).
We want to check that for some path eventually there is a state s where the value of f is modified, and

from s there is a path in which f is not redefined until we reach a state where the value of f is used (in
a predicate or computation). In ASM terms, this means that we are looking for a run such that at some
point we reach a state where the predicate guarding the selected update df,l

Ar,Ri
evaluates to true (therefore

triggering a rule where the value of f is defined) and then all the predicates guarding updates of f evaluate
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• a test suite T satisfies the all-p-uses/some-c-uses criterion if it includes one def-clear(f) run from s to
each state in dpu(s, f(t1, . . . , tn)), but if dpu(s, f(t1, . . . , tn)) is empty, it includes at least one def-clear(f)
run from s to some node in dcu(s, f(t1, . . . , tn))

• a test suite T satisfies the all-uses criterion if it includes one def-clear(f) run from s to each state in
dpu(s, f(t1, . . . , tn)) and to each state in dcu(d, f(t1, . . . , tn))

• a test suite T satisfies the all-du-paths criterion if it includes all the def-clear(f) runs from s to each
state in dpu(s, f(t1, . . . , tn)) and to each state in dcu(s, f(t1, . . . , tn))

Empirical studies [Wey93, FW93] have shown that there is little difference in terms of the number of test
cases sufficient to satisfy the least demanding criterion, all-def, and the most demanding criterion, all-du-
paths. However, there is a hidden cost in satisfying the all-du-paths criterion, in that it is substantially more
difficult to determine whether or not all-du-paths is actually satisfied due to the infeasibility problem: many
definition-use (du-)paths can actually be non-executable, and it is frequently a difficult and time-consuming
job to determine which du-paths are truly non-executable. For this reason, the most commonly adopted data
flow criterion is the all-uses.

4. Generating test cases from ASMs

In the previous section we have defined a family of data flow coverage criteria for ASM specifications. We
now address the problem of how to generate test suites satisfying a given set of such criteria for an multi-
agent ASM model. Obviously, the hardest problem here is the need to reason in terms of all the possible
computations of a given machine, i.e. to explore the state space of the machine. In the following, we elucidate
an approach based on model checking following the one proposed in [?].

Model checking

In [Cav08] the method proposed by Hong et al. in [HCL+03] was adapted to Abstract State Machines. Lately,
we have expanded it to multi-agent ASMs []. The underlying idea of this approach is to represent data flow
coverage criteria in temporal logic so that the problem of generating test suites satisfying a specific set of
coverage criteria is reduced to the problem of finding witnesses for a set of temporal formulas. The capability
of model checkers to construct witnesses [CGMZ95] enables the test generation process to be fully automatic.
In particular, in [HCL+03] the model checker SMV [McM93] is used.

When the model checker determines that a formula with an existential path quantifier is true, it will
find a computation path that demonstrates the success of the formula (witness). For this specific problem,
Hong et al. introduce a subset of the existential fragment of CTL (ECTL) [CES86], called WCTL. An ECTL
formula f is a WCTL formula if (i) f contains only EX, EF, and EU, where E (“for some path”) is an
existential path quantifier, X (next time), F (eventually), and U (until) are modal operators, and (ii) for
every subformula of f of the form f1∧ . . .∧fn, every conjunct fi except at most one is an atomic proposition.
For a full description refer to [HCL+03].

Since, the original approach was designed for sequential programming languages, and therefore strongly
based on control flow graphs, we had to modify it significantly in order to adapt it to multi-agent ASMs.
Given any two agents Ar and As interacting in an ASM M, and two statements df,l

Ar,Ri
(a definition of

location f in line l of rule Ri of Ar) and uf,m
As,Rj

(a computation–cf,m
As,Rj

–or predicate–pf,m
As,Rj

–use of location
f in line m of rule Rj of As), we say that a pair (df,l

Ar,Ri
, uf,m
As,Rj

) is a definition-use pair (for short, “du-pair”)
if there is a def-clear(f) path from state s to state s′ such that f is in def state in s with respect to df,l

Ar,Ri
,

and in p/c-usestate in s′ with respect to uf,m
As,Rj

(see Figure 4).
We want to check that for some path eventually there is a state s where the value of f is modified, and

from s there is a path in which f is not redefined until we reach a state where the value of f is used (in
a predicate or computation). In ASM terms, this means that we are looking for a run such that at some
point we reach a state where the predicate guarding the selected update df,l

Ar,Ri
evaluates to true (therefore

triggering a rule where the value of f is defined) and then all the predicates guarding updates of f evaluate

11

Fig. 4. A d-u pair

5.1. Model checking

In [Cav08] the method proposed by Hong et al. in [HCL+03] was significantly modified in terms of Abstract
State Machines. Lately, we have expanded it to multi-agent ASMs [Cav09]. In this paper we revise the
approach, amend some errors, and extend it to allow for turbo ASMs with sequentiality. The underlying idea
consists in representing data flow coverage criteria in temporal logic so that the problem of generating test
suites satisfying a specific set of coverage criteria is reduced to the problem of finding witnesses for a set of
temporal formulas. When the model checker determines that a formula with an existential path quantifier is
true, it will find a computation path that demonstrates the success of the formula (witness). The capability
of model checkers to construct witnesses [CGMZ95] allows for a fully automatic test generation process. In
particular, in [HCL+03] the model checker SMV [McM93] is used.

For this specific problem, Hong et al. introduce a subset of the existential fragment of CTL (ECTL)
[CES86], called WCTL. An ECTL formula f is a WCTL formula if (i) f contains only EX, EF, and EU,
where E (“for some path”) is an existential path quantifier, X (next time), F (eventually), and U (until)
are modal operators, and (ii) for every subformula of f of the form f1 ∧ . . .∧ fn, every conjunct fi except at
most one is an atomic proposition. For a full description refer to [HCL+03].

Since, the original approach was designed for sequential programming languages, and therefore strongly
based on control flow graphs, we had to modify it considerably in order to adapt it to multi-agent ASMs with
sequentiality. Given any two agents Ar and As interacting in an ASM M and (f(t̄), l, Ri,Ar) ∈ defM(f(t̄))
and (f(t̄),m,Rj ,As) ∈ p-useM(f(t̄))∪ c-useM(f(t̄)), we say that an assignment df(t̄),l

Ar,Ri
(a definition of term

f(t̄) in line l of rule Ri of Ar) and a use uf(t̄),m
As,Rj

(a computation–cf(t̄),m
As,Rj

–or predicate–pf(t̄),m
As,Rj

–use of term f(t̄)

in line m of rule Rj of As) constitute a definition-use pair (for short, “du-pair”) (df(t̄),l
Ar,Ri

, u
f(t̄),m
As,Rj

) if there is

a def-clear(f(t̄)) path from state s to state s′ such that f(t̄) is in def s in s with respect to df(t̄),l
Ar,Ri

, and in

p/c-uses in s′ with respect to uf(t̄),m
As,Rj

(see Figure 4).
Particular care must be taken in case the target computation/predicate use is within a sequential setting:

a def-clear(f(t̄)) path between a definition d
f(t̄),l
Ar,Ri

and a use uf(t̄),m
As,Rj

can be found only if uf(t̄),m
As,Rj

does not
sequentially depend on an assignment of f(t̄).

In general, the idea is to check that for some path eventually there is a state s where the value of f(t̄)
is modified, and from s there is a path in which f(t̄) is not redefined until we reach a state where the value
of f(t̄) is used (in a predicate or computation). In ASM terms, this means that we are looking for a run
such that at some point we reach a state where the predicate guarding the selected update df(t̄),l

Ar,Ri
is satisfied

(therefore triggering a rule where the value of f(t̄) is modified) and then all the predicates guarding updates
of f(t̄) hold false (so f(t̄) is not redefined) until we reach a state where, in case of predicate use the predicate
p
f(t̄),m
As,Rj

is satisfied, in case of computation use the condition guarding the update cf(t̄),m
As,Rj

must be true.
This can be formalised as:

wctl(df(t̄),l
Ar,Ri

, u
f(t̄),m
As,Rj

) = EF(sdfAr,Ri
∧EXE(¬sdfM U sufAs,Rj

))
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where
sdfAr,Ri

≡ guard(f(t̄), l, Ri,Ar)

sdfM ≡
∨

g∈G(f(t̄))

g

G(f(t̄)) ≡ {guard(f(t̄), k, Ri,Aj)|(f(t̄), k, Ri,Aj) ∈ defM(f(t̄))} \ {sufAs,Rj
}

sufAs,Rj
=

{
p
f(t̄),m
As,Rj

if uf(t̄),m
As,Rj

is a predicate

guard(f(t̄),m,Rj ,As) if uf(t̄),m
As,Rj

is a computation

Finally, given a quadruple (f(t̄), k, Ri,Aj) ∈ def Mf(t̄) (respectively, ∈ c-useMf(t̄)), the function guard
(f(t̄), k, Ri,Aj) returns the conjunction of all the predicates guarding the assignment df(t̄),l

Ar,Ri
(respect. cf(t̄),l

Ar,Ri
).

Observe that sdfAr,Ri
actually identifies the state before the term is updated. This is not a problem as we

are guaranteed that, since the guard is true, in the next state the update will take place. A similar remark
holds for sufAs,Rj

when u
f(t̄),m
As,Rj

is a computation. Moreover, we do not include the guard of uf(t̄),m
As,Rj

in the

disjunct sdfM even when there is an assignment of f(t̄) within its scope because the value of f(t̄) used in
u
f(t̄),m
As,Rj

has not being redefined yet (see example below).

Finally, if uf(t̄),m
As,Rj

sequentially depends on an assignment of f(t̄), we do not calculate the formula

wctl(df(t̄),l
Ar,Ri

, u
f(t̄),m
As,Rj

) as it is not possible to find a def-clear(f(t̄)) computation between d
f(t̄),l
Ar,Ri

and u
f(t̄),m
As,Rj

.

Example 5.1. Consider again the ASM in Example 2.1. Suppose we want to find a run covering the pair
(dy,3A1,R1

, py,4A2,R1
). This is equivalent to searching for witnesses for the following formula

wctl(dy,4A1,R1
, cy,4A2,R1

) =
EF ((st(A1) = N ∧ z ≥ x)∧

EXE (¬((st(A1) = N ∧ z ≥ x) ∨ (st(A1) = C ∧ x = 0) ∨ (st(A2) = C))
U (st(A2) = N ∧ (w > z ∧ z < x))))

We do not include guard(y, 3, R1,A1) in the disjunction because the definition in its scope will only take
place at the next state and therefore the value used in cy,4A2,R1

is that assigned at dy,4A1,R1
, as desired.

Notice that if dy,3A2,R1
and cy,4A2,R1

were in the scope of a seq construct, we would have not computed
the wctl formula. On the other hand, it would still be necessary to take into consideration the formula
wctl(dy,4A1,R1

, cy,3A2,R1
).

2

Let us now describe how to generate a set of test sequences satisfying the all-defs and all-uses crite-
ria for a set of pairs (df(t̄),l

Ar,Ri
, u
f(t̄),m
As,Rj

). Basically, we associate a formula wctl(df(t̄),l
Ar,Ri

, u
f(t̄),m
As,Rj

) with a pair

(df(t̄),l
Ar,Ri

, u
f(t̄),m
As,Rj

) for every (f(t̄), l, Ri,Ar) ∈ defM(f(t̄)) and (f(t̄),m,Rj ,As) ∈ useM(f(t̄)), and characterise

each coverage criterion in terms of witness-sets for the formulas wctl(df(t̄),l
Ar,Ri

, u
f(t̄),m
As,Rj

). This reduces the prob-
lem of generating a test suite to the problem of finding a witness-set for a set of WCTL formulas. We say
that Π is a witness-set for a set of WCTL formulas F if it consists of a set of finite paths such that, for every
formula f in F there is a finite path π in Π that is a witness for f .

All-defs A test suite T satisfies the all-defs coverage criterion if, given any two agents Ar and As in M,
for every (f(t̄), l, Ri,Ar) ∈ defM(f(t̄)) and some (f(t̄),m,Rj ,As) ∈ useM(f(t̄)), there is a test sequence in
T covering some def-clear(f) run from a state where f(t̄) is in def s w.r.t. df(t̄),l

Ar,Ri
to a state where f(t̄) is in

p/c-uses w.r.t. uf(t̄),m
As,Rj

.
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A test suite T satisfies the all-defs coverage criterion if and only if it is a witness-set for

{
∨

(f(t̄),m,Rj ,As)∈useM(f(t̄))

wctl(df(t̄),l
Ar,Ri

, u
f(t̄),m
As,Rj

) |

(f(t̄), l, Ri,Ar)∈defM(f(t̄)), for everyf(t̄) inV(M), and Ar, As inM}

where
useM(f(t̄)) = {(f(t̄), l, Rj ,Ar)| (f(t̄), l, Rj ,Ar) ∈ p-useM(f(t̄))

⋃
c-useM(f(t̄)) and

(f(t̄), l, Rj ,Ar) does not sequentially depend on any assignment of f(t̄)}

All-uses A test suite T satisfies the all-uses coverage criterion if, given any two agents Ar and As in M,
for every (f(t̄), l, Ri,Ar) ∈ defM(f(t̄)) and every (f(t̄),m,Rj ,As) ∈ useM(f(t̄)), there is a test sequence in
T covering some def-clear(f) run from a state where f(t̄) is in def s w.r.t. df(t̄),l

Ar,Ri
to a state where f(t̄) is in

p/c-uses w.r.t. uf(t̄),m
As,Rj

.
A test suite T satisfies the all-uses coverage criterion if and only if it is a witness-set for

{wctl(df(t̄),l
Ar,Ri

, u
f(t̄),m
As,Rj

)| (f(t̄), l, Ri,Ar) ∈ defM(f(t̄)), (f(t̄),m,Rj ,As) ∈ useM(f(t̄)) for every f(t̄) in V(M),
and Ar, As in M}

Observe that, in the worst case, the number of formulas can be quadratic in the size of statements in the
ASM.

Remark. In order to reduce testing time and effort, both the all-defs and the all-uses criteria can be
restricted to specific agents, i.e. instead of searching for runs from the updates of a term across all the agents
to all its uses, we could search for runs from the updates of a term in a specific subset of agents to its use
in all the agents, or viceversa, from all the updates of the term across all the agents to its uses in a subset
of agents.

Example 5.2. Consider again the ASMM defined in Example 2.1. Suppose we want to satisfy the all-defs
criterion for variable x. This will involve finding a witness for the following three disjunctions

{(wctl(dx,4A1,R1
, px,2A1,R1

) ∨ wctl(dx,4A1,R1
, px,5A1,R1

) ∨ wctl(dx,4A1,R1
, px,1A1,R2

) ∨ wctl(dx,4A1,R1
, px,2A2,R1

)∨
wctl(dx,4A1,R1

, px,5A2,R1
) ∨ wctl(dx,4A1,R1

, cx,4A1,R1
) ∨ wctl(dx,4A1,R1

, cx,6A1,R1
) ∨ wctl(dx,4A1,R1

, cx,2A1,R3
)∨

wctl(dx,4A1,R1
, cx,4A2,R1

) ∨ wctl(dx,4A1,R1
, cx,6A2,R1

) ∨ wctl(dx,4A1,R1
, cx,10
A2,R1

)),
(wctl(dx,6A1,R1

, px,2A1,R1
) ∨ wctl(dx,6A1,R1

, px,5A1,R1
) ∨ wctl(dx,6A1,R1

, px,1A1,R2
) ∨ wctl(dx,6A1,R1

, px,2A2,R1
)∨

wctl(dx,6A1,R1
, px,5A2,R1

) ∨ wctl(dx,6A1,R1
, cx,4A1,R1

) ∨ wctl(dx,6A1,R1
, cx,6A1,R1

) ∨ wctl(dx,6A1,R1
, cx,2A1,R3

)∨
wctl(dx,6A1,R1

, cx,4A2,R1
) ∨ wctl(dx,6A1,R1

, cx,6A2,R1
) ∨ wctl(dx,6A1,R1

, cx,10
A2,R1

)),
(wctl(dx,2A2,R3

, px,2A1,R1
) ∨ wctl(dx,2A2,R3

, px,5A1,R1
) ∨ wctl(dx,2A2,R3

, px,1A1,R2
) ∨ wctl(dx,2A2,R3

, px,2A2,R1
)∨

wctl(dx,2A2,R3
, px,5A2,R1

) ∨ wctl(dx,2A2,R3
, cx,4A1,R1

) ∨ wctl(dx,2A2,R3
, cx,6A1,R1

) ∨ wctl(dx,2A2,R3
, cx,2A1,R3

)∨
wctl(dx,2A2,R3

, cx,4A2,R1
) ∨ wctl(dx,2A2,R3

, cx,6A2,R1
) ∨ wctl(dx,2A2,R3

, cx,10
A2,R1

))
}

If we want to satisfy the all-uses criterion for the term z we need to find a witness-set for the set of
formulas

{wctl(dz,4A2,R1
, pz,2A1,R1

), wctl(dz,4A2,R1
, pz,2A2,R1

), wctl(dz,4A2,R1
, pz,5A2,R1

), wctl(dz,4A2,R1
, pz,1A2,R2

), wctl(dz,4A2,R1
, pz,3A2,R2

),
wctl(dz,4A2,R1

, cz,6A2,R1
), wctl(dz,4A2,R1

, cz,2A2,R2
), wctl(dz,6A2,R1

, pz,2A1,R1
), wctl(dz,6A2,R1

, pz,2A2,R1
), wctl(dz,6A2,R1

, pz,5A2,R1
),

wctl(dz,6A2,R1
, pz,1A2,R2

), wctl(dz,6A2,R1
, pz,3A2,R2

), wctl(dz,6A2,R1
, cz,6A2,R1

), wctl(dz,6A2,R1
, cz,2A2,R2

), wctl(dz,2A2,R2
, pz,2A1,R1

),
wctl(dz,2A2,R2

, pz,2A2,R1
), wctl(dz,2A2,R2

, pz,5A2,R1
), wctl(dz,2A2,R2

, pz,1A2,R2
), wctl(dz,2A2,R2

, pz,3A2,R2
), wctl(dz,2A2,R2

, cz,6A2,R1
),

wctl(dz,2A2,R2
, cz,2A2,R2

)}
2
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6. A running example

As mentioned before, the main objective of this paper is to set the theoretical basis for a data-flow approach
for Abstract State Machines. Consequently, the implementation and evaluation of the approach are beyond
the scope of this work (see section 7). In this section we briefly discuss the overall testing process we propose
and apply our method to the Production Cell case study. The choice of this example is motivated by the
fact that it is a real system, as opposed to a “purpose-made” one, and that the ASM specification for this
system originally proposed by Börger and Mearelli in [BM97] has been translated in SMV in [Win97, Win].

A testing process. In the following we briefly outline the overall testing process we propose in the form of
use cases, where every T# indicates an action taken by the system, U# indicates a user action, and UT#
indicates a user-tool interaction.

U0. The user edits the model into the chosen ASM tool.

T1. The ASM model is automatically translated into an equivalent SMV model.

U2. The user selects the set of terms to test, and possibly the set of agents where to perform the analysis
(with the option of selecting all variables/agents)

U3. The user selects the criterion to satisfy

T4. The tool traverses the model, collects all the definitions and uses of a term, and automatically generates
the formulas to satisfy. It will finally feed the SMV model checker with the model and the formulas

T5. SMV will return the test cases (witnesses) satisfying the chosen criterion.

UT6. The user will then run the test cases using the given ASM tool and will check that it behaves according
to its requirements.

The Production Cell case study. “. . . the production cell is composed of two conveyor belts, a positioning
table, a two-armed robot, a press, and a traveling crane. Metal plates inserted in the cell via the feed belt are
moved to the press. There, they are forged and then brought out of the cell via the other belt and the crane.”.

The system is modeled as a distributed ASM M with six agents—the Feed Belt (FB), the Robot, the
Press, the Deposit Belt (DB), the Traveling Crane (TC), the Elevating Rotary Table (ERT)—composing the
production cell, and working together concurrently. Each of the agents represents a sequential process which
can execute its rules as soon as they become enabled. The sequential control of each agent is formalized
using a function currPhase: Agent → Phase which contains at each moment the current phase of the agent.
When clear from the context, we write currPhase in place of currPhase(Self). We refer the reader to [BM97]
for further details.

Feed Belt [FB]

(R1) FB NORMAL

1. if currPhase = NormalRun and
PieceInFeedBeltLightBarrier

2. then FeedBeltFree := True
3. if TableReadyForLoading
4. then currPhase := CriticalRun
5. else
6. currPhase := Stopped

(R2) FB STOPPED

1. if currPhase = Stopped and
TableReadyForLoading

2. then currPhase := CriticalRun

(R3) FB CRITICAL

1. if currPhase = CriticalRun and
not PieceInFeedBeltLightBarrier

2. then currPhase := NormalRun
3. TableLoaded := True

where
TableReadyForLoading ≡ (currPhase(ERT) = StoppedInLoadPos) or not TableLoaded

Elevating Rotary Table [ERT]
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(R1) WAITING LOAD

1. if currPhase = StoppedInLoadPosition and
TableLoaded

2. then currPhase := MovingToUnloadPosition

(R2) MOVING UNLOAD

1. if currPhase = MovingToUnloadPosition and
UnloadPositionReached

2. then currPhase := StoppedInUnloadPosition

(R3) WAITING UNLOAD

1. if currPhase = StoppedInUnloadPosition and
not TableLoaded

2. then currPhase := MovingToLoadPosition

(R4) MOVING LOAD

1. if currPhase = MovingToLoadPosition and
LoadPositionReached

2. then currPhase := StoppedInLoadPosition

Travelling Crane [TC]

(R1) WAITING(DB)

1. if currPhase= WaitingToUnloadDepositBelt and
PieceAtDepositBeltEnd

2. then currPhase := UnloadingDepositBelt

(R2) UNLOADING(DB)

1. if currPhase= UnloadingDepositBelt and
UnloadingDepositBeltCompleted

2. then currPhase := MovingToLoadFeedBeltPos
3. PieceAtDepositBeltEnd := false

(R3) MOVING(FB)

1. if currPhase= MovingToLoadFeedBeltPosition and
LoadFeedBeltPosReached

2. then currPhase:= WaitingToLoadFeedBelt

(R4) WAITING(FB)

1. if currPhase= WaitingToLoadFeedBelt and
FeedBeltFree

2. then currPhase := LoadingFeedBelt

(R5) LOADING(FB)

1. if currPhase = LoadingFeedBelt and
LoadingFeedBeltCompleted

2. then currPhase := MovingToUnloadDepositBeltPos
3. FeedBeltFree := false

(R6) MOVING(DB)

1. if currPhase= MovingToUnloadDepositBeltPos and
UnloadDepositBeltPosReached

2. then currPhase := WaitingToUnloadDepositBelt

ROBOT [R]

(R1|R4|R7|R10) WAITING[TABLE-UL|PRESS-UL|DEPBELT-L|PRESS-L]

1. if currPhase = WaitingIn[UnloadTable|UnloadPress|LoadDepBelt|LoadPress]Pos and
[Table|Press|DepositBelt|Press)ReadyFor(Unloading|Unloading|Loading|Loading]

2. then currPhase := UnloadingTable|UnloadingPress|LoadingDepBelt|LoadingPress

(R2|R5|R8|R11) ACTION[TABLE-UL|PRESS-UL|DEPBELT-L|PRESS-L]

1. if currPhase = UnloadingTable|UnloadingPress|LoadingDepBelt|LoadingPress and
[UnloadingTable|UnloadingPress|LoadingDepBelt|LoadingPress]Completed

2. then currPhase:=MovingTo[UnloadPress|LoadDepBelt|LoadPress|UnloadTable]Pos
3. TableLoaded|PressLoaded|DepositBeltReadyForLoading|PressLoaded := false|false|false|true

(R3|R6|R9|R12) MOVING[TABLE-UL|PRESS-UL|DEPBELT-L|PRESS-L]

1. if currPhase = MovingTo[UnloadPress|LoadDepBelt|LoadPress|UnloadTable]Pos and
[UnloadPress|LoadDepBelt|LoadPress|UnloadTable]PosReached

2. then currPhase:=WaitingIn[UnloadPress|LoadDepBelt|LoadPress|UnloadTable]Pos

where
TableReadyForUnloading ≡ ((currPhase(ERT) = StoppedInUnloadPosition ) and TableLoaded )
PressReadyForUnloading ≡ ((currPhase(Press) = OpenForUnloading) and PressLoaded )
PressReadyForLoading ≡ ((currPhase(Press) = OpenForLoading ) and not PressLoaded )

Deposit Belt [DB]

(R1) DB NORMAL
1. if currPhase = NormalRun and

PieceInDepositBeltLightBarrier
2. then currPhase := CriticalRun

(R2) DB CRITICAL

1. if currPhase = CriticalRun and
not PieceInDepositBeltLightBarrier

2. then currPhase := Stopped
3. DepositBeltReadyForLoading := true
4. PieceAtDepositBeltEnd := true

(R3) DB STOPPED

1. if currPhase = Stopped and
not PieceAtDepositBeltEnd

2. then currPhase := NormalRun
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Press [P]

(R1) WAITING UNLOAD

1. if currPhase = OpenForUnloading and
not PressLoaded

2. then currPhase := MovingToMiddlePosition

(R2) MOVING TO MIDDLE

1. if currPhase = MovingToMiddlePosition and
MiddlePosition

2. then currPhase := OpenForLoading

(R3) WAITING LOAD

1. if currPhase = OpenForLoading and
PressLoaded

2. then currPhase := MovingToTopPosition

(R4) MOVING TO UPPER

1. if currPhase = MovingToTopPosition and
TopPosition

2. then currPhase := ClosedForForging

(R5) CLOSED

1. if currPhase = ClosedForForging and
ForgingCompleted

2. then currPhase := MovingToBottomPosition

(R6) MOVING TO LOWER

1. if currPhase = MovingToBottomPosition and
BottomPosition

2. then currPhase := OpenForUnloading

According to the testing process discuss above, the ASM model will be translated into SMV. Observe
that environmental variables, i.e. monitored variables that are not controlled by any of the agents in the
system, have to become a part of the model to avoid their behaviour to remain unspecified in the resulting
SMV model. We will not going into the technical details on how this is performed here. For more details,
please refer to [Win].

The next step is to select the terms to be tested. For the purpose of this exercise, let us analyse TableLoaded
in all the agents according to the All-defs criterion. The def, p-use, and c-use sets are generated according
to the definitions described in section 3., and the following set of formulas is produced accordingly:

{(wctl(dTableLoaded,3
FB,R3

, pTableLoaded,3
FB,R1

) ∨ wctl(dTableLoaded,3
FB,R3

, pTableLoaded,5
FB,R1

) ∨ wctl(dTableLoaded,3
FB,R3

, pTableLoaded,1
FB,R2

)∨
wctl(dTableLoaded,3

FB,R3
, pTableLoaded,1

ERT,R1
) ∨ wctl(dTableLoaded,3

FB,R3
, pTableLoaded,1

ERT,R3
) ∨ wctl(dTableLoaded,3

FB,R3
, pTableLoaded,1

R,R1
)),

(wctl(dTableLoaded,3
R,R2

, pTableLoaded,3
FB,R1

) ∨ wctl(dTableLoaded,3
R,R2

, pTableLoaded,5
FB,R1

) ∨ wctl(dTableLoaded,3
R,R2

, pTableLoaded,1
FB,R2

)∨
wctl(dTableLoaded,3

R,R2
, pTableLoaded,1

ERT,R1
) ∨ wctl(dTableLoaded,3

R,R2
, pTableLoaded,1

ERT,R3
) ∨ wctl(dTableLoaded,3

R,R2
, pTableLoaded,1

R,R1
))}

These formulas will be checked against the model and witnesses will be produced for them (if possible). We
have performed this step manually, and found the following witness (test case) satisfying the above formulas
(and therefore the chosen criterion). Observe that we do not report here the transition rules modeling the
environment (Env).

TC1:

[FB] currPhase(FB) = CriticalRun, FeedBeltFree = false, TableLoaded = false [TableReadyForLoading=true]
[ERT] currPhase(ERT) = StoppedInLoadPosition
[TC] currPhase(TC) = WaitingToUnloadDepositBelt=true, PieceAtDepositBeltEnd = false
[R] currPhase(R) = WaitingInUnloadTablePos, PressLoaded = false

[TableReadyForUnloading = false, PressReadyForUnloading = false, PressReadyForLoading = false]
[DB] currPhase(DB) = NormalRun, DepositBeltReadyForLoading = false
[P] currPhase(P) = OpenForLoading,
[Env] PieceInFeedBeltLightBarrier = false, UnloadPositionReached = false, LoadPositionReached = false,

UnloadingDepositBeltCompleted = false, LoadFeedBeltPosReached = false, LoadingFeedBeltComple
eted = false, [UnloadPress|LoadDepBelt|LoadPress|UnloadTable]PosReached = false, [UnloadingTable
|UnloadingPress|LoadingDepBelt|LoadingPress]Completed = false, PieceInDepositBeltLightBarrier =
false, PieceAtDepositBeltEnd = false, MiddlePosition = false, TopPosition = false,
ForgingCompleted = false, BottomPosition = false

For brevity here we will only show that this configuration triggers a run that satisfies the disjuncts

wctl(dTableLoaded,3
FB,R3

, pTableLoaded,1
ERT,R1

) =
EF ((currPhase(FB) = CriticalRun ∧ ¬PieceInFeedBeltLightBarrier) ∧

EXE (¬ (currPhase(R) = UnloadingTable ∧ UnloadingTableCompleted) U
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(currPhase(ERT) = StoppedInLoadPosition ∧ TableLoaded)))

wctl(dTableLoaded,3
FB,R3

, pTableLoaded,3
FB,R1

) =
EF ((currPhase(FB) = CriticalRun ∧ ¬PieceInFeedBeltLightBarrier) ∧

EXE (¬ (currPhase(R) = UnloadingTable ∧ UnloadingTableCompleted) U
(currPhase(FB) = NormalRun ∧ PieceInFeedBeltLightBarrier)))

in the first formula which therefore holds true.
Running the system with this state, rule R3 in Feed Belt fires, and as a consequence TableLoaded is in

defs in the new state:

[FB] currPhase(FB) = NormalRun, FeedBeltFree=false, TableLoaded=true, [TableReadyForLoading = true]
[ERT] currPhase(ERT) = StoppedInLoadPosition
[TC] currPhase(TC) = WaitingToUnloadDepositBelt=true, PieceAtDepositBeltEnd = false
[R] currPhase(R) = WaitingInUnloadTablePos, PressLoaded = false

[TableReadyForUnloading = false, PressReadyForUnloading = false, PressReadyForLoading = false]
[DB] currPhase(DB) = NormalRun, DepositBeltReadyForLoading = false
[P] currPhase(P) = OpenForLoading,
[Env] PieceInFeedBeltLightBarrier = true, UnloadPositionReached = false, LoadPositionReached = false,

UnloadingDepositBeltCompleted = false, LoadFeedBeltPosReached = false, LoadingFeedBeltComple
eted = false, [UnloadPress|LoadDepBelt|LoadPress|UnloadTable]PosReached = false, [UnloadingTable
|UnloadingPress|LoadingDepBelt|LoadingPress]Completed = false, PieceInDepositBeltLightBarrier =
false, PieceAtDepositBeltEnd = false, MiddlePosition = false, TopPosition = false,
ForgingCompleted = false, BottomPosition = false

In this state, both rule R1 in Feed Belt6 and R1 in Elevating Rotary Table are enabled to fire
since their guards hold true. By definition, this means that TableLoaded is in p-uses w.r.t. pTableLoaded,1

ERT,R1
and

pTableLoaded,3
FB,R1

in this state, and therefore this test case triggers a def-clear(TableLoaded) run exercising the
du-pairs (dTableLoaded,3

FB,R3
, pTableLoaded,1

ERT,R1
) and (dTableLoaded,3

FB,R3
, pTableLoaded,3

FB,R1
) as desired.

Notice that actually this run uncovers an error in the specification: it violates the Feed Belt Safety
Property—the feed belt does not put metal blanks on the table if the latter is already loaded or not stopped
in loading position. This is due to an error in the definition of TableReadyForLoading which holds true even
though TableLoaded is still true. The problem consists in the fact that the or operator was used in place of
the and one in the defining equation of TableReadyForLoading.

7. Discussion and Future work

In the model-driven software engineering approach, a model is used to drive (or generate automatically) the
code. Therefore, models are not used only as oracles to generate tests and considered correct by assumption,
as done in many existing MBT techniques, but require a high degree of testing themselves.

Data flow coverage criteria can be used to bridge the gap between control flow testing and the ambitious
and often unfeasible requirement to exercise every path in a program. Originally, they were developed for
single modules in procedural languages [LK83, Nta84, RW85], but have since been extended for interproce-
dural programs in procedural languages [HS89], object-oriented programming languages [HR94], modeling
languages such as UML [BLL05], and Web services applications [MCT08]. Tools to check the adequacy of
test cases w.r.t data flow coverage criteria are being developed for programming languages such as Java (see
for instance Coverlipse [Cov]).

In this paper we have significantly revised the theory and test case generation approach presented in
[Cav08] and [Cav09] to amend some errors and imprecisions, and to deal with turbo ASMs; in particular,
we have tackled the challenges introduced by the operator for sequential composition (seq). We have also
presented a scenario of application of the proposed testing process to the Production Cell example.

6 Observe that PieceInFeedBeltLightBarrier has now become true for effect of transition rules in Env.
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We have illustrated a family of data flow coverage criteria for Abstract State Machines based on those
introduced in [RW85]. We have explained why such criteria cannot be straightforwardly applied to ASMs,
and have modified them accordingly. The criteria defined here focus on the interaction of portions of the
ASM linked by the flow of data rather than merely by the flow of control. Therefore, they can also serve
as a guide for a clever selection of critical paths for testing. We are not advocating that data flow coverage
criteria should be applied necessarily to all the terms in an ASM model, but to a selection of critical terms.
Moreover, we could restrict the application of coverage criteria to interesting subsets of agents. Finally, we
have presented a model checking-based approach to generate automatically test suites satisfying the all-defs
and all-uses criteria by formalising such criteria in temporal logic. Our approach builds on the work in
[HCL+03], which for this purpose uses CTL as temporal logic and SMV as model checker.

Other data flow coverage criteria, such as those proposed by Ntafos [Nta84] and Laski and Korel [LK83]
do not seem to be adaptable to ASMs, as they are intrinsically linked to control flow graphs (they are strictly
based on static analysis and observations of control flow graphs).

In general, when compared to the structural coverage criteria in [GR01], it is easy to see that the Rule
Coverage Criterion is weaker than the all-uses and all-defs criteria: even though a test suite guarantees the
execution of all the rules in the model at least once, it will not necessarily cover all the du-pairs for all the
terms in the model. Consider the ASM in Example 2.1. The test suite

[A1 ] st(A1) = N, x = 6, y = 4
[A2 ] st(A2) = N, z = 3, v = 1[w = 24]

satisfies the Rule Coverage Criterion, but does not satisfies the all-uses (or even the all-defs) criterion
as it never executes the assignment at line 3. and 4. in R1 in the module of A1. Viceversa, a test suite
that satisfy the all-uses criterion must execute all the rules in the model at least once (otherwise it would
leave the assignments and predicates in the rule uncovered). Similarly, the rule update coverage criterion is
weaker than the all-uses criterion. However, the more advanced criteria, i.e. the Parallel Rule Coverage and
the Modified Condition Decision Coverage are not directly comparable with the all-uses criterion.

Observe that the main purpose of this work is to define a sound theory for data-flow testing ASMs. At the
moment there is no complete tool support for the theory illustrated in this paper. In fact, although a formal
mapping from ASMs to SMV has been defined [Win97], the interface developed in [CW00] is linked to the
Workbench tool [Cas01] which unfortunately is not maintained anymore. However, there are plans to adapt
it to work with the ASM tools currently available [FGG07, ASM]; this will allow us to develop a testing tool
based on our approach and thus to evaluate its effectiveness and scalability by applying it to a number of
case studies. We also intend to explore the possibility of adapting our data flow coverage criteria to work
with the SPIN model checker, exploiting the ASM to PROMELA mapping defined in [GRR03, FGM07].

It would be interesting to include a component in the tool able to measure the coverage of a given test
suite also with respect to control-flow criteria, and report exactly what definition-use pairs a given test
manages to cover (typically, a test case will cover more than one per term). Moreover, we are interested in
studying the problem of combining efficiently our data flow coverage criteria with the stronger structural
criteria available.
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