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Abstract—In this paper we evaluate the performance of
DataCube a P2P persistent data storage platform. This plat-
form exploits the properties of cluster-based peer-to-peer struc-
tured overlays together with a hybrid redundancy schema (a
compound of light replication and rateless erasure coding)
to guarantee durable access and integrity of data despite
adversarial attacks. The triptych "availability - storage over-
head - bandwidth usage" is evaluated, and results show that
despite massive attacks and high churn, DataCube performs
remarkably well. We evaluate the performance of the rateless
erasure codes implemented in DataCube. Our exploration
shows how parameters selection impacts codes performance
mainly in terms of decoding time, and collect strategies.
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I. INTRODUCTION

The huge interest for peer-to-peer systems has motivated

researchers to go beyond routing and look-up functional-

ities. Over the last past five years, peer-to-peer systems

have emerged as a viable architecture for implementing

persistent data-storage systems. However, two challenges

need to be addressed to successfully build efficient persis-

tent data-storage systems. First overcoming the extremely

heterogeneous nodes availabilities (essentially due to nodes

intermittent or transient connectivity) [1] and second facing

nodes untrustworthiness [2]. Regarding the first challenge, it

is well known that storage overhead incurred by the storing

of full data replicas and bandwidth needed to recreate new

copies upon unpredictable join and leave of nodes tend to

overwhelm the benefits of replication [1], i.e., its ease of im-

plementation and its low download latency overhead [3], [4],

[5]. In contrast, erasure coding provides redundancy without

the overhead of replication. In particular, recently proposed

rateless erasure codes (also called Fountain codes) [6], [7],

[8], as a class of erasure codes provide natural resilience to

losses, and make them fully adapted to dynamic systems.

By being rateless, they give rise to the generation of ran-

dom, and potentially unlimited number of uniquely coded

symbols. A clear advantage of that property is that content

reconciliation is useless and one may recover an initial object

by collecting coded blocks generated by different sources.

An increasing number of P2P persistent data-storage sys-

tems exploit erasure coding to provide data persistence,

as Total Recall [9], Reperasure [10], and Carbonite [11],

however facing nodes untrustworthiness is still challenging.

OceanStore [12], [13] implements a hybrid redundancy

scheme. By massively applying fixed-rate erasure coding to

all data objects, OceanStore guarantees data persistence as

long as undesirable (a.k.a. Byzantine) nodes do not collude

together. Indeed, collusion of malicious nodes allow to easily

mount targeted attacks that very quickly may disconnect

targeted nodes from the rest of the system [14]. Actually

holding a logarithmic number of IP addresses is sufficient

to perform such an attack [15].

In a prior paper [16], we have presented a P2P per-

sistent data-storage architecture. This architecture, called

DataCube, guarantees durable access and integrity of data

despite collusion of malicious nodes. This is achieved by

combining a compound of full replication and rateless

erasure coding schemes with the properties of cluster-based

structured overlays. Briefly, each data-item is replicated at

a small subset of nodes gathered together in a cluster, such

that the set of clusters form the vertices of the structured

graph. This replication schema guarantees that in presence

of a bounded number of malicious nodes, data integrity

is guaranteed through Byzantine agreement protocols, and

efficient data retrieval is preserved (retrieval is achieved in

O(logN) hops and requires O(logN) messages, with N
the current number of nodes in the system). In addition

to this replication schema, data is fragmented, coded and

spread outside its original cluster. Each fragment is uniquely

identified and is placed at the cluster that matches its new

identifier. This coding schema guarantees that in presence

of targeted attacks (i.e., the adversary manages to adaptively

mount collusion against specific clusters of nodes), recovery

of the data those clusters were in charge of is self-triggered.

In the present work, we evaluate the efficiency of Dat-

aCube. First, we evaluate the encoding and decoding per-

formance of the rateless erasure codes implemented in

DataCube. Our exploration seeks to understand which fea-

tures and parameters lead to good coding performance.

As will be shown, parameters selection impacts how well

codes perform mainly in terms of recovering overhead, and

decoding time. In particular we show that the order in

which coded blocks are collected has a strong impact of the

decoding time. Second, we perform an in-depth evaluation

of DataCube in terms of storage and bandwidth overhead,



and data availability. This analysis is conducted by assuming

an extreme adversarial context (some corners of the system

are populated by up to 45% of malicious nodes, while the

proportion of malicious nodes in the rest of the system may

reach up to 30%), and a highly overloaded system (up to

1000 Tbytes are pushed in a system of 106 nodes, which

roughly corresponds to the maintenance of a very large video

archive). Results of this evaluation clearly demonstrate the

benefit of hybrid replication over full replication in terms of

data availability and storage overhead. It also demonstrate

that according to nodes churn, the bandwidth usage per node

is negligible in practice.

The remainder of this paper is structured as follows: Sec-

tion I-A presents the principles of online coding. Section II

describes DataCube main design principles. This section has

been introduced for self-containment reasons. Section III

presents the performance evaluation of the encoder and

decoder implemented in DataCube. Section IV presents an

analysis of data availability, storage overhead, and total

bandwidth maintenance. Section V presents related works,

and Section VI concludes.

A. Principles of Online Coding

Online codes [7] are based on two main system parameters

ε, and q. Parameter ε, typically equal to 0.01, infers how

many blocks are needed to recover the original message (i.e.,

a message of n blocks can with very probability be decoded

from (1 + ε)n check blocks) while q affects the probability

of reconstructing the original message (i.e., the decoding

process may fail with negligeable probability (ε/2)q+1, with

q typically equal to 3 [7]). Online coding consists in three

phases respectively called pre-coding, coding and decoding

phases. Consider an original message (or data item) divided

into n equal-sized input blocks.

The pre-coding phase consists in generating a small

number A = δεqn of auxiliary blocks, with δ typically

equal to .55, and by appending them to the original message.

Specifically, for each original input block bi we associate q
randomly chosen numbers i1, . . . , iq with ij ∈ [1, . . . , A]
such that each auxiliary block aij is computed by XOR-ing

the content of all the input blocks we have associated it to.

The A auxiliary blocks are then appended to the original n
blocks message to form the so called composite message F ′

of size n′ = n(1 + δεq) which is suitable for coding.

The coding phase consists in generating check blocks ci
from the composite message F ′. Specifically, check block

ci is generated by XOR-ing the content of di blocks of the

composite message, with di a value sampled from a pre-

specified probability distribution F that depends on ε [7].

The check block is then the pair 〈ci, xi〉 with xi the set of

the positions (also called adjacencies or neighbours) of the

di blocks randomly chosen from F ′ to compute check block

ci. A possibly infinite number of independent check blocks

can be generated this way. In DataCube a pseudo-random

number generator function G(.) to sample di is used which

allows different sources to generate exactly the same ci (see

Section II-C). Any set of (1 + ε)n′ output checks blocks

are sufficient to recover a fraction 1− ε/2 of the composite

message which guarantees to recover the original message

with probability 1− (ε)q+1.

Decoding amounts in rebuilding the bipartite graph com-

posed by all recovered blocks 〈ci, xi〉 and its adjacencies

xi. An adjacent block (also called neighbour) is a block

in the set xi XOR-ed to produce each check block. In the

bipartite graph the decoding algorithm continously looks

for received check blocks with only one unknown adjacent

block. It recovers the adjacent composite block by XOR-ing

the check blocks and all adjacents. Hence, check blocks with

adjacence-degree 1 are direct copies of the corresponding

composite block. At each round, any recovered composite

block increases the probability of recovering other blocks

through its edges. Input blocks are recovered from recovered

composite blocks likewise.

II. PRINCIPLES OF DATACUBE

A. DataCube Design

DataCube implements a hybrid replication schema (a

compound of light full replication and rateless erasure cod-

ing). This replication schema relies on a cluster-based DHT

substrate. Cluster-based substrates (also called overlays) are

specifically designed to be resistant to nodes dynamics by

pushing the impact of churn at clusters levels so that the

overall topology is barely impacted, and to efficiently toler-

ate malicious peers by running Byzantine-tolerant agreement

protocols among clusters nodes. Specifically, cluster-based

DHT overlays mainly consist in the clusterized version of

DHT overlays, where groups of peers substitute peers at

the vertices of the graph. These groups of peers, typically

called swarms [17], [15], clusters [18], and cliques [19], and

buckets [20] are populated by peers that are close to each

other according to a given proximity metrics R. This metrics

can be logical (as in [17], [15], [18], [20]), or geographical

(as in [19]). These clusters form the vertices of the structured

topology. Clusters in the system are uniquely labelled,

and their size is lower (resp. upper) bounded. The lower

bound, named Smin in the following, usually satisfies some

constraint based on the assumed failure model. For instance

Smin ≥ 4 allows Byzantine tolerant agreement protocols

to be run among these Smin nodes. The upper bound, that

we call Smax in the following, is typically in O(logN) to

meet scalability requirements, with N the current number

of nodes in the system. All cluster members or only a

subset of them are in charge of routing lookup requests,

replicating all data-items that match the cluster label, and

handling cluster operations (split/merge and create). These

features vary according to the specificities of the cluster-

based overlays. DataCube design assumes that Smin peers

are in charge of these operations. These peers are called



core members of a cluster. The other peers of the cluster (if

any) are inactive until they replace left core members. These

peers are called spare members of the cluster. This level

of data replication is sufficient to guarantee durable access

and integrity of any data that has been stored in the system

provided that at any time and anywhere in the system a

fraction of at most µ.n malicious nodes surround any subset

of n non malicious peers, with µ < 1/3. Now, to tolerate

targeted attacks, DataCube exploits the properties of rateless

erasure codes. Thus, in addition to being replicated at core

members, data is coded and spread outside its cluster. The

following two sections are dedicated to the description of

both points.

B. Pushing Check Blocks in the System

Figure 1 shows the coding and spreading algorithm.

Specifically, when core member p ∈ C receives data-

item D, p generates a composite message (as explained

in Section I-A) and its associated Merkle root [21] (see

lines 1–6). Then p invokes a Byzantine tolerant consensus

agreement among core members to agree on a unique

composite message and Merkle root (line 7). The Merkle

hash tree is an authentication scheme based on a tree of

hashes that eliminates the large storage requirement by using

a single signature (called root of the tree) for authenticating

a finite number of messages. The consensus agreement

eliminates the possibility of using a corrupted composite

message during the coding phase. Finally, the Merkle root

guarantees that only consistent composite blocks are used

during the decoding phase. Once an agreement is achieved

among core members, the coding phase is invoked by each

core member.

In the Coding phase, c0 check blocks are initially gen-

erated (lines 9–17), with c0 = (1 + ε)n′. Note that more

check blocks can be generated afterwards (this occurs when

the α spare members s1, . . . , sα of cluster C′ at which a

specific check block is stored collude together to alter the

integrity of that check block. In that case, core members

of C′ invoke the codeBlock function (lines 9–11)). Func-

tion generateCheckBlock implements the generation

of each check block according to Section I-A. At round j,

the adjacencies xj of check block 〈cj , xj〉 are derived from

G(key(D) + j), with key(D) + j the seed of the pseudo-

random number generator G(.). The rationale of using G(.)
is that it guarantees that all core members generate exactly

the same check block at each coding round without any

synchronization among them. Each check block is assigned a

key from which the placement on DataCube is defined. Keys

must be random (to prevent malicious nodes from devising

strategies to generate them), but their retrieval, for decoding,

must not involve any storage overhead. Thus, DataCube

exploits the hash-chain method [22] to identify check blocks.

Each key assigned to a generated check block results from

a recursive application of a hash function H on the data-

item, establishing a chain (or stream) of keys. Specifically,

given a data-item D and its associated key(D)=H(D), then

key cBn of check block 〈cn, xn〉 is equal to H(n)(key(D)),
with H(n)(key(D)) the nth recursive application of the hash

function H on key(D) (line 14).

Upon receipt put(D) do

1: key(D) ← hash(D);
2: cMsg[] ← preCode(D);
3: foreach (composite block j ∈ cMsg) do

4: merkleLeafSet[j] ← H(cMsg[j]);
5: enddo;
6: merkleRoot← building of the Merkle tree on merkleLeafSet[];
7: 〈cMsg′,merkleRoot′〉 ← run consensus on (cMsg, merkleRoot)

among core members;
8: invoke codeBlock(key(D),cMsg′,merkleRoot′,1,c0);
enddo;

Upon invocation codeBlock(key,cMsg,merkleRoot,b,c0) do

9: if(cMsg = null ∨ merkleRoot = null) then

10: cMsg ← key.getAgreedcMsg();
11: merkleRoot← key.getAgreedMerkleRoot();
12: for (i = b to b+ c0) do

13: 〈ci, xi〉 ← generateCheckBlock(key,cMsg,G(key + i),i);

14: cBi ← H
(i)(key);

15: put(cBi, 〈ci, xi〉, key) at α spare members of the closest cluster
to cBi;

16: enddo;
17: register(key,merkleRoot) at neighbour clusters of C if not

already done;
enddo;

Upon receipt put(cBi, 〈ci, xi〉, key) do
18: if (p.spareView.length ≥ α) then

19: αList[] ← p.getClosestSpare(α, cBi);
20: foreach (spare member i ∈ αList[]) do

21: p sends (STORE, (cBi, 〈ci, xi〉)) to αList[i];
22: p.spareView[i].addCheck(cBi,H(〈ci, xi〉), key);
23: enddo;
24: else p broadcasts (STORE, (cBi, 〈ci, xi〉)) to p’s core set;
enddo;

Figure 1: Algorithm Run by any Core Member p

Each check block 〈ci, xi〉 is then pushed at α ≥ 2 spare

members of cluster Ck, with Ck the closest cluster to cBi,

with cBi the key of 〈ci, xi〉 (line 18). These α spares are

determined according to some arbitrary but deterministic

function (e.g., the α spares are the closest spares to cBi)

(line 19). Replicating check blocks at α spares members

increases the resilience to failures. The only case for which

a new check block 〈cj , xj〉 has to be generated is when all

α spare members simultaneously leave or collude. Note that

when there are less than α spare members in the cluster,

check blocks are temporarily stored at core members (line

25). Core members of Ck compute and store a fingerprint

of 〈ci, xi〉 by applying a one-way hash function on it (line

22). This fingerprint is used by cluster Ck to guarantee the

integrity of check blocks stored at its spare members. Finally,

each core member p ∈ C registers the keys of all data-item

D that are cached at C at the set of clusters C′, such that C
is a direct neighbour of C′.



C. Selective Collect of Check Blocks

When a cluster C is detected corrupted recovery of the

data cluster C was in charge of is triggered. Corruption de-

tection is achieved through simple integrity tests performed

by the neighbours of C. Description of this procedure is out

of the scope of the paper however the interested reader is

invited to read the companion paper for more details [16].

In the following we assume that core members of cluster C′

trigger the recovery of data-item D (i.e., cluster C′ is a neigh-

bour of C). Cluster C′ has to collect sufficiently many check

blocks (at least c0 = n(1+ ε)(1+ δεq)) so that D recovery

is guaranteed with probability 1− (ε)q+1 (see Section I-A).

Specifically, let key(D) be the key corresponding to data-item

D. From the hash-chain mechanism applied to key(D), C′

derives the keys of all the check blocks that are going to be

collected, namely cB1 . . . cBj , with cBj = H(j)(key(D))
and j = (1 + ε)n(1 + δεq), and from G(.) C′ generates

x1 . . . xj , the respective adjacencies of cB1 . . . cBj . From

this initial step, C′ has the opportunity to apply different

strategies to collect check blocks, these strategies differing

according to the priority given to the adjacencies degree.

In the first strategy C′ asks for cB1 . . . cBj in any order,

that is whatever their adjacencies degrees (this strategy is

referred as to the random strategy in the following). In

the second one, C′ asks for check blocks such that the

decoding process can get started upon receipt of the first

check blocks. Specifically C′ asks for all degree-one check

blocks first and then, for the remaining check blocks, asks

for them in any order. This policy is called degree-one-first-

random-afterwards in the following. In the third one, C′ asks

for check blocks such that each one effectively contributes

to recover the initial data. That is all degree-one check

blocks cB11 . . . cB1i are asked for first, then check blocks

whose degree are reduced to one thanks to cB11 . . . cB1i are

asked for and so on until recovery of the initial data D is

completed. This third policy is referred as to the degree-one-

only strategy in the following.

III. CODING AND DECODING PERFORMANCE

In this section we evaluate the encoding and decoding

performance of the rateless erasure code implemented in

DataCube. Our exploration seeks to understand which fea-

tures and parameters lead to good coding performance.

A. Setup Experiments

The experiments presented in this section have been

performed in the following context: Different sizes of data

files have been evaluated, ranging from small ones (i.e., 10
KBytes) to large ones (i.e., 1 MBytes) and for each data

file, it has been fragmented in 100 blocks. Regarding the

encoder parameters, different values of ǫ have been set,

namely, ǫ = 0.01, 0.05, 0.1, 0.5 and 0.9. Finally, the decoder

has been fed with the random, the degree-one-first-random-

afterwards and the degree-one-only strategies. All the plotted

results are obtained from the averaging of 50 independent

experiments.

Figure 2 exhibits the fraction of recovered input blocks

as a function of the normalised number of collected check

blocks (The normalised number of collected blocks is cal-

culated as the number of collected check blocks divided by

c0). According to these experiments, for small values of ǫ
(i.e., ǫ < 0.1) the number of check blocks that need to be

collected to successfully recover the original data files is

around twice the value of c0, although this number is less

than or equal to c0 for larger values of ǫ (i.e., ǫ ≥ 0.1).

Actually, for large data files (i.e., 1 MBytes), the original

data file can be recovered with only 0.8× ǫ which tends to

demonstrate that for large files, c0 value is over estimated.

Figure 3 shows the decoding time as a function of the data

files sizes for the different strategies described here above.

The curves clearly demonstrate that the collect strategy is

a critical part of the design. Indeed, strategy degree-one-

only overpasses the two other ones whatever the size of

the data file and for any values of ǫ. Thus, this collect

strategy combined with the probability distribution F [7]

fully exploits the properties of the coding by guaranteeing

that i) many check blocks have a low degree so that they

can be used for decoding the other checked blocks, and ii)

these low-degree checked blocks are the first ones to be

collected so that the decoding process progresses steadily,

without requiring any useless XOR operations.

IV. ANALYSIS OF DATACUBE

This section is devoted to the analysis of the data availabil-

ity guaranteed by DataCube and the associated incurred stor-

age and bandwidth usage requirements. Note that numerical

values of the parameters used in the experiments are drawn

from PeerCube features [18], in particular the derivation

of the number of independent routes. Finally, differently

from the above analysis, we assume a severe adversarial

environment (at least 30% of the population is malicious).

A. Data Availability

In the following, we analyse the availability of data-item

D. We assume that D sits at cluster C, and each of the

i generated check blocks have been spread on clusters Ci,
where c0 ≤ i ≤ cb, with cb the number of generated check

blocks needed to reach a given data availability (as derived

later in this section). For simplicity reasons, we assume that

each check block sits on a different cluster. By construction,

D availability depends on both cluster C availability where

the Smin replicas of D sit and on the availability of the

clusters on which check blocks are located. Let µ denote the

ratio of malicious nodes in the whole system. The probability

pp that cluster D is polluted is equal to the probability

that its core set is polluted, that is, populated by more

than ⌊(Smin − 1)/3⌋ malicious nodes. In the following we

consider the upper bound of pp which is obtained when the



(a)

(b)

Figure 2: Fraction of input blocks recovered as a function of
the number of check blocks received over c0 for data file size
equal to 100 KBytes (case (a)), and equal to 1 MBytes (case (b)).

number of clusters in the system is minimal, i.e. equal to

⌈N/Smax⌉. Let Y denote the random variable representing

the number of malicious nodes in a given core set, and X
the one depicting their number in the cluster then

pp = 1−

⌊(Smin−1)/3⌋
∑

y=0

⌊(µ.N)⌋
∑

x=0

P{Y = y|X = x}P{X = x}.

Probability P{Y = y|X = x} represents the probability

that y malicious nodes are inserted in the core knowing that

x are in the whole cluster, i.e.,

P{Y = y|X = x} =

(

x

y

)(

Smax − x

Smin − y

)

/

(

Smax

Smin

)

,

(a)

(b)

Figure 3: Decoding time (milliseconds) as a function of data
files sizes (Bytes) for (a) ǫ = 0.05 and (b) ǫ = 0.9.

and

P{X = x} =

(

µN

x

)

(Smax/N)x(1− Smax/N)µN−x.

The lower bound ph on the probability that a request issued

from cluster D successfully reaches cluster Ci located at h
hops from C and is successfully handled by Ci is equal to

ph = 1− (1− (1− pp)
h)r,

where r is the number of independent paths the request can

take. It has been proven in [18] that log(N/Smax) ≤ r ≤
log(N/Smax) + 3 and 1 ≤ h ≤ log(N/Smax) + 5. We are



ready to derive the availability da of D.

da = (1− pp) + pp

cb
∑

c0

(

cb
c0

)

(ph)
c0 (1− ph)

cb−c0 .

Table I provides a comparison between the stretch factor

of our policy (i.e., the total amount redundancy added to

data-items which is equal to cb over c0) and the replication

factor imposed by classical full replication required to get

data availability at least greater than 0.9, 0.99, and 0.999.

To compute the replication factor obtained with classical

full replication, we suppose that each copy of the data-

item is replicated on a different cluster, as supposed for

check blocks. Experiments are conducted for different sizes

N of the system. Let Smax = ⌈log2 N⌉. In all these

experiments, we assume that h is maximal (i.e. we maximise

the probability of encountering faulty clusters). For example

for N = 1, 000, we have h = 11 hops. Finally, we assume

that 30% of the nodes in the system are malicious (e.g. for

N = 1, 000, ph = 0.076). However, to simulate a targeted

attack at cluster C (the cluster on which D sits), we suppose

that C is populated by µtarget = 45% of malicious nodes.

Results of these experiments, given in Table I, show the

benefit of our approach over full replication. It is shown

that for reaching different levels of availability, the required

stretch factor increases relatively smoothly, while the grow-

ing of the replication factor is more sensitive. For instance,

for N = 1, 000, and c0 = 50, the stretch factor is equal to

17, 02 for an availability of .99 and reaches a stretch factor

of 18, 92 for an availability equal to 0.999%. Whereas in the

same conditions, the replication factor increases from 51 to

80 which clearly becomes a problem for large data-items.

The same trend is obtained for increasing values of N .

N Stretch factor Replication factor
0.9 0.99 0.999 0.9 0.99 0.999

1,000 14.42 17.02 18.92 22 51 80
2,000 17.92 21.14 23.52 27 63 100
3,000 17.96 21.18 23.56 27 64 100
4,000 22.24 26.26 29.2 34 79 124
5,000 22.28 26.3 29.24 34 79 125

Table I: Comparaison of the stretch factor in DataCube and the

replication factor obtained in classical full replication as a function of

the required availability and the number of nodes N in the system. In
these experiments, the ratio of malicious nodes in C is equal to 45% while
it is equal to 30% in the remaining of the system.

Figure 4(a) confirms the scalability of our approach. For

all these experiments we have c0 = 50, µ = 30 and

µtarget = 40%. For N = 216, rather than a replication

factor of 194, we achieve the same availability with a 3-fold

savings by relying on hybrid replication. Finally, one can

notice the impressive benefit when using independent routes

on both approaches. For instance, for r = 6 and N = 28,

replication factor decreases to 33 while in our solution the

stretch factor drops to 10.

B. Storage Overhead

We now compute the storage overhead implied by Dat-

aCube. We recall that each data-item D is initially replicated

at Smin core members and n fragments generated from D
are coded and spread to other clusters at α spare members.

The storage overhead DS for D is given by:

DS = ⌈(n.Smin + c0
cb
c0

α)⌉ − n. (1)

We now estimate how this storage overhead is distributed

among nodes in DataCube. First, remark that data-items

identifiers are randomly assigned for both data-items and

check blocks. Thus, we can interpret the placement of both

data-items and check blocks as the throwing of balls into

several urns. We denote by Zc (resp. Zs) the random variable

representing the total number of data-items (resp. check

blocks) stored at each core (resp. spare) member. Let f
be the total number of data-items in the system, cb be the

number of check blocks generated for each D to get a target

data availability, and N = Nc +Ns be the current number

of nodes in DataCube—Nc (resp. Ns) is the number of core

(resp. spare) members. The probability that the number of

data-items (resp. check blocks) at any core (resp. spare) is

upper bounded by z is given by:

P (Zs,c ≤ z) =
z

∑

k=0

(

f.DSs,c

k

)(

1

Ns,c

)k (

1−
1

Ns,c

)f.DSs,c−k

,

where the notation Xs,c stands for Xs when dealing with

check blocks and Xc for data-items. In particular, DSs =
c0

cb
c0
α and DSc = n.Smin. Figure 4(b) compares the

number of fragments per node (core and spare member) in

DataCube with the one needed in case of full replication

and pure rateless erasure coding to guarantee an availability

of 0.99. Recall that data-items are made of n fragments. In

these experiments, N = 1, 000, c0 = 50, the stretch factor

is equal to 10 (see Figure 4(a)), and α = 2. Lessons learnt

from these experiments are two-fold: first, our approach

guarantees a 3.5-fold savings wrt full replication, and second

is very close to pure rateless erasure coding approach which

clearly shows the low impact on storage overhead of the full

data-items stored at Smin core members in DataCube.

C. Bandwidth Usage

We finally derive the total bandwidth needed per node for

maintaining DataCube redundancy mechanism in presence

of churn. Each time a node p leaves the system data-items

or checked blocks p cached are copied over to new nodes

(to keep the redundancy guarantees), while each time a new

node p joins the system p needs to download all the data

that match to it. If we assume that nodes join the system

at rate λ and leave it at rate α, and that α = λ (to keep

the system size constant in average), the usage bandwidth

per core node is, in expectation, equal to twice the size of
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Figure 4: (a) This graph shows the required stretch factor for our solution (hybrid redundancy) and replication factor for the
full replication approach as a function of the number of nodes N in the system. The required availability is da = 0.99. The number
shown in brackets (i.e., 1 and 6) represents the number of redundant routes. (b) This graph shows the number of stored fragments
per node in DataCube, in a full replication approach, and pure rateless erasure coding one as a function of the size of the system
N. The replication factor used for the full replication approach is equal to 33 (see Figure 4(a)) while the stretch factor for pure coding
is equal to 10.

fragments a node houses times λ. Note that the rate at which

core members leave the system is 1/ Smin

log2(N)−Smin
less than

the one spare members do. Figure 5, derived from figures

1e-01

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

0e+00 2e+06 4e+06 6e+06 8e+06 1e+07 1e+07 1e+07 2e+07

B
an

dw
id

th
 U

sa
ge

 p
er

 N
od

e 
(K

by
te

s/
s)

Total Amount of Data in the System  (Gbytes)

Average membership = 1 hour
Average membership = 1 day

Average membership = 1 week
Average membership = 1 month

Figure 5: This graph shows the required bandwidth per node
as a function of the churn for maintaining up to 1000 TBytes
of unique data at an availability at least equal to 0.99.

obtained in Figure 4(b), shows the required bandwidth per

node needed for maintaining up to 1000 TBytes of unique

data in a system of N = 106 nodes (this corresponds to a

very large video archive). Clearly at a daily turnover rate, the

required redundancy policy is too demanding to be supported

by nodes, however, at a monthly turnover rate, continuous

contribution of each node shrinks to less than 20Kbytes/s

which is clearly compatible with classic ADSL rates.

V. RELATED WORK

Cataldi et al. [23] evaluate the encoding and decoding

time of Raptor and LT codes as a function of the size of

the original data by focusing on a failure free environment.

In [24], the authors provide a comprehensive performance

evaluation of open-source erasure coding libraries. Their

main goal has been to evaluate the trade-off between data

size and architectural features and memory behavior. Al-

though the codes they evaluate are not rateless (and thus

do not strictly apply to our study), their results show that

codes performance highly depend on the characteristics of

the machines. They show that 64-bit machines are well

tailored for XOR operations, or that the size of the blocks

should be carefully chosen according to the cache bahavior.

VI. CONCLUSION

In the present work, we have evaluated the efficiency of

DataCube, a P2P persistent data storage platform guaran-

teeing durable access and integrity of data despite collusion

of malicious nodes. The evaluation we have performed has

shown that parameters selection impacts codes performance.

In particular we have shown the benefit of judiciously col-

lecting check blocks. Regarding our evaluation of DataCube

in a severe adversarial environment we have shown the



benefit of hybrid replication over full replication in terms

of data availability, storage overhead and bandwidth usage.
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