
HAL Id: hal-00554699
https://hal.science/hal-00554699

Submitted on 11 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Comparative Study of Rateless Codes for P2P
Persistent Storage

Heverson Ribeiro, Emmanuelle Anceaume

To cite this version:
Heverson Ribeiro, Emmanuelle Anceaume. A Comparative Study of Rateless Codes for P2P Persistent
Storage. International Conference in Stabilization, Safety, and Security of Distributed Systems, Sep
2010, New York, United States. pp.489-503. �hal-00554699�

https://hal.science/hal-00554699
https://hal.archives-ouvertes.fr

A Comparative Study of Rateless Codes

for P2P Persistent Storage

Heverson B. Ribeiro1 and Emmanuelle Anceaume2

1 IRISA / INRIA, Rennes Bretagne-Atlantique, France
heverson.ribeiro@inria.fr

2 IRISA / CNRS UMR 6074, France
emmanuelle.anceaume@irisa.fr

Abstract. This paper evaluates the performance of two seminal rate-
less erasure codes, LT Codes and Online Codes. Their properties make
them appropriate for coping with communication channels having an un-
bounded loss rate. They are therefore very well suited to peer-to-peer sys-
tems. This evaluation targets two goals. First, it compares the perfor-
mance of both codes in different adversarial environments and in different
application contexts. Second, it helps understanding how the parameters
driving the behavior of the coding impact its complexity. To the best of
our knowledge, this is the first comprehensive study facilitating applica-
tion designers in setting the optimal values for the coding parameters to
best fit their P2P context.

Key words: peer-to-peer, p2p, storage, rateless codes, fountain codes,
LT codes, online codes, data persistency.

1 Introduction

Typical applications such as file sharing or large scale distribution of data all
have in common the central need for durable access to data. Implementing these
applications over a peer-to-peer system allows to potentially benefit from the
very large storage space globally provided by the many unused or idle machines
connected to the network. In this case, however, great care must be taken since
peers can dynamically and freely join or leave the system. This has led for the
last few years to the deployment of a rich number of distributed storage solutions.
These architectures mainly differ according to their replication scheme and their
failure model. For instance, architectures proposed in [10, 13] rely on full replica-
tion, the simplest form of redundancy. Here, full copies of the original data are
stored at several peers, which guarantees optimal download latency. However,
the storage overhead and the bandwidth for storing new replicas when peers leave
may be unacceptable, and thus tend to overwhelm the ease of implementation
and the low download latency of this replication schema. This has motivated
the use of fixed-rate erasure coding as in [2, 5]. Fixed-rate erasure codes such
as Reed-Solomon and more recently Tornado codes mainly consist in adding a
specific amount of redundancy to the fragmented original data and storing these

2 H. B. Ribeiro and E. Anceaume

redundant fragments at multiple peers. The amount of redundancy, computed
according to the assumed failure model, guarantees the same level of availability
as full replication, but with an overhead of only a fraction of the original data,
and coding and decoding operations in linear time (only guaranteed by Tor-
nado codes). Unfortunately, this replication scheme is intrinsically not adapted
to unbounded-loss channels in contrast to Rateless codes (also called Fountain
codes). As a class of erasure codes, they provide natural resilience to losses, and
therefore are fully adapted to dynamic systems. By being rateless, they give
rise to the generation of random, and potentially unlimited number of uniquely
coded symbols, which make them fully adapted to dynamic systems such as peer-
to-peer systems. Two classes of rateless erasure codes exist. Representative of
the first class is the LT coding proposed by Luby [6], and representatives of the
second one are Online codes proposed by Maymounkov [7] and Raptor codes by
Shokrollahi [12]. The latter class differs from the former one by the presence of
a pre-coding phase. A data storage architecture based on a compound of Online
coding and full replication has been recently proposed in [8]. Previous analyses
have shown the benefit of hybrid replication over full replication in terms of data
availability, storage overhead, and bandwidth usage [4, 9]. However, for the best
of our knowledge, no experimental study comparing the two classes of fountain
codes has ever been performed.

The objective of the present work is to provide such a comparison. Specif-
ically, we propose to compare the experimental performance of both LT and
Online codes. Note that Raptor codes [12] could have been analysed as a rep-
resentative of the second class of fountain codes; however because part of their
coding process relies on LT codes, we have opted for Online codes. This eval-
uation seeks not only to compare the performance of both codes in different
adversarial environments, and in different application contexts (which is mod-
eled through different size of data), but also to understand the impact of each
coding parameter regarding the space and time complexity of the coding process.
As such, this work should be considered, for the best of our knowledge, as the
first comprehensive guideline that should help application designers to configure
these codes with optimal parameters values.

The remainder of this paper is structured as follows: In Section 2 we present
the main features of erasure codes. Section 3 presents the experiments performed
on LT and Online codes to evaluate their recovery guarantees, their decoding
complexity in terms of xor operations, and their adequacy to varying size of
input data. This section is introduced by a brief description of the architecture
in which these experiments have been run. Section 4 concludes.

2 Backgroung on Rateless Erasure Codes

As previously said in the introduction, the main advantages of rateless erasure
codes over traditional erasure codes are first that the ratio between input and
encoded symbols is not fixed which eliminates the need for estimating the loss-
rate beforehand, and second that the encoded symbols can be independently

A Comparative Study of Rateless Codes for P2P Persistent Storage 3

generated on-the-fly. The following section emphasizes the main features of both
LT and Online codes. An in-depth description can be found in the respective
original papers [6, 7].

2.1 Principles of LT Rateless Codes

Coding process The LT coding process [6] consists in partitioning the data
item or message to be coded into k = n/l equal size symbols (also called input
blocks), where n is the size of the data-item, and l a parameter that is typically
chosen based on the packet payload to be transmitted. Each encoded symbol ci
(also called check block) is generated by (i) choosing a degree di from a particular
degree distribution (see below), (ii) randomly choosing di distinct input symbols
(called neighbors of ci) among the k input symbols, and (iii) combining the di
neighbors into a check block ci by performing a bitwise xor operation. Note that
the degree and the set of neighbors information di associated with each check
block ci needs to be known during the decoding process. There are different
ways to communicate this information during the coding process. For instance,
a deterministic function may be used to define the degree of each check block and
then both coder and decoder can apply the same function in order to recreate
the information [6]. In the following, any check block cbi is represented as a pair
〈ci, xi〉, where ci is the check block generated by combining di neighbors and xi

is the set of the di combined neighbors. Figure 1(a) shows the LT coding process
represented by a Tanner graph [14]. Specifically, the bipartite graph is such that
the first set of vertices represents input symbols k1, k2 and k3 and the second
set represents the generated check blocks cbA, cbB, cbC , cbD and cbE . Using the
generation procedure described here above, a potentially infinite number of check
blocks can be generated. Later on, we provide the lower bound CB0 on the
number of check blocks that need to be generated in order to guarantee the
success of LT coding with high probability.

(a) (b)

Fig. 1. (a) Check blocks cbA = k1, cbB = k1 ⊕ k2, cbC = k2, cbD = k2 ⊕ k3, and
cbE = k1 ⊕ k3 coded from input symbols k1, k2, and k3. (b) Online two-phase coding
process.

Decoding process The key idea of the decoding process is to rebuild the
Tanner graph based on the set of received check blocks. Upon receipt of check

4 H. B. Ribeiro and E. Anceaume

blocks, the decoder performs the following iterative procedure: (i) Find any
check block cbi with degree equal to one (i.e. each degree-one check block cbi
has only one input symbol ki as neighbor), (ii) copy the data ci of cbi〈ci, xi〉 to
ki. (i.e. neighbor ki of check block cbi is an exact copy of data ci), (iii) remove
the edge between cbi and ki, and (iv) execute a bitwise xor operation between
ki and any remaining check block cbr that has ki as neighbor (cbr = cbr ⊕ ki),
and remove the edge between cbr and ki. These four steps are repeated until all
k input symbols are successfully recovered.

Soliton degree distributions The key point of LT codes is the design of a
proper degree distribution. The distribution must guarantee the success of the
LT process by using first, as few as possible check blocks to ensure minimum
redundancy among them and second, an average degree as low as possible to
reduce the average number of symbol operations to recover the original data. The
first approach proposed by Luby was to rely on the Ideal Soliton Distribution
inspired by Soliton Waves [11]. The idea behind the Ideal Soliton distribution
is that, at each iteration of the decoding algorithm, the expected number of
degree-one check blocks is equal to one. Specifically, if we denote by ρ(d) the
probability of an encoded symbol to be of degree d (1 ≤ d ≤ k), we have

ρ(d) =

{ 1
k

if d = 1
1

d(d−1) if d = 2, . . . , k

Unfortunately, the Ideal Soliton distribution ρ(.) performs poorly in practice
since for any small variation on the expected number of degree-one check blocks
the recovering is bound to fail. This has led to the Robust Soliton Distribution,
referred to as µ(d) in the following. By generating a larger expected number of
degree-one check blocks the Robust Soliton distribution guarantees the success of
LT decoding with high probability. Specifically, the Robust Soliton distribution
is based on three parameters namely k, δ and C, where k is the number of input
symbols to be coded, δ is the failure probability of the LT process and C is
a positive constant that affects the probability of generating degree-one check
blocks. The Robust Soliton distribution µ(d) is the normalized value of the sum
ρ(d) + τ(d) where τ(d) is defined as

τ(d) =











S
k
· 1
d

if d = 1, . . . , (k
S
)− 1

S·ln(S

δ
)

k
if d > k

S

0 if d = k
S

where S, the expected number of degree-one check blocks in the decoding process,
is given by S = C ln(k/δ)

√
k. Luby [6] proved that by setting the estimated

minimum number CB0 of check blocks to

CB0 = k ·
k

∑

d=1

ρ(d) + τ(d) (1)

the input symbols are recovered with probability 1− δ, with δ arbitrarily small.

A Comparative Study of Rateless Codes for P2P Persistent Storage 5

2.2 Principles of Online Rateless Codes

Coding process The general idea of Online codes [7] is similar to LT codes.
The original data is partitioned into k input fragments and coded to redundant
check blocks. Online codes are characterized by two main parameters ε and q.
Parameter ε, typically satisfying 0.01 ≤ ε ≤ 0.1, infers how many blocks are
needed to recover the original message, while q affects the success probability
of the decoding process (interesting values of q range from 1 to 5 as shown in
the sequel). The main differences between Online and LT codes are the coding
algorithm and the degree distribution. Briefly, in contrast to LT codes, Online
codes are generated through two encoding phases. In the first phase, αεqn aux-
iliary blocks are generated (typically, α is equal to .55). Each auxiliary block is
built by xor-ing q randomly chosen input blocks. The auxiliary blocks are then
appended to the original n blocks message to form the so called composite mes-
sage of size n′ = n(1 + αεq), which is suitable for coding. In the second phase,
composite blocks are used to create check blocks. Similarly to LT codes, each
check block is generated by selecting its degree (i.e. neighbor composite blocks)
from a specific degree distribution. Selected neighbors are xor-ed to form check
blocks. Figure 1(b) illustrates these two phases.

Decoding process The decoding process of Online codes performs similarly
to LT codes. The composite blocks are decoded and from these decoded blocks,
the input blocks are recovered.

Online degree distribution The Online distribution only depends on ε. This
parameter is used to calculate an upper bound F on the degree of check blocks

with F = ⌈ln(ε24)/ ln(1 − ε
2)⌉. If we denote by ρ(d) the probability of a check

block to be of degree d, then the probability distribution ρ(d) is defined as

ρ(d) =

{

1− 1+ 1

F

1+ε
if d = 1

[1−ρ(1)]F
(F−1)d(d−1) if d = 2, . . . , F

F is called the degree sample space of distribution ρ(d). Note that in contrast
to LT distribution, the Online distribution ρ(d) does not depend on the number
of input blocks. It has been theoretically shown in [7] that generating

CB0 = n(1 + ε)(1 + αεq) (2)

check blocks is sufficient to decode a fraction (1 − ε
2) of composite blocks, and

to successfully recover the original data with probability 1− (ε2)
q+1.

3 Experimental Results

This section is devoted to an in-depth practical comparison of LT and Online
codes. This comparison has been achieved by implementing both codes in Dat-
aCube, a persistent storage architecture [8]. Prior to comparing both codes per-
formance, we briefly describe the main features of this architecture, and present

6 H. B. Ribeiro and E. Anceaume

the different policies that have been implemented to select and collect check
blocks at the different peers of the system.

3.1 Experimental Platform

DataCube is a data persistent storage architecture robust against highly dy-
namic environments and adversarial behaviors. DataCube relies on the proper-
ties offered by cluster-based DHTs overlays (e.g. [1, 3]), and by a compound of
full replication and rateless erasure coding schemes. Briefly, cluster-based struc-
tured overlay networks are such that clusters of peers substitute peers at the
vertices of the graph. Size of each cluster is both lower and upper bounded. The
lower bound ℓ usually satisfies some constraint based on the assumed failure
model. For instance ℓ ≥ 4 allows Byzantine tolerant agreement protocols to be
run among these ℓ peers despite the presence of one Byzantine peer. The upper
bound L is typically in O(logN) where N is the current number of peers in the
system, to meet scalability requirements. Once a cluster size exceeds L, this clus-
ter splits into two smallest clusters, each one populating with the peers that
are closer to each other according to some distance D. Similarly, once a cluster
undershoots its minimal size ℓ, this cluster merges with the closest cluster in its
neighborhood. At cluster level, peers are organized as core and spare members.
Each data-item is replicated at core members. This replication schema guaran-
tees that in presence of a bounded number of malicious peers, data integrity is
guaranteed through Byzantine agreement protocols, and efficient data retrieval
is preserved (retrieval is achieved in O(logN) hops and requires O(logN) mes-
sages, with N the current number of peers in the system). In addition to this
replication schema, each data D is fragmented, coded and spread outside its
original cluster. The identifier cbi of each check block i of D is unique and is
derived by applying a hash-chain mechanism on the key, key(D), of D such that
cbi = H(i)(key(D)). The adjacencies xi of cbi are derived by using a pseudo-
random generator function G(.). The rationale of using G(.) is that any core
member can generate exactly the same check blocks independently from the
other core members. Each check block i is then placed at γ ≥ 2 spare members
of the cluster that matches cbi. This coding schema guarantees that in presence
of targeted attacks (i.e., the adversary manages to adaptively mount collusion
against specific clusters of peers), recovery of the data those clusters were in
charge of is self-triggered. For space reasons we do not give any more detail
regarding the implementation of hybrid replication in DataCube. None of these
details are necessary for the understanding of our present work, as DataCube
will essentially be used as an evaluation platform. Anyway, the interested reader
is invited to read its description in [8].

To evaluate the coding performance of both Online and LT codes in Dat-
acube, we simulate targeted attacks on a set of clusters. Such attacks prevent
any access to the data these clusters cache. By doing this, we force the retrieval
of these data to be recovered through the decoding process. Let C be one these
clusters, and D be the data some peer q is looking for. Let C′ be the closest
cluster to cluster C so that, by construction of DataCube, cluster C′ is in charge

A Comparative Study of Rateless Codes for P2P Persistent Storage 7

of recovering cluster C data, and in particular data D. Then for any peer pi
in the core set of C′, pi will request and collect sufficiently many check blocks
to successfully recover D. Specifically, from the hash-chain mechanism applied
to key(D), pj derives a set M of m check blocks keys, namely cb1 . . . cbm, with
cbi = H(i)(key(D)), and m = m0 · CB0, where m0 = 1 . . . 5. Then from G(.) pj
generates x1 . . . xm, the respective adjacencies of cb1 . . . cbm. From this set M ,
pj has the opportunity to apply different policies to select the check blocks it
will collect in DataCube, these policies differing according to the priority given
to the adjacencies degree. The rational of these policies is to show whether in
practice it makes sense to ”help” the decoder by first collecting as many degree-
one check blocks as possible (this is the purpose of both Policies 2 and 3), or on
the contrary, whether it is more efficient to collect random check blocks as theo-
retically predicted (Role of Policy 1). Policy 4 implements the optimal decoders
behaviors. Specifically,

– Policy 1 (random policy): no priority is given to the adjacencies degrees. That
is, CB0 check blocks identifiers cbi are randomly chosen from set M , and the
corresponding check blocks are collected in DataCube (through lookup(cbi)
operations).

– Policy 2 (degree-one first, random afterwards policy): the priority is given
to degree-one check blocks. That is, all degree-one check blocks identifiers
belonging to M are selected, and if less than CB0 check blocks have been
selected, the remaining ones are randomly selected fromM . As for above, the
corresponding check blocks are collected in DataCube through lookup(.)

operations.
– Policy 3 (degree-one-only policy): similar to Policy 2 except that instead of

randomly selected the non degree-one check blocks, degree-two check blocks
that will be reduced thanks to the degree-one check blocks are selected. Note
that less than CB0 check blocks can be selected.

– Policy 4 (optimal policy): the bipartite graph is applied on the elements of
set M , and only necessary check blocks are selected. Comparing to Policy
3, no redundant degree-one check blocks are selected. This makes Policy 4
optimal w.r.t. set M .

If this first phase is not sufficient for the decoding process to recover the input
message M , then pj regenerates a new set M and proceeds as above. It does this
until D is fully recovered.

3.2 Setup

Our experiments are conducted over a Linux-based cluster of 60 dedicated Dell
PowerEdge 1855 and 1955 computers, with 8 gigabytes of memory each, and 400
Bi-pro Intel Xeon processors. We developed a java-based prototype to simulate
DataCube, and to implement both LT and Online coding schemes. Each coding
schema is evaluated with a large range of input parameters. The number k of
input fragments varies from 100 to 10, 000. For Online coding, ε varies from 0.01

8 H. B. Ribeiro and E. Anceaume

to 0.9, and q is set to integer values from 1 to 5. For LT coding, δ varies from
0.01 to 0.9 and C from 0.1 to 5. All the plotted curves are the average of 50
experiments.

3.3 Degree Distributions

We start by highlighting some differences on the expected behavior of both
coding processes. The design of each degree distribution is the most critical
point for both coding processes to efficiently recover the original data. A good
degree distribution must guarantee the input block coverage, that is, that all the
input blocks have at least one edge to guarantee a successful recovery. In Online
coding, composite blocks are used to ensure this coverage. Low degrees check
blocks, and degree-one in particular, are crucial for the decoding process to start
and keep running. On the other hand, too many low degrees may lead to an over
redundancy of check blocks, and thus are useless. Figure 2(a) shows the degree
distribution of Online codes. Two interesting behaviors can be observed. First,
for ε ≤ 0.1 the degree-one probability is very small (i.e., ≤ 0.09) while for ε > 0.1,
the expected number of degree-one check blocks is greater than 26%. The second
observation is that the range of degrees a check block can be built from (i.e., F
values) drastically augments with decreasing values of ε (i.e., F = 3 for ε = 0.9,
and F = 2114 for ε = 0.01). As will be shown later on, both features have a great
impact on Online coding performance. Figure 2(b) shows the degree distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 10 100 1000

D
eg

re
e

P
ro

ba
bi

lit
y

Degree

Online Codes
Epsilon: 0.01
Epsilon: 0.05
Epsilon: 0.1
Epsilon: 0.5
Epsilon: 0.9

(a) k = 100

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 1 10 100

D
eg

re
e

P
ro

ba
bi

lit
y

Degree

LT Codes
C: 0.1
C: 0.2
C: 0.3
C: 0.4
C: 0.5
C: 0.6
C: 0.7
C: 0.8
C: 0.9
C: 1.0
C: 2.0
C: 3.0

(b) k = 100, δ = 0.01

Fig. 2. Distributions µ(.) and ρ(.) as a function of the degree.

of the LT coding process. The impact of C on check blocks degrees is clearly
shown (i.e., increasing C values augments the probability of degree-one check
blocks). An interesting point to observe is that degree-one probability increases
up to C ≤ 0.5, and abruptly drops for C > 0.5. Interpretation of this behavior
is that combination of these specific values of C (i.e., C > 0.5) and those of k
and δ lead distribution τ(d) to tend to zero, which makes the Robust Soliton

A Comparative Study of Rateless Codes for P2P Persistent Storage 9

distribution behaving exactly as the Ideal distribution. The value of C for which
this phenomena occurs will be referred to in the following as the cut-off value
of C (for k = 100, and δ = 0.01, the cut-off value equals 0.6). We show in the
following how the cut-off value impacts LT performance. Figures 3(a) and 3(b)
show the degree distribution of LT codes for varying values of δ. We can see that
the influence of δ increases with increasing values of C.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 10 100

D
eg

re
e

P
ro

ba
bi

lit
y

Degree

LT Codes
Delta: 0.01
Delta: 0.05
Delta: 0.1
Delta: 0.5
Delta: 0.9

(a) C = 0.1, k = 100

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1 10 100

D
eg

re
e

P
ro

ba
bi

lit
y

Degree

LT Codes
Delta: 0.01
Delta: 0.05

Delta: 0.1
Delta: 0.5
Delta: 0.9

(b) C = 0.5, k = 100

Fig. 3. Distributions µ(.) as a function of the degree for different values of δ.

3.4 Recovery Performance of Coding Processes

This section evaluates the number of check blocks that need to be recovered in
practice to successfully recover the original data D for both coding schemes, and
for the four above described policies. In all the figures shown in this section,
curves are depicted as a function of the fraction of the predicted minimal value
CB0. That is, an abscissa equal to 150 means 1.5 times CB0 check blocks. Arrows
point to the number of check blocks that are needed to recover exactly k input
blocks, that is 100% of D.

We first analyze the results obtained for LT codes using the four above de-
scribed policies. The impacts of both C and δ on LT recovery performance when
Policy 1 is run are illustrated in Figures 4(a) and 4(b). General observations
drawn from Figure 4(a) are first that by randomly collecting check blocks, LT
differs from the theoretical prediction in no more than 30% (for instance, to
recover k = 100 input blocks with C = 0.1, CB0 is equal to 113 (see Relation 1)
while in average 152 check blocks are needed. Moreover, for increasing values of
C, LT behavior progressively degrades with a sharp breakdown when C reaches
its cut-off value (i.e., C = 0.6). Indeed, from C = 0.6 onwards, the Robust Soli-
ton distribution behaves as the Ideal one, which also explain why LT behavior is
independent from C values (i.e., 463 check blocks are necessary to successfully
recover k = 100 input blocks for any C ≥ 0.6). Figure 4(b) shows LT recovery
performance for different values of δ. We can see that the number of check blocks
augments with increasing values of δ. This feature is due to LT distribution µ(.)

10 H. B. Ribeiro and E. Anceaume

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 R

ec
ov

er
ed

 In
pu

t B
lo

ck
s

Percentage of CB_0

LT - Policy 1

152

152

165162

180

463 463 463 463 463 463 463

C: 0.1
C: 0.2
C: 0.3
C: 0.4
C: 0.5
C: 0.6
C: 0.7
C: 0.8
C: 0.9
C: 1.0
C: 2.0
C: 3.0

(a) k = 100, m0 = 5, and δ = 0.01

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 R

ec
ov

er
ed

 In
pu

t B
lo

ck
s

Percentage of CB_0

LT - Policy 1

180 228 237 262 282

Delta: 0.01
Delta: 0.05
Delta: 0.1
Delta: 0.5
Delta: 0.9

(b) k = 100, m0 = 5, and C = 0.5

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 R

ec
ov

er
ed

 In
pu

t B
lo

ck
s

Percentage of CB_0

LT - Policy 2

283

269

304

395

390

268 268 268 268 268 268 268

C: 0.1
C: 0.2
C: 0.3
C: 0.4
C: 0.5
C: 0.6
C: 0.7
C: 0.8
C: 0.9
C: 1.0
C: 2.0
C: 3.0

(c) k = 100, m0 = 5, and δ = 0.01

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350 400 450A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 R

ec
ov

er
ed

 In
pu

t B
lo

ck
s

Percentage of CB_0

LT - Policy 3

328

379

396395

450

361 361 361 361 361361361

C: 0.1
C: 0.2
C: 0.3
C: 0.4
C: 0.5
C: 0.6
C: 0.7
C: 0.8
C: 0.9
C: 1.0
C: 2.0
C: 3.0

(d) k = 100, m0 = 5, and δ = 0.01

Fig. 4. Percentage of recovered input blocks as a function of the number of collected
check blocks expressed as a fraction of CB0 for different values of C.

A Comparative Study of Rateless Codes for P2P Persistent Storage 11

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 R

ec
ov

er
ed

 In
pu

t B
lo

ck
s

Percentage of CB_0

Online - Policy 1

299235

165

264390

epsilon: 0.01
epsilon: 0.05
epsilon: 0.1
epsilon: 0.5
epsilon: 0.9

(a) k = 100, q = 1, m0 = 5

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 R

ec
ov

er
ed

 In
pu

t B
lo

ck
s

Percentage of CB_0

Online - Policy 1 (q:5)

291192167276408

epsilon: 0.01
epsilon: 0.05
epsilon: 0.1
epsilon: 0.5
epsilon: 0.9

(b) k = 100, q = 5, m0 = 5

Fig. 5. Percentage of recovered input blocks as a function of the number of collected
check blocks expressed as a fraction of CB0.

since increasing values of δ leads to a diminution of degree-one probability. We
can also observe that with 100% of CB0, the percentage of recovered input
blocks increases with decreasing values of δ. A similar behavior observed for
different values of C tends to confirm that δ highly impacts the probability of
successful recovery. The impact of Policies 2 and 3 on LT is significant as shown
in Figures 4(c) and 4(d). The quasi-exclusive collect of degree-one check blocks
combined with the impact of C on the generation of degree-one check blocks
overwhelms the decoder with too many redundant degree-one check blocks (and
degree-two check blocks for Policy 3) which requires many check blocks (from 269
to 395) to successfully recover k = 100 original input blocks. On the other hand,
when C exceeds its cut-off value, the large amount of degree-one check blocks
collected by both policies is compensated by the very low number of check blocks
generated by the Ideal distribution, leading to better recovery performance than
when C < 0.6. Note that in all these experiments, m0 equals 5 which gives a
large choice for the policies to select check blocks that fit their properties. Fi-
nally, and as expected, the optimal policy behaves perfectly well. This policy
guarantees the full recovery of input blocks in a linear number of check blocks.
Indeed, each check block is the outcome of the bipartite graph decoding process,
and thus each single selected check block is useful for the recovery (for instance,
103 check blocks in average allow to recover k = 100 input blocks. For space
reasons we have not illustrated performance of Policy 4 in this paper).

We now analyze the results obtained for Online coding schema with the four
policies. Policy 1 is illustrated for different values of ε and q in respectively
Figures 5(a) and 5(b). A preliminary observation drawn from Figure 5(a) is that
varying ε leads to a greater range of CB0s values than what is obtained when
one varies parameter C in LT (i.e., with Online, CB0 varies from 106 to 390
while with LT, CB0 varies from 103 to 150). Thus as a first approximation, we
may expect that in average the number of check blocks that need to be collected
for successfully recovering the input blocks is larger with Online than with LT.

12 H. B. Ribeiro and E. Anceaume

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 R

ec
ov

er
ed

 In
pu

t B
lo

ck
s

Percentage of CB_0

Online - Policy 2

256 304279432585

epsilon: 0.01
epsilon: 0.05
epsilon: 0.1
epsilon: 0.5
epsilon: 0.9

(a) k = 100, q = 1, m0 = 5

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350A
ve

ra
ge

 P
er

ce
nt

ag
e

of
 R

ec
ov

er
ed

 In
pu

t B
lo

ck
s

Percentage of CB_0

Online - Policy 3

272 368285384487

epsilon: 0.01
epsilon: 0.05
epsilon: 0.1
epsilon: 0.5
epsilon: 0.9

(b) k = 100, q = 1, m0 = 5

Fig. 6. Percentage of recovered input blocks as a function of the number of collected
check blocks expressed as a fraction of CB0.

Another preliminary comment is that the gap between theoretical predictions
and practical results increases with diminishing values of ε. Surprisingly enough,
the number of check blocks that need to be collected for a successful recovery
does not vary proportionally to ε, that is for extrema values of ε, this number is
respectively equal to 290 and 390, while it decreases to reach its minimum 165
for ε = 0.1. Actually, for ε = 0.9, the number of auxiliary blocks is large (see
Section 2.2) but the space degree F is very small (i.e., equal to 3, see Section 3.3).
Thus a large number of redundant check blocks are a priori collected, which
demands for more check blocks to successfully recover k input blocks. Now for
ε = 0.01, the number of auxiliary blocks is small but they form a complete
bipartite graph with their associated input blocks, which clearly make them
useless. Moreover the probability of having degree-one check blocks is very small
(i.e., 0.01), and the probability of having degree-two is large (i.e., 50%). However
as the space degree F is very large too, the likelihood of having some very high
degree check blocks is not null, and thus a large number of check blocks need
also to be collected. Finally, for ε = 0.1, the distribution of check blocks degrees
is relatively well balanced, in the sense that the proportion of degree-one is
relatively high (i.e., 9%) but not too high to prevent redundancy. The proportion
of degree-two is high (i.e., 47%) which combined with degree-one allows to cover
many input blocks. Finally, degree-three and degree-four check blocks are also
useful (i.e., respectively equal to 15% and 4%). This clearly make this value
of ε optimal, which is confirmed by the fact that 165 check blocks successfully
recover 100 input blocks. The very same argument applies for larger values of
q as shown in Figure 5(b). The impact of Policies 2 and 3 on Online coding
shown in Figures 6(a), and 6(b) is similar to the one obtained on LT, in the
sense that recovering essentially degree-one check blocks cumulates with the high
proportion of degree-one check blocks generated with the degree distributions
(see Section 3.3) and thus, leads to the collect of a large number of redundant
check blocks. Note that sensibility of this phenomena augments with increasing
values of ε.

A Comparative Study of Rateless Codes for P2P Persistent Storage 13

3.5 Computational Cost in Terms of xor Operations

In this section, we discuss the computational costs of both LT and Online de-
coding process. The computational cost is quantified by the number of xor

operations that need to be run to successfully recover the input data when Pol-
icy 1 is applied. Note that the unit of xor used by the encoder/decoder matches
the length of an input block.

We first analyze the number of xor operations in both LT and Online coding
schemes as a function of their respective parameters (C, δ), and (ε, q). Results are
depicted in Figures 7(a) and 7(b). The main observation drawn from Figure 7(a)
is that the number of xor operations slowly drops down with increasing values
of C (provided that C cut-off values are not reached (i.e., C = 0.6 for δ = 0.01
and C = 1 for δ = 0.5). Specifically, for small values of C, the probability of
degree-one check blocks is less than 10% and weakly depends on δ values. On
the other hand, for larger values of C, the probability of degree-one check blocks
is equal to respectively 22% and 33% for δ = 0.5 and δ = 0.01 which explain the
negative slopes of both curves, and the increasing gap between both curves for
increasing values of ε.

 3800

 4000

 4200

 4400

 4600

 4800

 5000

 5200

 5400

 5600

 5800

 6000

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 N
um

be
r

of
 X

O
R

 O
pe

ra
tio

ns

C Parameter

LT Codes
delta: 0.01
delta: 0.5

(a)

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 N
um

be
r

of
 X

O
R

 O
pe

ra
tio

ns

Epsilon Parameter

Online Codes
q: 1
q: 5

(b)

Fig. 7. Average number of xor operations to successfully recover k = 100 input blocks
as a function of LT and Online parameters.

Now, regarding Online computational cost as a function of ε and q, Fig-
ure 7(b) shows first that ε has a strong impact on the number of xor operations
that need to be performed. Specifically for increasing values of ε, this number
drastically decreases, down to the average number of xor operations run with
LT coding. This behavior seems to result from the combination of two phe-
nomena. For ε = 0.01 . . . 0.1, the number of check blocks needed to successfully
recover the input data decreases (as previously observed in Figure 5(a)), and
in the meantime, F equally decreases with an increasing probability of gener-
ating degree-one and degree-two check blocks. Thus both phenomena cumulate
and give rise to the diminution of the number of xor operations as observed

14 H. B. Ribeiro and E. Anceaume

in Figure 7(b) (recall that degree-one check blocks do not trigger any xor op-
erations). Now, for ε = 0.1 . . .0.9, the number of check blocks increases (as
previously observed in Figure 5(a)), and F drastically decreases together with
a high probability of generating degree-one and degree-two check blocks. Thus
despite the fact that a large number of check blocks need to be decoded, most of
them have a degree-one or degree-two, and thus most of them do not trigger xor
operations, which explains the negative gradients of the curves in Figure 7(b).
The second observation drawn from this figure is that the number of xor oper-
ations equally depends on q value. Specifically, for large values of q (e.g., q = 5)
the number of auxiliary blocks is high and their adjacencies degree with the
input blocks is small. Thus these auxiliary blocks are involved in the decoding
process and thus augment the number of xor operations. On the other hand, for
small values of q (e.g., q = 1), the number of auxiliary blocks is small however,
these blocks form a quasi-complete bipartite graph with the input blocks, which
makes them useless for the decoding process. Consequently, they do not impact
the computational cost of Online. Finally, Figures 8(a) and 8(b) depict the com-
putational cost of both LT and Online as a function of the number of input
blocks. The main observation is that both LT and Online decoding complexity
are linear with k. The second finding is that for increasing values of k, Online
decoding complexity is more sensible to parameters variations than LT is.

 1000

 10000

 100000

 1e+06

 1e+07

 0 2000 4000 6000 8000 10000

A
ve

ra
ge

 N
um

be
r

of
 X

O
R

 O
pe

ra
tio

ns

Number k of Input Blocks

Online and LT Codes

LT (Delta: 0.01, C: 0.1)
LT (Delta: 0.01, C: 0.5)

Online (epsilon: 0.01, q: 5)
Online (epsilon: 0.9, q: 1)

(a)

 100

 1000

 10000

 100000

 0 2000 4000 6000 8000 10000

A
ve

ra
ge

 N
um

be
r

of
 C

he
ck

 B
lo

ck
s

Number k of Input Blocks

Online and LT Codes

LT (Delta: 0.01, C:0.1)
LT (Delta: 0.01, C:0.5)

Online (epsilon: 0.01, q:5)
Online (epsilon: 0.9, q:1)

(b)

Fig. 8. (a) Average number of xor operations for respectively LT and Online codes
to successfully recover the input data as a function of the size k of the input data. (b)
Average number of check blocks for respectively LT and Online codes to successfully
recover the input data as a function of the size k of the input data.

4 Conclusion

In the present work, we have evaluated both LT and Online rateless codes in
terms of recovery and computational performance, and scalability properties. Ex-
periments have confirmed that it is more efficient to collect random check blocks
as theoretically predicted than favoring only small degree check blocks. We ex-
pect that this study should allow a good insight into the properties of these codes.

A Comparative Study of Rateless Codes for P2P Persistent Storage 15

In particular we have confirmed the good behavior of both coders/decoders when
the number of input blocks increases. This is of particular interest for multimedia
and storage applications.

References

1. E. Anceaume, F. Brasiliero, R. Ludinard, and A. Ravoaja. Peercube: an hypercube-
based p2p overlay robust against collusion and churn. In Proceedings of the
IEEE International Conference on Self Autonomous and Self Organising Systems
(SASO), 2008.

2. R. Bhagwan, K. Tati, Y.C. Cheng, S. Savage, and G.M. Voelker. Total Recall:
System support for automated availability management. In Proceedings of the
USENIX Association Conference on Symposium on Networked Systems Design
and Implementation (NSDI), 2004.

3. A. Fiat, J. Saia, and M. Young. Making chord robust to byzantine attacks. In
Proceedings of the Annual European Symposium on Algorithms (ESA), 2005.

4. Y. Houri, M. Jobmann, and T. Fuhrmann. Self-organized data redundancy man-
agement for peer-to-peer storage systems. In Proceedings of the 4th IFIP TC
6 International Workshop on Self-Organizing Systems (IWSOS). Springer-Verlag,
2009.

5. J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gum-
madi, S. Rhea, H. Weatherspoon, C. Wells, et al. OceanStore: an architecture
for global-scale persistent storage. ACM SIGARCH Computer Architecture, pages
190–201, 2000.

6. M. Luby. LT codes. In Proceedings of the IEEE International Symposium on
Foundations of Computer Science (SFCS), 2002.

7. P. Maymounkov. Online codes. Research Report TR2002-833, New York Univer-
sity, 2002.

8. H.B. Ribeiro and E. Anceaume. DataCube: a P2P persistent storage architec-
ture based on hybrid redundancy schema. In Proceedings of the IEEE Euromicro
International Conference on Parallel, Distributed and Network-Based Computing
(PDP), 2010.

9. H.B. Ribeiro and E. Anceaume. Exploiting Rateless Coding in Structured Overlays
to achieve Data Persistence. Proceedings of the 24th IEEE International Conference
on Advanced Information Networking and Applications (AINA), 2010.

10. A. Rowstron and P. Druschel. Storage management and caching in PAST, a large-
scale, persistent peer-to-peer storage utility. ACM SIGOPS Operating System
Review, 35(5):188–201, 2001.

11. J.S. Russell. Report on waves. In 14th Meeting of the British Association for the
Advancement of Science, pages 311–390, 1844.

12. A. Shokrollahi. Raptor codes. IEEE/ACM Transactions on Networking, pages
2551–2567, 2006.

13. E. Sit, A. Haeberlen, F. Dabek, B.G. Chun, H. Weatherspoon, R. Morris, M.F.
Kaashoek, and J. Kubiatowicz. Proactive replication for data durability. In
Proceedings of the 5rd International Workshop on Peer-to-Peer Systems (IPTPS
2006), 2006.

14. R. Tanner. A recursive approach to low complexity codes. IEEE Transactions on
Information Theory, 27(5):533–547, 1981.

