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Abstract

In order to fully understand the epithelial mechanics it is essential to integrate different levels

of epithelial organization. In this work, we propose a theoretical approach for connecting the

macroscopic mechanical properties of a monolayered epithelium to the mechanical properties at

the cellular level. The analysis is based on the established mechanical models – at the macroscopic

scale the epithelium is described within the mechanics of thin layers, while the cellular level is

modeled in terms of the cellular surface (cortical) tension and the intercellular adhesion. The

macroscopic elastic energy of the epithelium is linked to the energy of an average epithelial cell.

The epithelial equilibrium state is determined by energy minimization and the macroscopic elastic

moduli are calculated from deformations around the equilibrium. The results indicate that the

epithelial equilibrium state is defined by the ratio between the adhesion strength and the cellular

surface tension. The lower and the upper bounds for this ratio are estimated. If the ratio is small,

the epithelium is cuboidal, if it is large, the epithelium becomes columnar. Importantly, it is found

that the cellular cortical tension and the intercellular adhesion alone can not produce the flattened

squamous epithelium. Any difference in the surface tension between the apical and basal cellular

sides bends the epithelium towards the side with the larger surface tension. Interestingly, the

analysis shows that the epithelial area expansivity modulus and the shear modulus depend only

on the cellular surface tension and not on the intercellular adhesion. The results are presented in

a general analytical form, and are thus applicable to a variety of monolayered epithelia, without

relying on the specifics of numerical finite-element methods. In addition, by using the standard

theoretical tools for multi-laminar systems, the results can be applied to epithelia consisting of

layers with different mechanical properties.

Keywords: cellular mechanics; cellular surface tension; adhesion; bending; cuboidal epithelium;

columnar epithelium; squamous epithelium
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1 Introduction

Monolayered epithelium is one of the primary tissues in multicellular animals. Its role begins early

in the morphogenesis of a developing embryo and continues as one of the vital structural and

functional tissues in mature organisms. Mechanical properties of monolayered epithelium, and

particularly the mechanics of epithelial bending, have been long recognized to play an important

role in a variety of situations (Ettensohn, 1985). In embryogenesis, for example, epithelial me-

chanics is closely involved in the primary invagination of the sea urchin blastula (Davidson et al.,

1995), while later its importance can be, for instance, recognized during constriction of asthmatic

airways (Wiggs et al., 1997).

There are at least three levels of epithelial mechanics. At the macroscopic level, many of the

epithelial functions depend directly on how hard it is to stretch or bend the epithelial sheet as

a whole. At this level, the monolayered epithelium can be regarded as homogeneous tissue with

defined macroscopic elastic moduli. At a lower level, the epithelial mechanics is related to the

mechanical properties of individual epithelial cells (Fristrom, 1988), and finally, at the molecular

level, the mechanical properties can be attributed to a complex machinery of cytoskeletal and other

cellular proteins (Schöck and Perrimon, 2002). At last but not least, the mechanics of multicellular

tissues is closely related to a variety of genetic aspects (Hutson and Ma, 2008).

Many complementary models have been proposed to deal with the various levels of epithelial

mechanics. For example, at the macroscopic level, the epithelial mechanics has been addressed with

numerical finite-element methods (Odell et al., 1981; Davidson et al., 1995; Wiggs et al., 1997),

analytical approaches (Murray and Oster, 1984), or even a combination of the two (Brodland et al.,

2006). At the cellular level, there are two general approaches (Hoffman et al., 2006): on the one

hand, the cellular mechanics can be defined on the basis of the cellular bulk elasticity (Ingber,

2003), while on the other, many of the epithelial phenomena can be described in terms of the

cellular surface mechanics (Lecuit and Lenne, 2007). In the later case the epithelial stability is

provided by the balance between the cell-cell adhesion and the contractility of the cellular cortex

(Janmey and Discher, 2004; Farhadifar et al., 2007; Montell, 2008; Rauzi et al., 2008). At the

microscopic level, the intercellular adhesion is related to various adhesion molecules (Steinberg,
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2007), while the cellular cortical tension is related to the submembrane acto-myosin network (Evans

and Kukan, 1984). Still, the cellular level has not been effectively connected to the macroscopic

scale, and quantitative relations linking the cellular and the macroscopic properties are not well

established.

In this work we propose an analytical approach for connecting the macroscopic elasticity of a

monolayered epithelium to the properties at the cellular level. The aim of the analysis is to link

the established mechanical models from both scales. The mechanical properties at the cellular

level are described by the cellular surface mechanics, i.e., by the balance between the intercellular

adhesion and cellular contractility. Macroscopically the epithelium is described by the standard

approach of the continuum mechanics of thin layers (i.e., membrane mechanics). In contrast to

2-D modeling of epithelial mechanics (Brodland et al., 2006; Farhadifar et al., 2007; Rauzi et al.,

2008), the framework of mechanics of thin layers allows for a consistent description of epithelial

bending, which is clearly important in epithelial invagination and folding. Explicit quantitative

relations that connect the epithelial macroscopic equilibrium and its elastic moduli to the cellular

cortical tension and the intercellular adhesion are derived.

The analytical approach has at least two advantages. First, it provides analytical results, which

can be applied to a variety of epithelial systems without employing the numerical finite-element

methods. Second, in the cases where the epithelial cellular layer is adjacent to other mechanically

important layers (e.g., the extracellular matrix), the findings of the analysis presented can be

incorporated into the standard theoretical techniques for multi-lamellar systems. For example, the

analysis presented can be applied to the studies of the sea urchin blastula invagination, where the

cellular layer and the extracellular matrix act jointly as a bending bilayer (Lane et al., 1993; Božič

et al., 2006).

The work is organized as follows. In the first step, the four independent macroscopic defor-

mational modes of the epithelium are defined and related to the average cellular shape. In the

next step, the cellular mechanical energy is defined on the basis of cellular cortical tension and

the intercellular adhesion. Finally, the equilibrium state of epithelium is identified as the state

which minimizes the elastic energy, and the macroscopic elastic moduli, i.e., the area extension,

4



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

the in-plane shear and bending moduli, are calculated by analyzing the deformations around the

equilibrium (Kozlov and Winterhalter, 1991).

2 Model

2.1 Macroscopic mechanical energy

On the macroscopic scale, the epithelium will be considered as laterally homogeneous and isotropic.

Because the lateral dimensions of a unicellular epithelial layer are larger than its thickness, the

epithelium can be treated within the standard approach of membrane mechanics (note that the

lateral dimensions of individual cells may in fact be smaller than the epithelial thickness). Ac-

cordingly, the macroscopic epithelial deformations will be described in terms of four independent

deformational modes, two of which are related to epithelial lateral deformations and two are related

to epithelial bending.

The lateral deformational modes are the surface extension, which describes isotropic extension

of the epithelial layer surface area, and shear, which describes the in-plane stretching at a constant

surface area. Following the notation introduced by Evans and Skalak (1980), the isotropic extension

will be described by the variable α, which denotes the fractional change in the surface area relative

to the equilibrium, α = (A/A0 − 1). Similarly, the shear is described by the variable β, which

denotes the change in the in-plane aspect ratio of a deformed surface element when the surface

area remains constant, i.e., the aspect ratio of an initially square surface element under shear is

1 + β.

The bending modes can be defined in different ways. The standard way in the field of membrane

mechanics follows the notion of Helfrich (1973) and defines the surface density of the bending

energy as dWb

dA = 1
2
kc(C1 + C2 − C0)

2 + kc C1C2, where C1 and C2 are the principal membrane

curvatures, kc and kc are the local and the Gaussian bending constants, respectively, and C0 is

the spontaneous curvature. This notion is particularly useful for describing closed homogeneous

membranes, e.g., lipid vesicles, where the integral of the Gaussian term is a constant and depends

only on the membrane topology. The bending energy of nonclosed surfaces, however, can be

more conveniently described in terms of the mean curvature H = (C1 + C2)/2 and the deviatoric
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curvature D = (C1 − C2) (Fischer, 1993), dWb

dA = 1
2
kH(2H − H0)

2 + 1
2
kD D2, where H0 is the

equilibrium value of the epithelial mean curvature. The constants are related through:

kc = kH + kD , kc = −2kD and C0 =
H0kH

kH + kD
. (1)

For small deformations around equilibrium the macroscopic elastic energy density of a mono-

layered epithelium can be thus written as:

dWlayer

dA0

=
1

2
Kα2 +

1

2
μβ2 +

1

2
kH(2H −H0)

2 +
1

2
kD D2 , (2)

where A0 is the epithelial equilibrium surface area, K is the area expansivity modulus, and μ is

the in-plane shear modulus. In isotropic layers, the energy lacks the linear deviatoric term as it is

invariant to coordinate permutation (C1 → C2 and C2 → C1). Similarly, the equilibrium value of

the shear variable β is zero as well.

The two lateral deformations are mutually independent by definition and the same is true for

the two bending deformations. The independence of the lateral and bending deformations (i.e.,

their orthogonality) can be assured by an appropriately defined neutral plane of the epithelial

layer, which is the plane whose surface area does not change under pure bending from equilibrium.

All four deformational variables α, β, H and D are defined with respect to the neutral plane, and

the epithelial surface area A is measured in the neutral plane. With a proper definition of the

neutral plane the mixed derivatives of the layer mechanical energy Wlayer vanish:
∂2Wlayer

∂α∂H = 0,

∂2Wlayer

∂α∂D = 0,
∂2Wlayer

∂β∂H = 0, and
∂2Wlayer

∂β∂D = 0, and as a result the energy lacks the mixed terms

(Kozlov and Winterhalter, 1991). The neutral plane does not necessarily coincide with the middle

plane of the epithelial layer.

2.2 Cellular geometry and deformations

In order to connect the macroscopic epithelial elasticity to the cellular level, we will first discuss

how an average epithelial cell deforms under macroscopic epithelial deformations. Generally, the

cells forming a monolayered epithelium are laterally tightly packed and have prismatic shapes with

polygonal bases on their apical/basal sides. Although the hexagonal cellular symmetry is often

predominant, the long-range order is broken by variations in the cellular sizes, the number of sides
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and their orientations. In a bent epithelium, the cellular geometries can be even more complex.

However, taking into account the macroscopic isotropy and homogeneity of the epithelium, the

geometric differences among individual cells are clearly averaged out at the macroscopic scale.

Accordingly, it can be assumed that the macroscopic properties of the layer can be associated with

an average cellular geometry, which will be described here by a model cell. In this way, the average

cellular mechanical energy will be approximated by the mechanical energy of the model cell.

In a flat epithelium, a natural choice for the shape of the model cell would be a uniform hexag-

onal prism, which would also provide the needed macroscopic lateral isotropy (two dimensional

hexagonal lattices are laterally isotropic). However, as there is no uniform way of describing the

deformations of a hexagonal prism in a bent epithelium, in this work the model cell will have a

simpler cylindrical geometry (Fig. 1A). In this way, the deformations of the model cell will be

uniformly defined even in a bent epithelium. Although the cylindrical model cell has inherently

a smaller area-to-volume ratio than real epithelial cells with polygonal faces, it can effectively

describe an average cellular geometry. Indeed, the use of cylindrical geometry for describing an

average epithelial cell in a flat epithelium has been already confirmed by a numerical finite-element

analysis (Brodland et al., 2006).

The relations between the macroscopic epithelial deformations and the deformations of the

cylindrical model cell can be described in a straightforward manner. As the volume of epithelial

cells remains constant during epithelial deformation, it is assumed that the volume of the model

cell is constant as well. Under area extension of the epithelial layer the surface areas of the model

cell base sides increase and the model cell height decreases (Fig. 1B). A shear deformation stretches

the base sides of the model cell into ellipses (Fig. 1C). Bending of the layer stretches the apical

and basal sides in the directions of the two principal curvatures while the lateral sides of the model

cell are parallel to the curvature radius. When both principal curvatures of the epithelium are

equal, the model cell takes the shape of a truncated cone (Fig. 1D), and when the two principal

curvatures of the epithelium differ, the apical and basal sides are elliptical with the axes parallel

to the principal curvatures (Fig. 1E). In general, all transversal cross-sections of the model cell

are elliptical, too (Fig. 2), and the position of the neutral plane is shifted by ε from the layer
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midplane.

It turns out that the geometry of the model cell with a constant volume can be defined by

four independent parameters (see Appendix A). Thus, the deformations of the model cell from

equilibrium can be uniquely expressed in terms of the four deformational variables α, β, H and D.

2.3 Cellular mechanical energy

After establishing the connection between the cellular and epithelial deformations, the macroscopic

epithelial elastic energy can be straightforwardly related to the cellular mechanics. Here, the

cellular level will be described in terms of the cellular surface mechanics and the intercellular

adhesion energy (Evans and Kukan, 1984; Lecuit and Lenne, 2007). As the epithelial cells have

three functionally distinct surfaces (the apical, the basal and the lateral side), each of these surfaces

can in general have a different surface energy. Consequently, three independent parameters are

needed to describe the overall cellular mechanical energy. Here, the choice of the parameters will

follow the notion of the liquid drop model (Evans and Kukan, 1984), where the whole cell surface is

under a constant surface (cortical) tension σ. Accordingly, the mechanical energy of an epithelial

cell is written as

W = σ(AA + AB + AL) + η(AB −AA)− 1

2
γAL , (3)

where AA, AB, AL are the surface areas of the apical, basal and lateral sides of the cell, σ is the

cellular cortical tension, and γ is the intercellular adhesion constant. The parameter η describes

the possible asymmetry between the surface energies of the apical and basal sides.

The macroscopic mechanical energy of the layer (Eq. 2) is equal to the sum of the cellular

mechanical energies (Eq. 3) of all cells. Because the model cell represents an average cell in the

layer, the macroscopic equilibrium of the epithelium can be thus calculated as the minimum of the

mechanical energy of the model cell. Moreover, as the macroscopic deformational modes have been

linked to the cellular deformations (the explicit relations between the macroscopic deformational

variables (α, β, H and D) and the surface areas of the model cell (AA, AB, AL) are presented in

the Appendix A), the macroscopic elastic moduli can be calculated from the changes of the cellular

mechanical energy around the equilibrium.
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In order to reduce the number of independent parameters in the model, all quantities will be

scaled with respect to the cylindrical model cell with the minimal surface area at a given volume.

This ”unit” model cell represents a cuboidal epithelial cell, which has the same height and width.

The unit length is thus the base radius of the ”unit” model cell Rc (its height and width are twice

Rc), the unit surface area is πR2
c , and the unit volume is 2πR3

c . The unit energy is chosen to be

σπR2
c . The dimensionless variables will be written in lowercase: the dimensionless surface area

is a = A/(πR2
c), the dimensionless layer thickness l = L/Rc, and the dimensionless curvatures

h = HRc and d = DRc. The lateral deformational variables α and β are dimensionless by

definition. The mechanical energy assigned to the epithelial model cell (Eq. 3) in the dimensionless

form is thus:

w = (aA + aB + aL)− 1

2
γaL + η(aB − aA) (4)

where aA = AA/(πR2
c), aB = AB/(πR2

c), aL = AL/(πR2
c), γ = γ/σ and η = η/σ.

The dimensionless notation reveals that the system has only two independent parameters: the

ratio between the adhesion constant and the surface tension γ, and the parameter describing

asymmetry between the apical and basal side η.

3 Results

3.1 Equilibrium state of free epithelia

In absence of external forces, the equilibrium state of the epithelium is defined by the minimum

of its total mechanical energy. According to the assumptions of the model, the minimum of the

total energy coincides with the minimum of the energy of the model cell. Clearly, due to symmetry

considerations, the equilibrium value of the deformational variables d in β is zero. The equilibrium

values of the mean layer curvature h0 and the surface area of the neutral plane a0 are calculated

from ∂w
∂h = 0 and ∂w

∂α = 0. The position of the neutral plane ε is defined by ∂2w
∂α∂h = 0, while all

other mixed derivatives vanish automatically. In the limit of small curvatures and small asymmetry

between the basal and apical side (η � 1), the equilibrium surface area of the neutral plane a0,
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the equilibrium layer thickness l0 and the mean spontaneous curvature h0 are:

a0 =

(
2− γ

2

)2/3

, (5)

l0 =
2

a0

, (6)

h0 = η
3a0

3a0
3 + 1

, (7)

while the relative shift of the neutral plane from the layer’s midplane is

ε = η
3a0

3 + 4

18a0
3 + 6

. (8)

It is informative to express also the cellular height-to-width ratio:

height-to-width ratio =
l0

2
√

a0

= a0
−3/2 =

1

1− 1
2
γ

. (9)

Fig. 3 shows the equilibrium values of the geometric variables as functions of the relative

adhesion strenght γ at five different values of η. As expected, when there is no difference between

the basal and apical sides (η = 0), the epithelium spontaneous mean curvature h0 is zero and the

neutral plane is in the middle of the layer, ε = 0. At vanishing adhesion strenght (γ = 0), the cells

take the ”cuboidal” shape, i.e., the shape with the minimal total cellular surface area (a0 = 1,

l0 = 2 and height-to-width ratio = 1, Fig. 3, A and B). As γ increases, the cells become thinner

and the epithelia thicker. Since the height-to-width ratio is larger than 1 at all values of γ, the

model can not describe the flattened squamous epithelia. Assuming that the height-to-width ratio

of columnar epithelial cells is on the order of 10, Fig. 3B reveals that the ratio γ/σ in these systems

is not larger than γ ≈ 1.8. The model predicts that at γ = 2 the epithelium becomes infinitely

thick with a0 = 0.

When the apical and basal sides have different surface energies (η �= 0) the epithelium bends

towards the side with a larger surface tension – the layer spontaneous curvature h0 is proportional

to η (Fig. 3 C). Note, however, that in the limit η � 1, a0 and l0 do not depend on η. The

deviation of the neutral plane from the middle is at most a few percent (Fig. 3 D).

At small adhesion strengths, the mechanical energy per cell in the layer may become larger

than the energy of a corresponding free non-adhered spherical epithelial cell (at a given volume,

a spherical cell has a smaller total surface area than a cell in the layer). Thus, if the adhesion
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strength is bellow a certain threshold value, it is not energetically favorable for the cells to form

the layer at all. A simple calculation (not shown) yields that the corresponding threshold value of

the adhesion strength is γ ≈ 0.37.

3.2 Elastic moduli

The elastic moduli are the second derivatives of the mechanical energy (Eq. 3) with respect to the

deformational variables around the equilibrium: K = 1
A0

∂2W
∂α2 , μ = 1

A0

∂2W
∂β2 , kH = 1

4A0

∂2W
∂H2 , kD =

1
A0

∂2W
∂D2 . In contrast to the equilibrium geometrical parameters, which were suitably presented in

the dimensionless form, the calculated elastic moduli are more informative when presented in the

dimensional form:

K = 3 σ , (10)

μ =
3

2
σ , (11)

kH =
1

4

(
a0

3 +
1

3

)
σL2

0 , (12)

kD =
1

8

(
a0

3 − 1

3

)
σL2

0 . (13)

where the dimensionless equilibrium surface area a0 is defined by Eq. 5, and L0 is the dimensional

epithelial thickness in equilibrium. The local bending modulus kc and Gaussian bending modulus

kc can be then calculated from Eqs. 1:

kc =
1

8

(
3a0

3 +
1

3

)
σL2

0 , (14)

kc =
1

4

(
1

3
− a0

3

)
σL2

0 . (15)

The results show that the lateral elastic moduli K and μ are proportional to the cellular cortical

tension σ and that they do not depend on the intercellular adhesion γ. The dependence of the

bending elastic moduli on the relative adhesion constant γ is presented in Fig. 4. Clearly, the

bending constants diverge as γ increases. This divergence can be regarded as a direct consequence

of the divergent layer thickness L0 (Fig. 3B and Eqs. 14 and 15).
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4 Discussion

This work introduces a novel analytical approach for analyzing the relations between the cellular

and the macroscopic mechanical properties of epithelium. While some of the relations between

the cellular and macroscopic levels have been qualitatively well understood (Forgacs and Newman,

2005), the analysis presented is an attempt to express these relations in a quantitative manner. The

cellular parameters are described via cellular cortical tension σ and an effective intercellular adhe-

sion constant γ, which are phenomenological parameters linked to the activity of the submembrane

acto-myosin network and cell adhesion molecules, respectively (Evans and Kukan, 1984; Steinberg,

2007). Since the macroscopic level is described within the standard theory of continuum mechan-

ics, the analysis can serve as a general analytical framework for assessing macroscopic epithelial

mechanics from the point of view of cellular processes, without relying on the specific numerical

finite-element methods.

The analysis reveals that the main factor in the macroscopic equilibrium of free and laterally

homogeneous epithelia is the balance between the adhesion constant γ and the cellular cortical

tension σ, and provides the relation between the epithelial thickness and γ/σ. The lower and the

upper bounds for γ/σ are estimated: if the ratio γ/σ is small, the epithelial cells are cuboidal

(i.e., with minimal cellular surface area at a given volume), when this ratio increases, the cells

become columnar and the layer thickens in order to increase the intercellular contact surface area

(Fig. 3, A and B). The layer has a finite thickness only if the ratio γ/σ is smaller than 2. Clearly,

this divergence is not present in real systems and it can be expected that, in order to increase

the contact surface area at very large adhesion strengths, the cells in real systems take shapes

other than the one assumed by the model (e.g., even non-planar 3-D cellular aggregates may

become energetically favorable). On the other hand, if the adhesion is too weak (γ/σ < 0.37), the

energy of individual non-adhered spherical cells becomes smaller than the energy of the cells in

the epithelium and the formation of epithelium is not energetically favorable.

Importantly, the model predicts that the cellular height-to-width ratio is larger than 1 at all

values of γ/σ (Fig. 3B). This indicates that the cortical tension and the intercellular adhesion

alone can not produce spontaneous cell flattening, where the lateral cellular dimensions become

12



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

larger than the epithelial thickness. The flattened cellular geometries are, for example, observed

in squamous epithelia or in the morphogenesis of the Drosophila wing discs (Fristrom, 1988). In

these cases, however, the epithelium is not free and the flattening could be a result of a strong

adhesion to a substrate on the apical/basal sides. Of note, these findings agree well with the

observed dependence of the follicle cell shape on the expression of E-cadherin (Montell, 2008).

The elastic moduli of epithelia are calculated from the deformations around the equilibrium.

The calculation shows that the epithelial area expansivity modulus is directly proportional to the

cellular cortical tension σ (Eq. 10), and that the in-plane shear modulus μ is one half of the area

expansivity modulus (Eq. 11). This relation (K = 2μ) is typical for two-dimensional isotropic

materials (Boal, 2002). Interestingly, K and μ do not depend on the intercellular adhesion. Again,

it can be shown that this result applies to all prismatic cellular geometries (see Appendix B). These

important and unexpected results call for a further experimental investigation. The analysis also

shows that the layer bending constant is proportional to the area expansivity modulus and the

square of the layer thickness, kc ≈ KL2
0, as is often the case in conventional materials. The

Gaussian bending constant, however, is negative at small values of γ/σ and positive at larger γ/σ

(Fig. 4B). Note that the detailed role of the Gaussian bending constant in folding of nonclosed

surfaces remains to be analyzed.

The analytical nature of the model presented enables a straightforward analysis of experimental

images of the epithelial cross-section. For example, the experiments by Davidson et al. (1999) show

that a typical blastula of a developing sea urchin embryo is spherical, with a radius Rb ≈ 50 μm,

epithelial thickness (i.e., the cellular height) L0 ≈ 6 μm, and the cellular height-to-width ratio 5:3.

Assuming that the blastula is near the equilibrium, the ratio between the adhesion and the cortical

tension γ can be estimated directly from the cellular geometry in the epithelial cross-section, i.e.,

from the cellular height-to-width (see Eq. 9 and Fig. 3B), γ = 2(1− 1
h-to-w

) ≈ 0.8. Once the ratio

γ is known, the in-plane cellular surface area can be estimated, a0 ≈ 0.7 (see Eq. 5 and Fig. 3A)

and the dimensionless cellular height can be calculated from Eq. 6, l0 = 2/a0 ≈ 2.8. Then, the

unit length can be determined from the actual cellular height, Rc = L0/l0 ≈ 2.1 μm. Finally, the

dimensionless epithelial mean curvature is h0 = H0Rc = 2/Rb×Rc ≈ 0.1 (for a spherical blastula,
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the mean curvature is twice the inverse of the epithelial radius of curvature, H0 = 2/Rb), which

yields η ≈ 0.05 (see Eq. 7 and Fig. 3C). As the measured upper limit for the epithelial Young

modulus was 700 Pa (Davidson et al., 1999), the corresponding upper limits for σ and γ are of the

order of magnitude 1 pN/μm (10−15 J/μm2). While we are not aware of any direct measurements

of the cortical tension in epithelia, the estimated value agrees with the value found in fibroblasts,

σ ≈ 0.3 pN/μm (Thoumine et al., 1999). Interestingly, the estimated value of γ ≈ 0.8 indicates a

small Gaussian bending modulus (Fig. 4B).

The cellular level was modeled by the cellular surface mechanics (Beysens et al., 2000; Janmey

and Discher, 2004), which completely neglects the cellular bulk elasticity. In the first approxi-

mation, the use of the surface mechanics is justified if the cells have flat cellular sides, without

any noticeable undulations (i.e., if the cellular surfaces are minimized). Epithelial cells in the sea

urchin blastula, for example, indeed show flat sides indicating the presence of the surface tension

(Davidson et al., 1999).

The analysis presented focused only on the Hookean elasticity regime, i.e., on the small defor-

mations of a homogeneous epithelium around the equilibrium, where the epithelial cells are in a

relaxed state and their behavior does not depend on their more complex features (e.g., viscosity).

However, the approach based on average cellular properties can be extended to cover a broader

set of epithelial behavior, provided that the epithelium (or a patch of the epithelium in question)

can be considered laterally homogeneous at the macroscopic level. For example, the macroscopic

lateral anisotropy of epithelia can be introduced by defining more than four macroscopic elastic

moduli and more than three microscopic parameters. In order to describe larger deformations on

wider time scales, one can still analyze the behavior of the model cell by taking into account the

non-Hookean elasticity terms (i.e., higher derivatives of the mechanical energy) and the viscous

behavior of the tissue. Specifically, the fluid-like cellular rearrangements on longer time scales can

be described by a relaxation parameter, as has been demonstrated in a numerical analysis of large

in-plane epithelial deformations (Brodland et al., 2006). Also, it remains to be analyzed if the role

of non-uniformly distributed intercellular adhesion complexes in epithelial bending (e.g., adherens

junctions) can be described solely by an effective adhesion constant and an appropriate position
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of the layer neutral plane.

The geometry of the cylindrical model cell does not describe the actual shapes of individual

epithelial cells and it should be regarded as a first order approximation of the average shape be-

havior. Yet, there are several indications that this simplification, made in a manner of a mean field

approximation, is a reasonable one. For example, the results regarding the in-plane deformations

are not artifacts of the cylindrical geometry but are valid for all prismatic model cell geometries

(see Appendix B). Also, the use of the cylindrical average cell geometry in a flat epithelium has

been already confirmed by a numerical finite-element analysis (Brodland et al., 2006). Moreover,

there is good qualitative agreement between the experimentally observed cellular deformations

during the primary invagination of the sea urchin blastula (Kimberly and Hardin, 1998) and the

predicted model cell geometries. For example, the conical bottle-shaped cells are found in the ep-

ithelial regions where both curvatures negative (Fig. 1D), and an elongation of the cellular apical

sides in the radial direction is observed at the orifice of the invagination, where the epithelium is

bent only in the radial direction.

Finally, it should be noted that the macroscopic mechanical properties of epithelial tissues do

not depend only on the layer of epithelial cells, but also on the adjacent material layers possessing

markedly different mechanical properties, e.g., the extracellular matrix. For example, one of the

proposed mechanisms of epithelial invagination is in fact related to the bilayer bending effect

of the cellular layer and the extracellular matrix (Lane et al., 1993). Following the approach

that was applied in the analysis presented, these complex epithelial organizations can be readily

described by the standard continuum mechanics of multi-laminar systems. Indeed, by taking into

account the diverse properties of the cellular layer, the apical lamina and the hyaline layer, a

multi-laminar analytical approach has already provided a novel insight into blastula mechanics

and yielded general mechanical conditions that have to be fulfilled during the invagination (Božič

et al., 2006). Thus, the quantitative analytical approach can bypass the elaborate finite-element

modeling of multi-layered systems, used for example in the analysis of the mechanical compression

of the blastula wall (Davidson et al., 1995, 1999), and bring an alternative point of view to the

interpretations of experimental investigations of epithelial mechanics.
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A Geometry of the model cell

The geometry of the model cell is described in Fig. 2. In general, the apical and basal sides are

elliptical with the principal radii R1A, R2A and R1B, R2B (indices 1 and 2 represent the directions

of the two principal curvatures, and the indices A, B and N represent the apical, basal and neutral

plane, respectively). The principal radii of other cross-sections change linearly with the cellular

height.

The epithelial principal curvatures and the principal elliptical radii of the model cell base sides

are related through (Fig. 2):

tan α1 =
R1A −R1B

L
, tanα2 =

R2A −R2B

L
(A-1)

R1N =
1

C1

sin α1 , R2N =
1

C2

sin α2 (A-2)

The volume of the model cell can be calculated as

V =

∫ z=L

z=0

πR1(z)R2(z)dz, (A-3)

where the principal elliptical radii of the model cell cross-section R1 and R2 are

R1(z) = R1B +
z

L
(R1A −R1B) (A-4)

R2(z) = R2B +
z

L
(R2A −R2B) (A-5)

The apical surface area is AA = πR1AR2A, the basal surface area is AB = πR1BR2B, while

the lateral surface area can be calculated as:

AL =

∫ z=L

z=0

∫ φ=2π

φ=0

dAL (A-6)

where the lateral surface element dAL can be calculated from

dAL =

√
	RL

2

φ
	RL

2

z − ( 	RLz
	RLφ)2. (A-7)

Here, the vector defining the lateral surface is

	RL =

⎛
⎜⎜⎜⎜⎜⎜⎝

R1(z) cosφ

R2(z) sinφ

z

⎞
⎟⎟⎟⎟⎟⎟⎠

(A-8)
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The principal radii can be expressed in terms of A and β (A = πR1NR2N and β = R2N/R1N −

1), and the principal curvatures C1 and C2 can be expressed in terms of H and D. As the volume

of the model cell is constant, the cellular height can be calculated form Eq. A-3, and therefore

the model cell geometry is uniformly defined by four parameters. As a result, in the limit of

small curvatures and small shear, the surface areas of the model cell can be expressed as (in the

dimensionless form):

aA = a + (2− 4ε)h +
h2

a
− d2

4a
, (A-9)

aB = a− (2− 4ε)h +
h2

a
− d2

4a
, (A-10)

aL =
4√
a

+
8ε

a3/2
h +

2(3a3 − 2)

3a5/2
h2 +

5 + 3a3

12a5/2
d2 +

3

4
√

a
β2 . (A-11)

The mechanical energy of the model cell is then calculated by combining Eqs. A-9-A-11,

and Eq. 4. The relation between the deformational variable α and the layer surface area a is

α = (a/a0 − 1).

B Area extension modulus in a general prismatic geometry

It can be easily verified that in flat epithelia, the value of the area extension modulus, K = 3σ

(Eq.10), is the same for all uniform prismatic model cell geometries. In the flat epithelium, the

apical and the basal faces of the model cell are equal, AA = AB = A, and the cellular lateral surface

area equals the perimeter of the base face times the cellular height. The perimeter is proportional

to the square root of A, and since the cellular volume is constant, the cellular height is inversely

proportional to A. It follows that AL = C√
A

, where C is a constant. The cellular energy (Eq. 3)

then reads (neglecting the apico-basal asymmetry):

Wflat = σ(2A +
C√
A

)− 1

2
γ

C√
A

, (A-12)

Minimizing the energy with respect to A gives

A0 =
1

4
C2/3(2 − γ

σ
)2/3 (A-13)

and the calculation of the area extension modulus (K = A0
∂2W
∂A2 ) then leads to Eq.10.

18



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

References

Beysens, D. A., Forgacs, G., and Glazier, J. A. (2000) , Proc. Natl. Acad. Sci. USA 97, 9467

Boal, D. (2002) , Mechanics of the Cell, Cambridge, UK: Cambridge University Press
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Schöck, F. and Perrimon, N. (2002) , Annu. Rev. Cell Dev. Biol. 18, 463

Steinberg, M. S. (2007) , Curr. Opin. Genet. Dev. 17, 281

Thoumine, O. O., Cardoso, O., and Meister, J. J. (1999) , Eur. Biophys. J. 28, 222

Wiggs, B. R., Hrousis, C. A., Drazen, J. M., and Kamm, R. D. (1997) , J. Appl. Physiol. 83, 1814

20



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

Figure Legends

Figure 1.

Schematic representation of the model cell geometry when the epithelium is subject to different

deformational modes. The model cell shape can be regarded as an average shape of the cells in the

epithelial layer. The top and the bottom faces of the model cell represent the cellular apical and

basal sides, respectively, and the side face of the model cell represents the lateral cellular sides. The

cellular height is the same as the epithelial thickness, and the cellular width is the cellular diameter

in the epithelial plane. Macroscopic deformations of the layer cause deformations of the apical,

basal and lateral sides of the model cell, and do not alter the cellular volume. (A) A cylindrical

model cell in a flat layer; (B) cell flattening due to the layer area extension; (C) in-plane shear: the

base faces are deformed into matching ellipses; (D) isotropic bending of the layer (H �= 0, D = 0);

and (E) the saddle (deviatoric) deformation (H = 0, D �= 0): the base faces are deformed into

ellipses with perpendicular major axes.

Figure 2.

Longitudinal and transversal cross-sections of the model cell in the case when the epithelium is

under saddle deformation (Fig. 1E). (A) The longitudinal cross-sections along the directions of the

two principal curvatures C1 and C2. The thickness of epithelium equals the height of the model

cell L; (B) The cross-sections in the apical, basal and neutral planes. The indices 1 and 2 represent

the directions of the two principal curvatures, and the indices A, B and N represent the apical,

basal and neutral plane, respectively. Note that the neutral plane does not necessarily coincide

with the layer midplane.

Figure 3.

Equilibrium geometric parameters of the epithelium as a function of the ratio between the adhesion

constant γ and the cellular cortical tension σ. (A) Relative surface area per cell in the epithelial

neutral plane, a0 = A0/πR2
c (Eq. 5); (B) cellular height-to-width ratio (Eq. 9); (C) relative

equilibrium mean epithelial curvature, h0 = H0Rc (Eq. 7); (D) the relative shift of the neutral
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plane from the layer midplane (Eq. 8), as defined in Fig. 2. The epithelial curvature and the

relative shift of the neutral plane are shown at five values of the parameter η, which describes

the apicobasal asymmetry (η = 0, ±0, 05 and ±0, 1). Note that the equilibrium surface area and

thickness do not depend on η. The values are scaled with respect to Rc, which is the radius of the

base face of the ”unit” model cell, which represents a cuboidal epithelial cell, i.e. the cell with the

minimal surface area at a given volume (see text).

Figure 4.

The epithelial bending elastic moduli as a function of the ratio between the adhesion constant γ

and the cellular cortical tension σ. (A) the local bending constant kc; (B) the Gaussian bending

constant kc. The values are scaled with respect to Rc, which is the radius of the base face of the

”unit” model cell, which represents a cuboidal epithelial cell, i.e. the cell with the minimal surface

area at a given volume (see text).
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