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Abstract

We study how spontaneous reduction in the number of contacts could develop, as a

defensive response, during an epidemic and affect the course of infection events. A

model is proposed which couples an SIR model with selection of behaviours driven

by imitation dynamics. Therefore, infection transmission and population behaviour

become dynamical variables that influence each other. In particular, time scales

of behavioural changes and epidemic transmission can be different. We provide a

full qualitative characterization of the solutions when the dynamics of behavioural

changes is either much faster or much slower than that of epidemic transmission.

The model accounts for multiple outbreaks occurring within the same epidemic

episode. Moreover, the model can explain “asymmetric waves”, i.e., infection waves

whose rising and decaying phases differ in slope. Finally, we prove that introduction

of behavioural dynamics results in the reduction of the final attack rate.
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1 Introduction

The epidemic dynamics depends on the complex interplay between the char-

acteristics of the pathogens’ transmissibility and the structure and behaviour

of the host population. Spontaneous change of behaviour in response to epi-

demics (Ferguson, 2007), possibly related to risk perception (Bagnoli et al.,

2007; Risau-Gusman and Zanette, 2008; Shaw and Schwartz, 2008), has been

recently proposed as a relevant factor in the comprehension of infection dy-

namics. While the merits and influence of such phenomena are still debated

(D’Onofrio et al., 2007; Moneim, 2007), experience from the 1918-19 pandemic

indicates that a better understanding of behavioural patterns is crucial to im-

prove model realism and enhance the effectiveness of containment/mitigation

policies (Bootsma and Ferguson, 2007).

Human behaviour is driven by evaluation of prospective outcomes deriving

from alternative decisions and cost-benefit considerations. Past experience,

response to the action of others and changes in exogenous conditions all con-

tribute to the balance, to which game theory provides a rich and natural

modelling framework (von Neumann and Morgenstern, 1947; Hofbauer and

Sigmund, 1998). It is not surprising, therefore, that looking at behaviours

through the lens of game theory has recently attracted the attention of the

∗ Fondazione Bruno Kessler, via Sommarive 18, Trento, Italy
Email addresses: poletti@fbk.eu (Piero Poletti), caprile@fbk.eu (Bruno

Caprile), ajelli@fbk.eu (Marco Ajelli), pugliese@science.unitn.it (Andrea

Pugliese), merler@fbk.eu (Stefano Merler).
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epidemiology community, for example when modelling the evolution over time

of voluntary vaccination uptakes (Bauch and Earn, 2004; Bauch, 2005).

In this paper we model a fairly general situation in which a population of

individuals is subject to an epidemic outbreak developing according to an

SIR model, but in which contact rates depend on the behavioural patterns

adopted across the population. More specifically, all susceptible individuals

can conform to either one or the other of two different behaviours, ba and

bn, respectively corresponding to an “altered” and a “normal” behavioural

pattern. The first gives the individuals an advantage in terms of reduced risk

of infection, yet at some extra cost. For example, avoidance of crowded envi-

ronments reduces the risk of infection, but also entails disadvantages deriving

from greater isolation. Individuals adopting the second (bn) are exposed to

a normal risk of infection, but are spared the extra cost associated with ba.

Individuals may choose to switch between ba and bn at any time, depending

on cost-benefit assessments based on the perception of risk.

The resulting model consists in the coupling of two dynamical systems, one

describing the epidemic transmission and the other describing the behavioural

changes. In principle, there is no reason for the two phenomena to evolve at

the same speed. It is therefore crucial to study the model allowing for different

time–scales, embodied in different time-units.

We give a full description of the model when the dynamics of the behavioural

changes are “fast” with respect to the epidemic transmission. In particular,

we provide sufficient conditions on the parameters for generating sequences

of epidemic waves. Moreover, we show that the model is able to account for

“asymmetric waves”, i.e., infection waves whose rising and decaying phases
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differ in slope. However, similar patterns can also be observed when the time–

scales of the two dynamics are comparable. When the dynamic of behavioural

changes is “slow”, the model basically reduces to a classical SIR.

The model’s dynamics gives rise to patterns that are morphologically compat-

ible with multiple outbreaks and the same-wave asymmetric slopes recently

reported for the Spanish influenza of the 1918–19 (Chowell et al., 2006b,a;

Ferguson et al., 2006; Mills et al., 2004). For these phenomena (trivially in-

compatible with the classical SIR model) a variety of alternative explanations

have in fact been advanced: military demobilization at the end of the First

World War (Ferguson et al., 2006), genetic variation of the influenza virus

(Castillo-Chavez et al., 1989; Andreasen et al., 1997; Boni et al., 2004), ex-

ogenous time changes in transmission rates, such as seasonal forcing (Colizza

et al., 2006, 2007). Other explanations have been proposed invoking coinfec-

tion scenarios (May and Nowak, 1995; Adler and Losada, 2002; Edwards et al.,

2004; Merler et al., 2008)

Finally, and regardless of the relative speeds of dynamics, we show that the

fraction of susceptible individuals at the end of the epidemic is always larger

than that of a classical SIR model in which all individuals adopt the normal

behaviour (bn) with the same parameters.

2 The Model

Our model consists of the coupling of two mutually influencing phenomena:

a) the epidemic transitions; b) the behavioural changes in the population of

susceptible individuals.

4



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

As for the epidemic transitions, whose time unit is t, our model is based

on an S → I → R scheme 1 . We consider that susceptible individuals may

adopt two mutually exclusive behaviours, bn (“normal”) and ba (“altered”).

Specifically, we assume that individuals adopting behaviour ba are able to

reduce the number of contacts in the time unit with respect to individu-

als adopting behaviour bn. Thus, two transmission rates are considered for

the two groups, accounting for the different contact rates associated with be-

haviours ba and bn. In particular, susceptible individuals adopting behaviour

bn, Sn(t), become infected at a rate βnI(t) (and thus Ṡn(t) = −βnSn(t)I(t)),

where I(t) represents the pool of infectious individuals, while susceptible

individuals adopting behaviour ba, Sa(t), become infected at a rate βaI(t)

(and thus Ṡa(t) = −βaSa(t)I(t)), with βa < βn. Introducing the variables

S(t) = Sa(t) + Sn(t) and x(t) = Sn(t)/(Sn(t) + Sa(t)), corresponding to the

whole susceptible population and to the fraction of susceptibles adopting be-

haviour bn respectively, the epidemic model can be written as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
(t) = − [βnS(t)x(t) + βaS(t)(1− x(t))] I(t)

dI

dt
(t) = [βnS(t)x(t) + βaS(t)(1− x(t))] I(t)− γI(t)

dR

dt
(t) = γI(t)

dx

dt
(t) = x(t)(1− x(t))(βa − βn)I(t) .

(1)

Notice that the last equation describes the change of behaviours distribution

in susceptible individuals deriving from the different rates of infection, βn and

1 Since we model single epidemic outbreaks, the vital dynamics of the population

is not taken into account.
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βa.

We now allow susceptible individuals to change their behaviour spontaneously,

following cost/benefit considerations. This phenomenon can be cast in the lan-

guage of evolutionary game theory, in which behaviours correspond to strate-

gies in a suitable game, with certain expected payoffs. Adopting ba reduces the

risk of infection, but it is more costly. On the other hand, individuals adopting

bn are exposed to a higher risk of infection. It is clear that whether it is more

convenient to adopt the first behaviour or the second depends on the state of

the epidemic.

Of course, the two phenomena may not have the same time scales. In fact,

while epidemic transmission can occur only through person-to-person contacts,

it is fairly reasonable to consider that individuals can access the information

required to decide whether to adopt either bn or ba, much more frequently by

telephone, email, the Internet and, in general, the media.

Let us therefore introduce τ as the time unit of behavioural changes, and let

us assume that t = ατ with α > 0.

Payoffs can now be modelled as it follows. All individuals pay a cost for the

risk of infection, which we assume depends linearly on the fraction of infected

individuals, I(τ), and it is higher for bn than for ba. Moreover, individuals

playing ba pay an extra, fixed cost k. It may be convenient to think of k as

deriving from reducing the contacts with people, and therefore less traveling,

working, attending school, visiting friends and relatives, etc.. Yet, it is more

general than that, as it can account, in fact, for the cost of any self-imposable

prophylactic measure. The payoffs associated with bn and ba are:

6
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pn(τ) = −mnI(τ)

pa(τ) = −k −maI(τ) ,

(2)

with mn > ma. We may think of mn and ma as parameters related to the risk

of developing symptoms (especially for the lethal infections) induced by the

two different behaviours bn and ba.

The dynamics of behaviours is modelled as a selection dynamics based on im-

itation (Imitation Dynamics (Hofbauer and Sigmund, 1998; Nowak and Sig-

mund, 2004)). A fraction of the individuals playing strategy bn can switch

to strategy ba after having compared the payoffs of the two strategies, at a

rate proportional to the difference between payoffs, ΔP (τ) = pn(τ) − pa(τ),

with proportionality constant ρ. Conversely for the fraction of the individuals

playing ba.

The last equation of system (1), in the time scale of infection transmission,

thus becomes:

dx

dt
(t) = x(t)(1− x(t))(βa − βn)I(t)+

+
ρ

α
x(t)(1− x(t))(k − (mn −ma)I(t)) .

(3)

Notice that the first component of the time derivative of x(t) is negative, mean-

ing that the fraction of susceptible individuals adopting the normal beahviour

bn can only decrease over time as an effect of the selection of behaviours in-

duced by the epidemic. On the other hand, whenever bn is more convenient

than ba (pn(t) > pa(t)), the fraction in the population of susceptibles playing

bn can grow.
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Let us briefly comment on the second component of the time derivative of x(t).

In principle, since the number of susceptible individuals decreases over time,

one can argue that spontaneous changes of behaviour must depend explic-

itly on S(t), because of the diminished number of contacts among susceptible

individuals. However, here we assume that susceptible individuals take their

decision on the basis of the composition of the pool of susceptible individuals

that they are able to meet somehow (by looking only at the fractions of suscep-

tible individuals adopting the two behaviours bn and ba, without considering

the size of the sample).

It is worth noticing that x = 0 and x = 1 are equilibria for Eq. (3). This

in particular implies that there is no way to switch to a different strategy

(independently of whether it would be convenient) unless there is a non zero

fraction of individuals already playing it. To circumvent this (which one may

regard as an undesirable effect of strict imitation), irrational behaviour can

be introduced which allows for rare (in τ time units) random switches of

behaviour independent of encounters and pay-offs. Assuming a constant rate,

χ > 0, equal for both behaviours, the resulting equation for x is:

dx

dt
(t) = x(t)(1− x(t))(βa − βn)I(t)+

+
ρ

α
x(t)(1− x(t))(k − (mn −ma)I(t))+

+
χ

α
(1− x(t))− χ

α
x(t) .

(4)

Therefore, the complete dynamics of infection (coupling behaviour with epi-

demic transitions) is given by:

8
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
(t) = − [βnS(t)x(t) + βaS(t)(1− x(t))] I(t)

dI

dt
(t) = [βnS(t)x(t) + βaS(t)(1− x(t))] I(t)− γI(t)

dR

dt
(t) = γI(t)

ε
dx

dt
(t) = x(t)(1− x(t))(1−mI(t)) + μ(1− 2x(t)) .

(5)

where ε =
α

kρ
, m = (mn − ma)/k + ε(βn − βa) and μ =

χ

kρ
. As for the

constraints on the models parameters, we have: 0 < βa < βn, 0 < γ < βn
2 ,

ε > 0, m > ε(βn − βa) and μ > 0. For facilitating the reader’s understanding,

the definitions of the variables recurring throughout the paper are reported in

Tab. 1.

3 Study of Dynamics

System (5) admits a continuum of equilibria, namely (S�, 0, 1− S�, x�) with

x� =
1− 2μ +

√
1 + 4μ2

2
, (6)

and S� ∈ [0, 1]. We consider in detail only the case of an epidemic of a novel

pathogen type, so that we are interested only at the equilibrium with S� = 1,

i.e. (1, 0, 0, x�). This is unstable when βnx� +βa(1−x�) > γ. Thus, we assume

that the initial values for system (5) are the following: (S(0), I(0), R(0), x(0)) =

(1− I0, I0, 0, x
�) with I0 close to 0. Note that 1/2 < x� < 1 and x� → 1 when

μ→ 0. Moreover, this equilibrium is stable as long as R0 < 1 where the basic

reproductive number of system (5) is:

2 This constraint is required only to ensure that the epidemic occurs (see Eq. 7).
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Table 1

Model variables and parameters

Notation Description

S Number of susceptible individuals

I Number of infectious individuals

R Number of recovered individuals

x Fraction of susceptibles individuals adopting the “normal” behaviour

βn Transmission rate of individuals adopting the “normal” behaviour

βa Transmission rate of individuals adopting the “altered” behaviour

γ Recovery rate

1/m Threshold value determining the switch between “normal” and “altered” behaviour

μ Rate of irrational behaviour change

ε Relative speed of SIR dynamics to behavioural response

R0 =
βnx� + βa(1− x�)

γ
. (7)

Let us introduce the basic quantities Rn
0 = βn/γ and Ra

0 = βa/γ. We can

rewrite Eq. (7) as R0 = Rn
0x� + Ra

0(1 − x�). The quantities Rn
0 and Ra

0 are

reproduction numbers themselves: Rn
0 characterizes the situation where the

susceptible pool is fully composed by individuals adopting the normal be-

haviour bn, whereas Ra
0 characterizes the situation where the susceptible pool

is fully composed by individuals spontaneously reducing their contacts (be-

haviour ba). Thus, Eq. (7) has a straightforward interpretation: a typical in-

10
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fective individual behaving according to bn (a case occurring with probability

x�) would cause Rn
0 new infections during his/her whole period of infectivity.

Similarly for Ra
0 in case he/she adopts the altered behaviour ba (which occurs

with probability 1− x�). Note that R0 � Rn
0 for x� � 1.

We start by analyzing the dynamics of system (5) in two extreme cases, namely

ε→ 0 and ε→ +∞, which correspond respectively to the situation when the

dynamics of the behavioural changes is “fast” or “slow” with respect to the

epidemic transmission.

Let us consider first the case ε→ +∞. In this case, the solutions of system (5)

approximate, dividing both sides of the last equation by ε and remembering

m = (mn − ma)/k + ε(βn − βa), those of system (1), which is a classical

SIR model with two classes of susceptibility. Since ẋ(t) < 0, the fraction of

individuals adopting the normal behaviour bn will decrease over time as a

consequence of the selection of the behaviour ba induced by the epidemic,

even in the absence of spontaneous behavioural changes.

For the case ε→ 0 (which is more interesting from both the mathematical and

the biological point of view) we are going to apply the singular perturbation

methods (O’Malley Jr., 1991).

The solutions of the singularly perturbed initial value problem (5) is approx-

imated by that of the degenerate system:

11
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
(t) = − [βnS(t)x(t) + βaS(t)(1− x(t))] I(t)

dI

dt
(t) = [βnS(t)x(t) + βaS(t)(1− x(t))] I(t)− γI(t)

dR

dt
(t) = γI(t)

0 = x(t)(1− x(t))(1−mI(t)) + μ(1− 2x(t)) ,

(8)

obtained from (5) by formally setting ε = 0, provided that in the last of (8)

we use an asymptotically stable equilibrium of the boundary–layer system

dx

ds
(s) = x(s)(1− x(s))(1−mI) + μ(1− 2x(s)) , (9)

obtained by making the transformation of independent variable s = t/ε, and

then setting ε = 0 (which in particular implies that S(s), I(s) and R(s) are

constant) (Tikhonov, 1952; Hoppensteadt, 1966).

Notice that, after having set ε = 0, parameter m reduces to (mn − ma)/k.

Consequently, as it may be expected, the effect of the selection of behaviours

induced by the epidemic is negligible when the dynamics of behaviours is much

faster than that of the infection transmission.

We start by analyzing the solutions of Eq. (9), where the fraction of infected

individuals I is assumed to be constant. Eq. (9) admits the following equilib-

rium:
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x�(I) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− 2P +
√

1 + 4P 2

2
if I < 1/m ⇐⇒ P > 0

1− 2P −√1 + 4P 2

2
if I > 1/m ⇐⇒ P < 0

1

2
if I = 1/m ,

(10)

where P = μ
1−mI

, which is asymptotically stable (comparing Eq. (6), note that

x� = x�(0)). In conclusion, the following Proposition holds:

Proposition 3.1 The boundary–layer system (9) admits the asymptotically

stable equilibrium (10). Furthermore, x�(I) → 1 if I < 1/m and x�(I) → 0 if

I > 1/m when μ→ 0.

Concerning the stability of the equilibrium (10), it is sufficient to observe that

the equation of ẋ is a parabola (which reduces to a straight line when I = 1/m)

and that the sign of ẋ is positive for x < x�(I) and negative for x > x�(I).

Substituting (10) in the first two equations in (8), one obtains a two-dimensional

system in the variables (S, I) that can be analysed using classical methods.

Here we restrict ourselves to consider the biologically relevant and mathe-

matically challenging limiting case for μ → 0. In the limiting case, the right

hand side of (10) becomes discontinuous in I, and standard theory cannot be

applied. Instead, we obtain the following.

Proposition 3.2 Under the assumptions Rn
0 > 1 and 1/m < Ip where Ip =

1− 1
Rn

0
+ 1

Rn
0

log 1
Rn

0
, if ε→ 0 and μ = o(εk) with k ≥ 1, the solutions of system

(5) are characterized as follows:

S1 there exists a finite time t1 > 0 such that the solutions of system (5)

approximate those of a classical SIR model with R0 = Rn
0 on the interval

13
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(0, t1) and I(t1) = 1/m;

S2.1 If Ra
0S(t1) ≤ 1, there exists a finite time t′2 > t1 such that the solution

of system (5) can be approximated in the time interval (t1, t
′
2), where t′2 =

t1 + m
γ
(S(t1)− 1

Rn
0
), by S(t) = S(t1)− γ

m
(t− t1) and I(t) ≡ 1/m. Afterwards,

the solutions of system (5) approximate those of a classical SIR model (in

its decaying phase) with R0 = Rn
0 on the interval (t′2, +∞);

S2.2 If Ra
0S(t1) > 1 there exists a finite time t2 > t1 such that the solutions

of system (5) approximate those of a classical SIR model with R0 = Ra
0 on

the interval (t1, t2) and I(t2) = 1/m;

S2.2.1 If Rn
0S(t2) > 1 there exists a finite time t3 > t2 such that the solutions

of system (5) can be approximated in the time interval (t2, t3), where t3 =

t2 + m
γ
(S(t2)− 1

Rn
0
), by S(t) = S(t2)− γ

m
(t− t2) and I(t) = 1/m. Afterwards,

the solutions of system (5) approximate those of a classical SIR model (in

its decaying phase) with R0 = Rn
0 on the interval (t3, +∞);

S2.2.2 If Rn
0S(t2) ≤ 1 the solutions of system (5) approximate those of a

classical SIR model (in its decaying phase) with R0 = Rn
0 on the interval

(t2, +∞).

Therefore, under the hypotheses of Prop. 3.2, solutions of system (5) can be

classified in the three following types:

C1 Solution S1 in [0, t1) and S2.1 in [t1, +∞);

C2 Solution S1 in [0, t1), S2.2 in [t1, t2) and S2.2.1 in [t2, +∞);

C3 Solution S1 in [0, t1), S2.2 in [t1, t2) and S2.2.2 in [t2, +∞).

The possible behaviours of the solutions of system (5), which depends on the

values of Ra
0 and Rn

0 , are shown in Fig. 1.

Let us briefly comment on the hypotheses of Prop. 3.2. The condition Rn
0 > 1

14
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is the obvious threshold condition for an epidemic to occur. Ip = 1 − 1
Rn

0
+

1
Rn

0
log 1

Rn
0

is the fraction of infected individuals at the peak for the classical SIR

model with basic reproductive number R0 = Rn
0 (this can be easily established

by considering that the fraction of infected individuals at the peak is 1
R0

and

by employing the SIR invariant S(t) + I(t) − 1
R0

log S(t) = const). Thus the

condition 1/m < Ip imposes that behaviour ba starts being convenient at some

point before the epidemic reaches its peak. Basically, if the condition is not

satisfied, system (5) is of scarce interest since all individuals adopt the normal

behaviour bn during the course of the epidemic; thus, system (5) would be

equivalent to a classical SIR model with basic reproductive number R0 = Rn
0 .

No explicit condition is needed on Ra
0. In particular, Ra

0 can be less than

1 (which means that no epidemic will occur if the susceptible pool is fully

composed by individuals adopting the altered behaviour ba). Clearly, in this

case the solutions of system (5) can only be of type C1.

Full proof of Prop. 3.2 is given in App A. Here we only observe that when

I(t) < 1/m we have x�(I) → 1 (see Prop. 3.1). Thus, the solutions of the

degenerate system (8), obtained by solving the system of differential equations

after having substituted x(t) = 1, are those of a classical SIR model with basic

reproductive number R0 = Rn
0 . The same happens when I(t) > 1/m, but now

x�(I) → 0, which results in R0 = Ra
0. Let us now assume that ε is close to 0.

The time intervals in which I(t) ≈ 1/m (for solutions of type C1 or C2) can be

interpreted as time intervals in which the fraction of infected individuals I(t) is

characterized by a sequence of “micro–waves”. In fact, as soon as I(t) > 1/m,

x(t) gets close to 1, so that the effective reproductive number (Ra
0S(t1) for

solutions of type C1 and Ra
0S(t2) for solutions of type C2) is not sufficiently

large to sustain the epidemic and thus I(t) decreases below 1/m. However,
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as soon as I(t) < 1/m, x(t) gets close to 1, so that the effective reproductive

number (Rn
0S(t1) for solutions of type C1 and Rn

0S(t2) for solutions of type

C2) is sufficient to sustain the epidemic and thus I(t) increases over 1/m. The

process is repeated as long as the fraction of susceptible individuals in the

population is sufficiently large (Rn
0S(t) > 1). In the limit ε→ 0, these switches

are instantaneous, and the solution I(t) is approximately always equal to 1/m.

Finally, as soon as Rn
0S(t) ≤ 1, the fraction of infected individuals I(t) will

start decreasing to 0 over time. In Prop. 3.3 we give sufficient conditions for

solutions of type C1 or C2 to occur, which in particular implies the presence

of sequences of “micro–waves” for small value of ε.

Proposition 3.3 Under the assumptions Rn
0 > 1 and 1/m < Ip, where Ip =

1 − 1
Rn

0
+ 1

Rn
0

log 1
Rn

0
, if ε → 0, μ = o(εk) with k > 1 and Ra

0 satisfies the

inequalities 1 < Ra
0 < Rn

0 exp{−Ra
0(1−1/Rn

0 )} then the solution of system (5)

are of type C1 or C2.

First of all, we comment on the hypotheses of Prop. 3.3. Clearly, if Ra
0S(t1) ≤ 1

the solutions of system (5) can only be of type C1. Condition Ra
0S(t1) > 1

(which in particular implies Ra
0 > 1) is thus required for solutions of type C2

to occur, in particular to have that I(t) is increasing in t1. Condition Ra
0 <

Rn
0 exp{−Ra

0(1− 1/Rn
0 )} is necessary to have that the fraction of susceptible

individuals does not decrease too much in the time interval (t1, t2), where

system (5) is equivalent to an SIR model with basic reproductive number

R0 = Ra
0. In fact, if S(t) decreases so much that Rn

0S(t2) < 1, I(t) will decrease

again for t > t2, resulting in a solution of type C3. Full proof of Prop. 3.3 is

given in App. A.

Prop. 3.3 guarantees that, under certain conditions, one (or more) epidemic
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waves will occur after the first when ε > 0 is sufficiently small; here, a solution

showing two (or more) epidemic waves is one for which İ(t) > 0 in two time

intervals separated by one interval in which İ(t) < 0. A concrete example is

shown in Fig. 2a. In this case, a sequence of small epidemic waves is observed

for t > t2. In fact, as soon as the fraction of infected individuals becomes

larger than the threshold 1/m, the dynamics is the same as that of an SIR

model with R0 = Ra
0 for which there are not enough susceptible individuals

to sustain the epidemic. Thus, the fraction of infected individuals decreases

below the threshold value (see the inset in Fig. 2a). A series of waves therefore

follows, as long as Rn
0S(t) > 1. Fig. 2b shows that, as stated in Prop. 3.2, S(t)

decreases linearly while I(t) undergoes this sequence of waves.

Convergence of the solutions of the singularly perturbed system (5) to those

of the degenerate system (Eq. 8, ε = 0) for ε→ 0 is shown in Fig. 2c-d.

If we consider greater values of the parameter ε (about which proposition 3.3

does not say anything), the fraction of infected individuals reaches a higher

peak, and thus the fraction of susceptible individuals decreases in the time

interval (t1, t2) more than that of a SIR model with R0 = Ra
0. However, if Ra

0

is not too large, the fraction of susceptible individuals at time t = t2 can be

sufficient to generate at least a second epidemic wave (see Fig. 3a), that is

now quite relevant in size.

As observed previously, if Ra
0 is not sufficiently small (as required by Prop.

3.3) the fraction of susceptible individuals in the time interval (t1, t2) may

decrease so much that Rn
0S(t2) < 1. In this case, no additional waves will be

generated and only a change in the slope during the decaying phase may be

observed (see Fig. 3b).
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One may ask how large ε can be to give rise to a second epidemic wave of

the type shown in Fig. 3a. Fig. 4a shows a numerical approximation to the

minimum value, ε−1
min, of 1/ε giving rise to sequences of at least two epidemic

waves, as a function of the threshold parameter m. In this respect, it should

be observed that computing, given m, the value of ε at which multiple waves

start to occur is essentially equivalent to the problem of locating the zero (if it

exists) of a one-variable monotonic function, within a suitable interval. It can

be observed that ε−1
min decreases with m and ε−1

min ↘ 0 as m → +∞. Moreover,

m has to be larger than the theoretical minimum m = 1/Ip (shown as the

dotted vertical line in Fig. 4a) in the assumptions of Prop. 3.2; indeed ε−1
min

goes to ∞ (i.e. εmax goes to 0) as m → 1/Ip.

The following Proposition shows that, independently of ε, the fraction of sus-

ceptible individuals at the end of an epidemic described by an SIR model with

R0 = Rn
0 is always smaller than that obtained with model (5):

Proposition 3.4 S∞ > SSIR
∞ , where SSIR

∞ is the fraction of susceptible in-

dividuals at the end of an epidemic described by a classical SIR model with

transmission rate βn and S∞ is the fraction of susceptible individuals at the

end of an epidemic described by system (5).

Finally, for ε ≈ 0, the dependence of S∞ from m is clarified by the following:

Proposition 3.5 Under the assumptions Rn
0 > 1 and 1/m < Ip, where Ip =

1− 1
Rn

0
+ 1

Rn
0

log 1
Rn

0
, in the limit ε→ 0, μ = o(εk) with k ≥ 1, if Ra

0 satisfies the

inequalities 1 < Ra
0 < Rn

0 exp{−Ra
0(1− 1/Rn

0 )} then the fraction of susceptible

individuals at the end of the epidemic (S∞(m)) is an increasing function of m

and S∞(m) → 1/Rn
0 when 1/m→ 0.
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Proofs of Prop. 3.4 and 3.5 are in appendix A. In Fig. 4b the values of S∞

are reported for increasing values of 1/ε and for different choices of m. We

can see that S∞ is non monotonic in neither 1/ε nor in m. However, when

1/ε is sufficiently large, S∞ increases by decreasing 1/m and S∞ → 1/Rn
0

when 1/m → 0. For small values of 1/ε, S∞ is equivalent to that obtained by

employing a classical SIR model with R0 = Rn
0 .

We conclude the analysis of the proposed model by showing that, with suit-

able choices of parameters, its solutions can exhibit some interesting patterns

(unaccessible to any classical SIR model), that are morphologically compatible

with the evolution of past pandemics. For example, two epidemic waves can

be obtained (see Fig. 5a) in the same epidemic episode. However, more than

two epidemic waves can be obtained (as it was in fact observed in the 1918-19

Spanish pandemic). Moreover, the peak daily attack rate of the sequence of

waves is not necessarily decreasing over time (see Fig. 5b). Difference in slope

in the decaying phase (reminiscent of those observed in the Fall wave of the

1918-19 Spanish pandemic in the UK) can also be captured by our model (see

Fig. 5c and (Ciofi degli Atti et al., 2008) for a brief discussion). Finally, very

long decaying phases, making the epidemic curve strongly asymmetric, can

also be obtained (see Fig. 5d).

4 Discussion

When studying the spread of epidemics, behaviour and contact patterns are

typically considered “background” for the infection – i.e., they are not them-

selves variables of the dynamics. It is interesting, however, to address cases for

which the population behaviour cannot be merely considered as an indepen-
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dent (though time-varying) parameter, but it is better modelled as a variable

whose evolution influences, and is influenced by, the dynamics of the infection.

With the introduction of an explicit model for behavioural changes, infection

and behaviour both contribute to define the context for the other. Symmetry

between these two key-factors is therefore restored, and no by-principle preva-

lence is given (even formally) to one over the other. Not only the dynamics

of infection depends now on both the transmission and behaviour, but also

the behaviour dynamics depends on behaviour (and infection as well). This

is what makes evolutionary game theory especially suited to the case as com-

pared to classical game theory. In fact, application of the latter would result in

(rational) instantaneous best responses to the infection dynamics, regardless

of the current distribution of behavioural strategies.

The model we propose is (deliberately) simple, and exhibits a transmission

dynamics driven by an S → I → R scheme coupled with behavioural (contact)

patterns driven by imitation dynamics. Still, we were able to prove that the

model accounts for multiple waves occurring within the same outbreak, and

is able to explain “asymmetric waves”, i.e., infection waves whose rising and

decaying phases differ in slope. As an interesting feature, the attack rate for

the model is always smaller than that of the equivalent SIR model (obtained

by fixing x(t) = 1).

It should be observed that the model is based on two implicit, yet crucial

assumptions: a) that the benefits of behavioral changes be immediately clear to

the individuals; b) that individuals be able to recognize whether their contacts

are susceptible, infective or removed (since susceptible individuals can change

their behaviour only through encounters with other susceptible individuals).
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Consequently, our model applies better to severe epidemics, in which it is more

likely that these requirements are actually met.

Coming to discuss possible variants and extensions, a first remark concerns

the dynamics of behavioural changes that we have adopted. In particular, the

payoffs of the underlying game are modelled as the perceived risk of infection.

Our choice was for a simple linear dependence from the fraction of currently

infected individuals. Of course, a number of different options are available; for

example one may tie the perception of risk to the number of new infections,

or consider the actual probability of infection in place of perceived risk. Cu-

mulation of risk over time could also be addressed by introducing appropriate

memory mechanisms.

Independently of how the risk is specifically reckoned, the access to information

pertaining the relative efficacy of behaviours may also be collected across more

structured networks (e.g., the media). In this respect, considering different

time units adds some flexibility to the model, in that it allows for different

speeds in the diffusion of infection and behaviour. For example, tuning of key

parameter ε may be obtained on the basis of empirical evidence.

At first sight, introduction of irrational behaviour changes may appear unnec-

essary, and contrasting with the model simplicity we tried to keep through-

out. Yet, by avoiding extinction of allowed behaviours, irrational behaviour

overtakes an unrealistic (and undesirable) effect of strict imitation: the pool

of strategies from which an individual can choose is limited to those effec-

tively represented in the population. By allowing exploration of all possible

behaviours, irrational behaviours may account for erroneous decisions or id-

iosyncratic attitudes always present in human societies.
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The focus of this work is to investigate the effects that behavioural change

as a protective response to the state of infection has on the spread of a (se-

vere) epidemic. That’s why the behavioural change modelled here affects only

susceptible individuals (infected individuals may of course change behaviour

as an effect of their status, regardless of the state of epidemic). As a side re-

mark, notice that quarantine or isolation of infected individuals can already

be described by our model since they can be modelled as a reduction of the

transmission parameters.

A wider class of models can also be considered. The model of behavioural

changes can in fact be extended to infected individuals subdivided in symp-

tomatic and asymptomatic, for example treating the infected asymptomatics

as susceptibles for anything concerning the behavioural dynamics. A specific

class for latent individuals could also be introduced, thereby delaying the epi-

demic spread and affecting behavioural changes. In general, considering more

than two behavioural classes would provide greater flexibility and realism,

while of course opening to technical problems of increased complexity.

The class of models introduced in this paper may contribute to elucidate phe-

nomena for which a behavioural basis is apparent, as in reaction to alerts (Wallinga

and Teunis, 2004), or hypothesized, as for superspreading events (Lloyd-Smith

et al., 2005). In fact, empirical estimation of epidemic parameters (as, for

example, the basic reproduction number) or the comparison between inter-

vention strategies have to be carefully reconsidered whenever an underlying

behavioural dynamics is suspected. Finally, a better understanding of the dis-

tinction between spontaneous and induced changes of behaviour is key for the

implementation of more realistic and effective social distancing measures.
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A Proofs

Proof of Proposition 3.2

S1 Let us consider the set T1 = {0}∪{t̄ > 0 | I(t) < 1/m ∀ t ∈ (0, t̄)}. T1 �= ∅
and let us define t1 = sup T1. I(0) := I0 < 1/m implies that t1 > 0. Let us

consider any finite time t̃ < t1. For any t ∈ [0, t̃], the boundary–layer system

(9) with I = I(t) admits the asymptotically stable equilibrium x�(I), as

defined in Eq. (10) and x�(I) → 1 when μ → 0 (see Prop. 3.1). In fact,

I(t) < 1/m for each t ∈ [0, t̃]. Therefore, the solution of the degenerate

system (8) is equivalent to that of a classical SIR model with R0 = Rn
0

on the whole interval [0, t̃]. By Tikhonov theorem (Tikhonov, 1952), this is

also the approximation of the solution of system (5). Condition 1/m < Ip

guarantees that t1 < +∞. In fact, on (0, t1) system (5) is equivalent to an

SIR model with R0 = Rn
0 ; thus, if t1 = +∞, I(t) = Ip > 1/m for some
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finite time t > 0, against the hypothesis t1 = +∞. Moreover, by continuity

I(t1) = 1/m.

S2.1 Let us now assume that Ra
0S(t1) ≤ 1. As observed in the main text,

the only admissible value for the fraction of infected individuals is I(t) =

1/m + O(ε) as long as Rn
0S(t) > 1. Formally, if I(t) > 1/m in some interval

then x(t) would be very close to 0 in almost the whole interval. Thus, İ(t)

would be negative and I(t) would decrease below 1/m. On the other hand,

if I(t) < 1/m in some interval then x(t) would be very close to 1. Thus, İ(t)

would be positive and I(t) would increase over 1/m.

This has two relevant consequences, namely

• in the slower time scale system we have
dI

dt
(t) = 0;

• in the faster time scale system we have
dx

ds
(s) = 0 since μ = o(εk) with

k ≥ 1 (see Eq. 9). In particular, this implies that the under the hypotheses

of the Proposition, the dynamics of x is not faster than that of the epidemic

transmission when I(t) ≈ 1/m.

By setting İ(t) = 0 in the degenerate system (8) we obtain

x =
γ − βaS

βnS − βaS
. (A.1)

By substituting this value in the equation for S(t) and by setting I(t) = 1/m

we obtain

Ṡ(t) = −γ/m ,

whose explicit solution is S(t) = S(t1)− γ
m

(t−t1) as long as Rn
0S(t) > 1, that

is for all t ∈ (t1, t
′
2) where t′2 = t1 + m

γ
(S(t1)− 1

Rn
0
). Afterwards, the fraction

of infected I(t) decreases below 1/m and we can apply the line of reasoning

applied in S1 to show that the solution of system (5) approximates that of

27



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

an SIR model in its decaying phase with R0 = Rn
0 .

One can iterate the procedure to compute the O(ε) terms. In fact, let us

assume that 1 − mI = εv. The equation for x(t) allows us to estimate v.

Indeed, we can rewrite the equation for x(t) as:

ẋ = x(1− x)v + εk−1(1− 2x) , (A.2)

where, if k > 1, the second righthand term can be ignored. Both ẋ and

x(1 − x) can be explicitly computed from Eq. (A.1). By substituting the

resulting expressions in Eq. (A.2) and considering that 1 − mI = εv we

have:

1−mI =
εγ(Rn

0 − Ra
0)

m(SRn
0 − 1)(1− Ra

0S)
.

If k = 1 we can apply the same line of reasoning, though we do not obtain

such a simple expression for 1−mI.

Going on, one can obtain O(ε) corrections for x(t) and S(t) in (t1, t2), but

these are not really needed.

S2.2 If Ra
0S(t1) > 1 we are guaranteed that the epidemic is still in its growing

phase. Let us consider the set T2 = {t2} ∪ {t̄ > t2 | I(t) > 1/m∀ t ∈
(t2, t̄)}. We can now apply the same line of reasoning applied in S1. The

only difference is that x�(I) → 0. Note that t2 < +∞ since I(t) → 0 when

t→ +∞ and I(t2) = 1/m.

S2.2.1 Similar to S2.1, after having observed that Ra
0S(t2) < 1.

S2.2.2 Trivial. �

Lemma A.1 If Rn
0 > 1, the set of the solutions of the inequalities 1 < Ra

0 <

Rn
0 exp{−Ra

0(1− 1/Rn
0 )} is non empty.
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For fixed values of Rn
0 > 1, let us consider the function

hRn
0
(x) = x− Rn

0 exp{−x(1− 1/Rn
0 )} .

We have that hRn
0
(Rn

0 ) > 0. We are interested to study the sign of the func-

tion k(Rn
0 ) := hRn

0
(1) = 1 − Rn

0 exp{1/Rn
0 − 1}. We have that k(1) = 0,

limRn
0→∞ k(Rn

0 ) = −∞ and k̇(Rn
0 ) < 0. It follows that hRn

0
(1) < 0 for each

Rn
0 > 1. Therefore, it does exist R̄(Rn

0 ) ∈ (1, Rn
0 ) such that hRn

0
(R̄) = 0. It

follows that choosing Ra
0 with 1 < Ra

0 < R̄(Rn
0 ), we satisfy the inequality in

the thesis. �

Proof of Proposition 3.3

Let us consider the time interval [0, t1] where t1 is defined in the proof of

Prop. 3.2. Since the system is equivalent to a SIR model with R0 = Rn
0 , we

can employ the SIR invariant S(t) + I(t) − 1
Rn

0
log S(t) = const in [0, t1] to

compute S1 := S(t1). Since S(0) = 1 − I0, I(0) = I0 and I(t1) = 1/m it

follows that S1 is a zero of the function f(x) = x + 1
m
− 1

Rn
0

log x− 1 + O(I0),

where O(I0) = 1
Rn

0
log(1 − I0) can be ignored. Since f(1) = 1/m > 0 and

f(1/Rn
0 ) = 1/m− Ip < 0 (by hypothesis) it follows that it does exist S1 such

that f(S1) = 0 and

S1 ∈ (1/Rn
0 , 1) (A.3)

with lim1/m→0 S1 = 1 and lim1/m→Ip S1 = 1/Rn
0 . Since f(x) is increasing for

x > 1/Rn
0 the solution is unique.

Let us now assume that Ra
0 satisfies the inequalities 1 < Ra

0 < Rn
0 exp{−Ra

0(1−
1/Rn

0 )} (it is possible thanks to lemma A.1), which in particular implies Ra
0 <

Rn
0 . Since Rn

0 > 1/S1 (see Eq. (A.3)), we can distinguish two cases:
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• Case 1: Ra
0 > 1/S1 ,

• Case 2: Ra
0 ≤ 1/S1 .

In Case 2, we have a solution of type C1, satisfying the thesis.

Hence, we look only at Case 1. We are guaranteed that the epidemic is still in

its growing phase. Let us consider the time interval [t1, t2] where t2 is defined

in the proof of Prop. 3.2. Again, we can employ the SIR invariant in [t1, t2]

to compute S2 := S(t2). Since S(t1) and I(t1) are known and I(t2) = 1/m it

follows that S2 is a non trivial solution of the equation g(x) = g(S1) where

g(x) = x + 1
m
− 1

Ra
0

log x. Function g is convex, has a absolute minimum for

x = 1/Ra
0, is strictly decreasing for x < 1/Ra

0 and it is strictly increasing for

x > 1/Ra
0, limx→0 = +∞ and limx→+∞ = +∞. Since S1 > 1/Ra

0, a unique

S2 ∈ (0, 1/Ra
0) exists such that g(S2) = g(S1).

We now show that S2 > 1/Rn
0 . Since Ra

0 < Rn
0 exp{−Ra

0(1− 1/Rn
0 )} it follows

that:

1− 1

Ra
0

log
1

Ra
0

<
1

Rn
0

− 1

Ra
0

log
1

Rn
0

.

Since

1− 1

Ra
0

log
1

Ra
0

> S1 − 1

Ra
0

log S1

we have that g(S2) = g(S1) < g(1/Rn
0) and thus S2 > 1/Rn

0 since g is decreas-

ing in (0, 1/Ra
0).

We have thus demonstrated that Rn
0S2 > 1 which implies that we have a

solution of type C2.

Case 2. Trivially, we have a solution of type C1. �
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Lemma A.2 When S(t) = 1/Rn
0 , the solution of system (5) satisfies I(t) <

1− 1
Rn

0
+ 1

Rn
0

log 1
Rn

0
.

Equations of system (5) for I and S can be written in the general form

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ṡ = −β(t)SI

İ = −β(t)SI − γI

(A.4)

with β(t) ∈ [βa, βn]. It is easy to show that for system (A.4) the function

S(t) + I(t)− 1

Rn
0

log S(t)

is decreasing in t. It follows that

1 = S(0) + I(0)− 1

Rn
0

log S(0) > S(t) + I(t)− 1

Rn
0

log S(t) .

The thesis follows by substituting S(t) = 1/Rn
0 . �

Proof of Proposition 3.4

Let us define (SSIR(t), ISIR(t)) and (S(t), I(t)) as the fractions of susceptible

and infected individuals for a classical SIR model and for system (5), respec-

tively. In the phase plane (S, I) the solution of a classical SIR model goes

through the point ( 1
Rn

0
, 1 − 1

Rn
0

+ 1
Rn

0
log 1

Rn
0
), corresponding to the epidemic

peak. The solutions of system (5) pass through the point (1/Rn
0 , Ĩ) where

Ĩ < 1− 1
Rn

0
+ 1

Rn
0

log 1
Rn

0
thanks to lemma A.2.

Let us assume that S∞ < SSIR
∞ . It follows that in the phase plane the tra-

jectories of the two models must intersect at a certain point (S�, I�) with

S� < 1/Rn
0 . Moreover, at this point both S and I are decreasing and thus we
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can assume that the functions ISIR(SSIR) and I(S) are well defined, and that

dISIR

dSSIR
(S�) >

dI

dS
(S�) .

hence,

−1 +
γI�

S�I�βn
> −1 +

γI�

S�I�(βnx + βa(1− x))

which is absurd since βa < βn and x ∈ (0, 1). �

Proof of Proposition 3.5

Let us consider system (5). We have already seen that a time t3 exists such

that I(t3) = 1/m and S(t3) = 1/Rn
0 (see Prop. 3.2). Moreover, for t > t3

system (5) can be approximated by an SIR model with R0 = Rn
0 . Thus we can

employ the SIR invariant in [t3, +∞). It follows that S∞(m) is solution to the

equation:

S∞(m)− 1

Rn
0

log S∞(m) = S(t3)+I(t3)− 1

Rn
0

log S(t3) =
1

Rn
0

+
1

m
− 1

Rn
0

log
1

Rn
0

while SSIR
∞ is solution of the equation

SSIR
∞ − 1

Rn
0

log SSIR
∞ = 1 .

Therefore, we have to compare the solutions of the equations:

l(x) = 1 , l(x) = b(m)

where l(x) = x− 1
Rn

0
log x and b(m) = 1

Rn
0

+ 1
m
− 1

Rn
0

log 1
Rn

0
.

Condition 1/m < Ip implies that b(m) < 1. Function l is convex, has an

absolute minimum at x = 1/Rn
0 with l(1/Rn

0 ) < b(m), it is strictly decreasing

for x < 1/Rn
0 and limx→0+ = +∞.
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Since we are interested in solutions x < 1/Rn
0 , we have that b(m) < 1 implies

S∞(m) > SSIR
∞ . Moreover, b(m) is an decreasing function of m and thus S∞(m)

is an increasing function of m on ( 1
Ip

, +∞).

Finally, b(m) ↘ l(1/Rn
0 ) when m →∞; thus S∞(m) → 1/Rn

0 when m →∞.

�
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t 1 t 2 t 3t 2

1

2.2
2.2.2

2.2.1

2.1
1/m

t

I

Fig. 1. Possible temporal evolution of the fraction of infected individuals I. Regions

above and below 1/m correspond to x�(I) → 0 and x�(I) → 1, respectively. In the

two regions the solutions of system (5) approximate those of classical SIR models

with basic reproductive numbers R0 = Ra
0 and R0 = Rn

0 respectively.
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Fig. 2. a Fraction of infected individuals (solid bold line, scale on the left) and frac-

tion of individuals playing strategy bn (solid tiny line, scale on the right) over time

for system (5). Parameters employed: βn = 0.6, γ = 0.3, βa = 0.35, ε = 3.33 · 10−3,

m = 65, μ = 10−7. The dashed line represents the threshold value 1/m. b Fraction

of infected individuals (solid line, scale on the right) and susceptible individuals

(bold dot-dashed line, scale on the left) in the same example as in panel a. We also

plot the straight line S(t) = S(t1) − γ
m(t − t1) (tiny dot-dashed line, scale on the

left)to show the linearity of S(t) in [t2, t3] as predicted by Prop. 3.2. c Fraction

of infected individuals vs. time for different choices of the parameter ε (thin black

lines) and the piecewise solution of system (5) (heavy gray line) as in Fig. 1; other

parameters as in panel a. d Like panel c but with βa = 0.3; this implies Ra
0S(t1) < 1

so that the solution is of type C1. 35
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Fig. 3. Other possible behaviour of solutions of system (5). a As in Fig. 2a but with

ε = 0.25. b As in Fig. 2a, but with βa = 0.45.
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Fig. 4. a The minimum values of 1/ε giving rise to a sequence of at least two epidemic

waves are plotted against m, for system (5). Parameters employed: βn = 0.6, γ = 0.3,

βa = 0.33, μ = 10−7. The vertical dotted line represents the value of m such that

m = 1/Ip. Notice that for such choice of parameters, the conditions of Prop. 3.3

are satisfied, which implies that epidemic waves will occur for ε → 0. Notice how

multiple waves can occur even for “slow” changes in behaviour (large ε values). b S∞

as a function of 1/ε for different choices of m for system (5). Parameters employed:

βn = 0.6, γ = 0.3, βa = 0.35, μ = 10−7.
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Fig. 5. With suitable choices of parameters, the model (5) can account for interesting

epidemic patterns. Here 4 examples are shown to illustrate the potential of the

model. a Parameters employed: m = 150, βn = 0.8, βa = 0.4, γ = 0.5, μ = 0.01,

ε = 10. b Parameters employed: m = 300, βn = 1, βa = 0.48, γ = 0.5, μ = 10−10,

ε = 2. c Parameters employed: m = 100, βn = 0.6, βa = 0.54, γ = 0.5, μ = 10−5,

ε = 0.01. d Parameters employed: m = 100, βn = 0.8, βa = 0.6, γ = 0.5, μ = 10−5,

ε = 1.
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