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Dynamics of excitable elements with time-delayed

coupling

S. Rüdiger, L. Schimansky-Geier

Institut of Physics, Humboldt University, Newtonstr. 15, 12489 Berlin, Germany

Abstract

Motivated by recent experiments on intracellular calcium release we study the

effects of different types of coupling on the dynamics of arrays of excitable

elements. We intend to find a mechanism, which produces a sustained activity

of the elements following a spike. While instantaneous diffusive coupling does

not exhibit this property, we show that, for a coupling term with temporal

delay, signals from adjacent elements can serve as mutual excitations and thus

prolong the duration of the signal. We propose that time delayed coupling is

generated by diffusion between isolated clusters of calcium channels. Our model

could thus provide an explanation for two different release modes observed in

the Ca2+ system.

Key words: intracellular calcium dynamics; puff; FitzHugh-Nagumo model;

buffer protein; delay; excitability

1. Introduction

The dynamics of intracellular calcium is an important biological system,

where excitable dynamics are believed to be fundamental. The spatial and

temporal signals that are built on concentration changes of Ca2+ are central to

many cellular functions ranging from gene-expression to cell death. External

signals trigger the generation of IP3, which stimulates receptor channels (IP3R)

situated on the membrane of the endoplasmic reticulum (ER). Once stimulated,

the channels release Ca2+ from the ER in response to binding of Ca2+ ions to

the channel, and are thus subjected to a feedback mechanism (Falcke, 2004).

Preprint submitted to Elsevier January 29, 2009
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This Ca2+ loop, together with the coupling of channels by diffusing calcium,

produces complex but controlled spatio-temporal release patterns, allowing the

system to relay various signals to cell organelles.

An important aspect of the pattern generation is the fact that in many cells

the IP3R channels are grouped into clusters of 40-70 channels (Shuai et al.,

2007). Opening events can therefore involve single channels, few or all channels

in one cluster, or many channels from several clusters. The different release

modes are indeed observed experimentally and termed blip, puff (Yao & Parker,

1995; Callamaras & Parker, 2000), or global release, respectively. The fact that

the different modes result from different channel synchronization strengths was

studied in many publications and can be summarized as follows.

In the global mode, clusters of calcium ion channels are strongly coupled

and stimulate each other to generate a wave of receptor excitation and calcium

release. In the local mode (puffs), only the channels in individual clusters are

excited. The latter case can appear due to reduced cooperativity of channels

in different clusters. It was found that the addition of an exogenous buffer

protein (EGTA) compels the transition from global to local release (Callamaras

& Parker, 2000). The transition can be understood from the fact that additional

buffer reduces the spatial extent of calcium domains, thereby decreasing the

amount of Ca2+ diffusing to adjacent clusters.

The cooperativity of channels can therefore explain the transition from global

to local release, but it will not be the direct focus of this presentation. Instead

we here turn to the interesting and not yet understood aspect, that signals decay

with different time scales depending on the mode of calcium release (local or

global), that is, we study the temporal shape of the release. It was observed that

the decay of cluster activity is much faster in the local than in the global mode

(Jouaville et al., 1995; Callamaras & Parker, 2000; Dargan & Parker, 2003). If

the coupling of clusters in the global mode is indeed stronger, one could then

say, that the clusters keep each other active and therefore the activity of the

channels decays very slowly. In this paper we want to study how exactly this

mechanism of mutual excitation could be accomplished.
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To simplify the problem we will not use a detailed model for Ca2+ dynamics.

Such detailed models (see, for instance, Rüdiger et al. (2007)) consist of deter-

ministic sets of reaction-diffusion equations for the concentrations of Ca2+ and

various buffer proteins coupled to the release of Ca2+ from the channels. The

state of each channel (open or closed) is given by a master equation for channel

states, which can be solved by a stochastic scheme. The combined dynamics of

the model gives rise to concerted openings of channels inside of a cluster. How-

ever, for our current purpose it suffices to assume an individual cluster to be

one dynamical element. It has been shown by several authors that the collective

dynamics of channels in a cluster can be described by FitzHugh-Nagumo-type

equations (Meinhold & Schimansky-Geier, 2002; Li & Rinzel, 1994), where an

activator variable represents, for instance, the calcium concentration and an

inhibitor variable stands for the number of inhibited channels. Thul & Falcke

(2004), particularly, showed that deterministic oscillatory local dynamics may

be difficult to achieve in realistic models of clusters, given the large local con-

centrations of calcium in the surrounding of the channels. Consequently, recent

models are based on excitability and rely on fluctuations in the channel gating

for initiation of release. Since excitable behavior is prototypically modeled by

FitzHugh-Nagumo (FHN) equations, we will in this work identify a single clus-

ter with an excitable FHN element. To mimic the coupling of clusters of Ca2+

channels by diffusing Ca2+we will consider arrays of FHN elements coupled to

their nearest neighbors.

The form of this coupling is at the focus of our work. Besides standard

diffusive behavior we study temporally delayed coupling and find that only the

latter produces distinct local and global relaxation times. Delayed coupling can

be expected for the calcium system since clusters are separated by receptor-free

regions, where calcium (and calcium bound buffer) diffuses but does not acti-

vate further release. Signals from active clusters arrive at neighboring clusters

after temporal delay, which is the time the calcium needs to diffuse towards

it. Therefore, coupling of excitable elements in the calcium system possesses

specific properties different from standard diffusion and may markedly shape
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spatio-temporal patterns.

The FHN model is an exemplary system to describe the dynamics of excitable

behavior in neurons. In our study it represents a large class of similar systems,

where we expect the delay mechanism to work. We believe that the effect

described in this paper is applicable to other systems, such as arrays of coupled

neurons (modeled, for instance, by Hodgkin-Huxley dynamics, Keener & Sneyd

(1998)).

2. An array with diffusive coupling

We begin with an array of n diffusively coupled FHN elements:

∂vi

∂t
= vi(1− vi)(vi − a)− wi − w0 + σξi + c(vi−1 − 2vi + vi+1) (1)

∂wi

∂t
= ε(vi − γwi) (2)

where i runs from 1 to n and the ξi are Gaussian white noise terms with zero

mean and unit variance. The coupling between activator components is diffusive

and corresponds to the discretization of a Laplace diffusion operator. That is,

this first model approximates a spatially distributed excitable medium. For the

boundary elements i = 1 and n no-flux boundary conditions are used and the

coupling term for i = 1 is replaced by

c(v2 − v1) (3)

and a similar term for i = n.

For a numerical analysis we use n = 10 elements. All simulations were per-

formed with XPPAUT (Ermentrout, 2002). We chose the following parameters

if not stated otherwise: a = 0.1, ε = 0.01 (time scale separation), γ = 0.5,

σ = 0.02 (noise strength), w0 = −0.1. In the original context of neural spike

excitation, w0 represents an external stimulating current. For the intracellular

dynamics of calcium, this term can be associated with the stimulating effect of

IP3 in the sense that a large negative value of w0 yields a transition from an

excitable regime to an oscillatory one (Atri et al., 1993). We therefore identify

the increase of IP3 with a decrease of w0.
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Without coupling, c = 0, the individual elements exhibit the well-known

excitation oscillations. Briefly, there exists a stable fixed-point which attracts

trajectories from the neighborhood. For larger perturbations away from the

fixed point, however, the trajectories undergo large excursions before reaching

the fixed point again. In the presence of sufficiently high levels of noise in the

system, the excursions, or activity spikes, occur repeatedly. They can appear

similar to regular oscillations under certain conditions. Such phenomena and

its characterizations have been subject of many research efforts in recent time

(Lindner et al., 2004).

Turning on the coupling with strength c > 0 leads to synchronization of the

individual elements and their spikes. Three simulations with c = 0.01, c = 0.1

and c = 1 are shown in Fig. 1. Time runs from top to bottom. For small

coupling strength the elements fire in an unorganized way (a). If the coupling

strength is increased waves appear (b), which become smoother with increasing

coupling (c). The diffusion of activator thus leads to a strong synchronization of

the individual elements. This effect is well-studied, in particular in the context

of noisy media and generation of coherent signals by the coupling (Zhou et al.,

2001).

This consequence of diffusion in biochemical systems is also of great impor-

tance for the Ca2+ system. As described in the introduction, calcium is released

in isolated puffs or in a synchronized way. The transition from puffs to waves is

typically achieved by increasing the excitability of the system, i.e., by increasing

the IP3 level. But the transition to correlated activity can be reversed by addi-

tion of EGTA buffer molecules. Since EGTA is assumed to reduce the effective

diffusion coefficient of Ca2+ the addition of EGTA thus acts as reduction of the

coupling coefficient c. One can therefore have a highly responsive system (the

excitability of individual channels, or clusters, is still high, as the IP3 level may

be chosen large) with strongly uncorrelated activity of clusters.

In our simulations we have used two strategies to study localized and syn-

chronized signals. One way is to prepare the system in arbitrary initial condi-

tions and let the system evolve in an unperturbed way. The noise provides the
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necessary perturbations for repeated excitation. We then record one particular

time interval showing a typical single wave or activity peak. This strategy was

used to generate Fig. 1. A second strategy is to prepare the system in partic-

ular initial conditions. Here we set all variables vi, wi to zero, which is the

fixed point for w0 = 0 corresponding to a small IP3 concentration. However,

for w0 = −0.1 the origin is outside of the basin of attraction of the shifted fixed

point. Therefore all elements will fire at least once, while the noise term is not

strictly necessary. This method was used for two reasons. First, it is more easy

to compare runs with different parameters, e.g. different c. Second, this “proto-

col” mimics the experimental protocol for calcium signals in oocytes. In these

experiments (Dargan & Parker, 2003) the waves are triggered by step-increasing

[IP3] (and sometimes additional forced local liberation of Ca2+). Most channels

are thus in a rest state corresponding to the prior very low IP3 level, which is

equivalent to the zero initial condition.

The conclusion from simulations with both setups is that an increase of

the coupling strength, or the activator diffusion, leads to the elements fire in a

synchronized way. However, closer to the main point of this study, one also finds

that the local dynamics remain unchanged. This fact can be seen clearly from

Fig. 2. The plot shows the evolution of a single peak for three values of c and

demonstrates that there is no substantial difference between the three spikes.

Particularly, the three spikes last for approximately the same time (about 50

t.u.).

This observation can be understood from the following argument. In the

limit of very large coupling all cells fire completely synchronized and therefore

the diffusive coupling term vanishes:

vi−1 − 2vi + vi+1 = 0, (complete synchronization) (4)

Accordingly, for large coupling the dynamics of an individual element is similar

to the dynamics of the uncoupled element.

Furthermore, if one plots the average signal (averaged activator value v̄ =
∑

vi/10) the coupling tends to shorten the duration of the spike (data not
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shown). This happens because the firing time of each element, i.e., the time

when the activator concentration starts to rise, is almost the same for all ele-

ments in the case of strong coupling, whereas for small coupling the individual

firing times are spread out over a time interval. Taken together, these observa-

tions provide a strong contrast to the finding for Ca2+ waves, where a reduced

coupling (higher EGTA concentration) leads to strongly shortened responses.

We will therefore consider a different type of coupling in the next section.

3. An array with time-delayed coupling

We will now study a system of excitable elements with delayed coupling in

the form:

∂vi

∂t
= vi(1− vi)(vi − a)− wi − w0 + σξi (5)

+c Max(0, vi−1(t− τ) − vi)) + c Max(0, vi+1(t− τ)− vi))

∂wi

∂t
= ε(vi − γwi) (6)

where i runs from 1 to n (and no-flux boundary conditions are used at elements

i = 1 and n as described in the previous section). The form of the coupling

is similar to the discrete Laplacian from the previous section, but now the

two activator quantities from adjacent lattice sites are delayed by a time τ .

We furthermore introduce the function Max(a, b), which gives the maximum

value of a and b and ensures that the coupling term cannot be negative. The

motivation for this function will be discussed at the end of this section.

Three simulations with τ = 15, and c = 0.01, c = 0.1 and c = 1 are shown

in Fig. 3 (other parameters as before). Similar to the previous case of standard

diffusive coupling the elements appear to be more synchronized with increasing

c, although the coupling may be weakened compared to the no-delay case. What

is more important is that for c = 1 the excitation persists for a much longer

time (c), which means that a second time scale of signal decay is generated by

the coupling. The model with delayed coupling is thus able to produce not only

a smooth signal but also a much slower decay of activity for large c.
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To understand the underlying mechanism for the extension of spikes we will

next plot the local dynamics of a single element in the phase space of activator

and inhibitor. Fig. 4 shows the nullclines of an uncoupled system (c = 0), i.e.,

the curves ∂tv = 0 and ∂tw = 0. It also visualizes typical trajectories of v5 and

w5 for small and large coupling strength. The trajectory for c = 0.02 (small

coupling) appears to be very similar to the usual relaxation spikes, that is, the

trajectory jumps quickly from the fixed point to the right branch of the activator

nullcline, then slowly climbs towards larger inhibition, jumps back shortly after

passing the maximum value of the right nullcline branch, and travels back along

the left branch. In contrast, for c = 2.0 the trajectory continues to much larger

values of the inhibitor w, which suggests the simultaneous stimulation from the

adjacent lattice sites prevents the element to switch to lower activator levels.

To obtain figs. 3 and 4 we have used the same kind of simulation as for Fig. 1,

that is, selecting for visualization a time interval of typical behavior from a much

longer run. In the following we will study the responses after setting the initial

values of all variables to the origin (stimulation protocol).

Fig. 5 shows the average v̄ for four different values of c using the stimulation

initial conditions. The signal becomes considerably longer with increasing cou-

pling. In terms of full duration at half maximum (FDHM) the duration extends

from approximately 40 to 120 t.u.

In Fig. 6 we have plotted the FDHM for different values of time delay τ . It

is apparent that the largest effect occurs for time delays between 20 and 30. A

comparison with Fig. 2 shows that this corresponds to about half of the spike

duration. It appears that the mechanism works best if adjacent elements fire in

an alternating way such that an element will fire about 50 t.u. after its neighbor

has fired. The 50 t.u. consist of 25 t.u. until which a neighboring element has

reached its peak activator level and the 25 t.u. of delay.

We will now discuss the significance of the Max() function in equation (5).

We have found that the described effect, i.e., the extension of the signal, is

also possible with a diffusive-delayed term: c(vi−1(t− τ)− 2vi + vi+1(t− τ)) if

the stimulation protocol is used. In the case of a long simulation however, it
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difficult to find a regime of repeated spikes. In this case the long-time dynamics

evolves towards an active rest state without spikes. This point provides no

strong objection to our model, since we aim to explain experiments based on

the stimulation protocol, and we can do so without the Max() function. As we

want to use our model in the future to study repeated spiking of clusters we

decided to use the model including the Max() function.

A further motivation for the Max() function originates from the details of the

calcium diffusion between clusters of IP3 channels in oocytes. Since the clusters

are located in a small layer close to the cell membrane, most of the Ca2+ diffuses

towards the inner bulk of the cell. Only a small amount of Ca2+ diffuses along

the layer towards the neighboring clusters. Therefore, if a cluster is already

active and Ca2+ has accumulated locally to high concentrations (i.e. vi is large),

the amount of Ca2+ lost toward the bulk is already large and independent on the

state of the neighboring clusters. The activity of the cluster should therefore

not be depressed by an inactive neighboring cluster (vi±1 small) and in this case

the coupling term should be zero. This condition is satisfied by the coupling

term in equations (5). On the other hand, if a cluster is inactive (i.e. vi is

small), the relatively small amount received by the cluster by an active adjacent

cluster (vi±1 large) can be crucial for the excitation of the cluster. In this sense,

the diffusion of activating Ca2+ in the IP3 channel problem is different from the

diffusion in other problems of biochemical patterning.

4. Discussion

We have shown in this paper, that the temporal shape of an excited pulse

can be changed substantially with a time-delayed coupling. As described in

the introduction, the motivation for the study comes from the existence of two

time-scales in the decay of calcium release spikes. Our results provide a first

evidence that the simple tuning of the cooperativity of clusters of channels

might be sufficient to switch between the two different release durations. In

other words, for the mechanism it is not necessary to assume a change in any

of the parameters of local dynamics.
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This behavior is especially important in view of the action of slow calcium

binding buffers (e.g. EGTA buffer, Dargan & Parker (2003)). It is possible

that the buffer proteins affect the local dynamics of the channels in a cluster of

channels by binding calcium ions. On the other hand the buffer certainly also

affects the amount of calcium that diffuses to the next cluster at a distance of a

few microns. If one associates the dynamics of the single cluster with a discrete

excitable element in the spirit of an FHN element, our finding implies that

the action of buffer on coupling of clusters is sufficient to explain the modified

time-course of calcium release upon the addition of EGTA.

On the other hand it remains to discuss a corresponding mechanism for the

effect of fast Ca2+ binding protein such as the BAPTA buffer. Experimentally,

the addition of BAPTA leads to a reduction of the spike amplitude and a longer

release tail (Dargan & Parker, 2003). Furthermore, due to the large reaction

rates of BAPTA (around 100 times higher than EGTA) it appears possible that

this buffer disrupts the communication of channels within each cluster. In the

framework exploited in our approach this means that the dynamics of each

excitable element is locally changed, i.e., parameters other than concerning the

coupling are also changed. For instance, it is conceivable that the individual

channels inside of a cluster are decoupled by reduction of Ca2+ micro-domains

around the channels. Correspondingly, an element/cluster may become less

excitable since a single, randomly firing channel has a reduced probability to

ignite adjacent channels.

To verify our arguments we have used two different protocols of simulations.

In a first protocol, we let the system run for a long time until the dynamics

relaxes to a stationary behavior. If the coupling constant is large enough one

still finds orchestrated activity of all elements or waves. In a second protocol

we have set the initial conditions of each element to a point just below to the

fixed point, outside of its basin of attraction. After starting the simulation,

the trajectory goes off to the right branch of activator nullcline thus initiating a

pulse. The motivation for this method is that in experiments the calcium release

is stimulated by increase of IP3. IP3 concentration corresponds to one or more
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parameters of a dynamical model. The simple-most way to incorporate it into

the FHN model is to associate the IP3 level with the applied current w0. An

increase of [IP3] may shift the local fixed point such that after the [IP3] increase

the old fixed point lies outside of the basin of attraction. In that case the

evolution is bound to produce the release pulse as observed in experiments and

in our “stimulation” protocol. Alternatively, if [IP3] is changed only slightly, the

old state becomes to lie closer to the basin’s boundary and a further fluctuation

can initiate a pulse. We also note, that a repeated sequence of such IP3 increases

can lead to a sequence of release pulses. This phenomenon is known as quantal

release in the calcium literature (Callamaras & Parker, 2000) and will be studied

in the context of a FHN model in the future.

We finally mention that we have chosen the prototypical FHN model to

demonstrate the effect of delay in the most general form. The observed change

in spike form may thus also be significant for different systems such as the ryan-

odine receptor dynamics (Williams et al., 2007) or signal transmission between

neurons (Keener & Sneyd, 1998; Hutt & Atay, 2005) . However, for sake of com-

parison with experiments on the IP3 receptor, we are now expanding this work

by analysis of models that are biologically more realistic. One important exam-

ple for such is model are the Li-Rinzel equations (Li & Rinzel, 1994). We are

presently analyzing both the case of delay-coupled discrete Li-Rinzel elements as

well as the case of localized Li-Rinzel elements in a spatially continuous calcium

bath (to be published).
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Figure 1.

Space-time plots of simulations for an array with diffusive coupling of in-

creasing strength: c = 0.01 (a), c = 0.1 (b), c = 1 (c).

Figure 2.

Evolution of v6 during a single spike for different values of coupling strength

c: 0.01 (dotted), 0.1 (dashed), 1.0 (solid). The gray arrows show that the

duration of the spikes is unaffected by a change in the coupling constant (tdur ≈

26 t.u.) In other words, the strength of synchronization cannot be inferred from

the local dynamics.

Figure 3.

Simulations for time-delayed coupling with different coupling strength: c =

0.01 (a), c = 0.1 (b), c = 1 (c). The time delay was set to τ = 15.

Figure 4.

Nullclines of a single, uncoupled element (gray s-shaped curve: activator;

slanted line: inhibitor) and dynamics of the element i = 5 for small and large

coupling strength. For small coupling strength (c = 0.02, dashed line) the

evolution follows the usual relaxation oscillation. For large coupling strength

(c = 2, solid line) the inhibitor grows for much longer time until a transition

back to small activator levels occurs. For these simulations the noise level was

set to σ = 0.08.

Figure 5.

The dynamics of activator levels averaged over all 10 elements. A wave is

initiated by setting both variables of all elements to zero. We show the evolution

for four different values of coupling strength. Note that the peak value remains

approximately constant for all c values (noise level σ = 0.08).

Figure 6.

The full duration at half maximum time for different values of delay τ . The

coupling constant was set to c = 1. Note that the strongest effect takes place
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at delay times comparable with the duration of an individual pulse (compare

Fig. 2).
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