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Abstract

We consider the Wright Fisher model for a finite population of diploid sexual
organisms where selection acts at a locus with multiple alleles. The mathematical
description of a such a model requires vectors and matrices of a multidimensional
nature, and hence has a considerable level of complexity. In the present work we
avoid this complexity by introducing a simple mathematical transformation. This
yields a description of the model in terms of ordinary vectors and ordinary matrices,
thereby allowing standard linear algebra techniques to be directly employed. The new
description yields a common mathematical representation of the Wright Fisher model
that applies for arbitrary numbers of alleles. Within this framework, it is shown how
the dynamics decomposes into component parts that are responsible for the different
possible transitions of segregating and fixed populations, thereby allowing a clearer
understanding of the population dynamics. This decomposition allows expressions to
be directly derived for the mean time of fixation, the mean time of segregation (i.e.,
the sojourn time) and the probability of fixation. Numerical methods are discussed

for the evaluation of these quantities.

Key words: random genetic drift; time of fixation; probability of fixation; multiple

alleles; sojourn time; theoretical population genetics



1 Introduction

Genetic drift is a stochastic process that occurs in finite populations and causes gene
frequencies to undergo a form of random walk. The Wright Fisher model (Fisher
1922, Wright 1931) provides a conceptually simple and straightforward approach to
the calculation of the effects of genetic drift. Beyond this, it provides a solid foun-
dation from which we can compare approximations or other approaches to genetic
drift. In the present work we consider the explicit formulation of the Wright Fisher
model when there are more than two alleles at a locus of interest. The genetic drift
of multiple alleles is of direct relevance to population genetics and evolution (see e.g.,
Bazykin et al 2004) as well as having applications in other areas such as language
change (Baxter et al 2006).

In the present work, we focus, virtually completely, on the fixation of alleles
within populations; a process which underlies evolutionary adaptation. To this end,
we include selection in the dynamics of a population, but exclude processes which
prevent fixation, that is to say migration and mutation.

Even with the exclusion of migration and mutation, the genetic drift of multi-
ple alleles still has a substantial degree of complexity. For example, if two alleles
at a locus are segregating in a population, and a new allele arises at the locus (by
mutation), then ignoring further mutations, the final outcome is the result of the in-
terplay of drift and selection. The three segregating alleles at the locus may interfere
with one another in potentially complicated ways, because of the deterministic and
stochastic processes occurring, and a variety of outcomes are generally possible.

In addition to a complexity of dynamics, multiple alleles lead to problems com-



putational complexity. For example, when the number of different types of alleles, or
the number of adults maintained in a population are increased, there is a substantial
combinatoric increase in the size of the problem. This motivates approximations,
such as a diffusion approach (not considered here), where the combinatorially in-
flated size of the full model can be replaced by the possibly more tractable solution
of a diffusion equation.

The present work investigates the formulation and solution of multiple allele drift
problems. We note that Wright Fisher models, for different numbers of alleles, require
different mathematical descriptions, such as requiring transition matrices of different
dimensions. The investigation carried out here, amongst other things, shows what
key features of multiple allele drift problems are common, and transcend the precise

number of alleles at a locus.

2 The Wright Fisher model with multiple alleles

Consider a single locus of a panmictic diploid population with K alleles that are
labelled A;, As,..., Ag. The population evolves in discrete generations. In the adults
of generation ¢t (= 0, 1,2,3,...), the proportion of all alleles that are allele A; is written
X;(t). This is the relative frequency (henceforth termed frequency) of allele A; in
adults.

In an effectively infinite population, the frequencies of all alleles in adults change

deterministically, according to the equation

X(t+1)=X(t)+ D(X(t)) (1)
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where boldface quantities, such as X(t), denote K component vectors. Thus in
Eq. (1), X(t) = (Xi(t), Xa(t), ..., Xk(t)), D(x) = (D1(x), Da(%x), ..., Dx(x)) and
the D;(x)’s generally incorporate processes that change allele frequencies, that is
to say mutation, migration and selection. In the present work we focus attention
on properties of fixation, and hence concentrate on the case where the D;(x)’s just
incorporate effects of selection.

The deterministic change of allele frequencies in adults, given in Eq. (1), does
not assume selection acts additively (i.e., without dominance), as is shown in the
derivation of this equation in Appendix A. However, the phenomena of interest in
the current work are the stochastic changes of allele frequencies which occur when
population size is finite, and here the precise nature of selection can be significant,
as we discuss below.

For definiteness, we adopt the following lifecycle for the processes taking place in



one generation.

Generation ¢ adults

l gamete production
gametes

l random mating, followed

by the death of all adults

zygotes

l viability selection
juveniles

l number regulation

Generation ¢ + 1 adults.

Within the lifecycle we assume that a very large number zygotes of all genotypes
are produced, so that viability selection is essentially deterministic in character. The
juveniles surviving viability selection undergo a non-selective process of ecological
thinning. This leads to an adult population containing N individuals. Thinning
effectively corresponds to randomly picking a set of N individuals, without replace-
ment, to survive and constitute the set of adults that proceed to reproduce. It results
in random variation in the number of offspring produced by the individuals surviving
selection and the frequencies of different alleles in adults, X;(¢), becoming random
variables that can take the values 0/ (2N),1/(2N),..,2N/(2N).

The random sampling without replacement, that is associated with thinning,

results in the frequencies of adult genotypes having a multivariate hypergeometric



distribution (for properties of this distribution, see e.g. Freund et. al. 1999). We as-
sume the population size of adults, N, is a small fraction of the number of individuals
present immediately after viability selection. Given this, the multivariate hyperge-
ometric distribution of adult genotypes can be well approximated by a multinomial
distribution in much the same way that a hypergeometric distribution can be ap-
proximated by a binomial distribution (Haigh 2002).

The distribution of allele frequencies in adults is directly determined from the
distribution of adult genotypes, which is approximately multinomial. However, when
thinning occurs in diploid individuals, it does not automatically follow that the
distribution of alleles in adults will also be multinomial. This point is made by
Nagylaki (1992, p. 252), where he points out that a multinomial distribution of
allele frequencies is only guaranteed to follow from multiplicative viabilities, i.e., in
the absence of dominance at the locus in question.

To illustrate how dominance can disrupt the occurrence of a “standard” Wright
Fisher distribution of alleles in adults, namely a binomial distribution when there
are K = 2 alleles and a multinomial distribution when there are K > 2 alleles,
consider a locus with K =2 alleles. At this locus, assume both types of homozygote
have zero viability (i.e., there is complete overdominance). In this case, the only
individuals surviving selection are heterozygotes, and randomly reducing the number
of these to N, by non selective thinning, has no effect on allele frequencies, which
are equal before and after thinning. This example illustrates how dominance can
have significant effects on the distribution of allele frequencies in adults, and may

invalidate the Wright Fisher model. Indeed, in this example, the effects of dominance



completely prevent the occurrence of genetic drift.

Generally, models of genetic drift, where allele frequencies in diploid adults have
multinomial distribution, amounts to the absence or neglect of dominance at the
locus under selection (no such absence of dominance is required if thinning occurs in
a haploid stage). If dominance is a significant aspect of selection, then frequencies of
genotypes, rather than alleles, need to be followed. While we do not do so here, the
methodology introduced in the following Section may be employed in such a case,
at a significant computational cost. In the present work, we assume a negligible
level dominance (or the absence of dominance) so allele frequencies in adults have
a multinomial distribution. As a consequence, when the frequencies in generation ¢
are given by X(¢), the frequencies in the following generation are given by

X(t+1) = % 2)

where M = (M, Ms, ..., M) denotes a set of random integers drawn from a multino-
mial distribution. The parameters describing this distribution are 2N and X(t) +
D(X(t)), which represent, respectively, the number of trials associated with a multino-
mial distribution and the probabilities of the K different outcomes. In this way we
arrive at a variant of a Wright Fisher model (Fisher 1922, Wright 1931) with multiple
alleles.

The statistical description of allele frequencies in such a Wright Fisher model

arises from consideration of a very large number of replicate populations, each of



which maintains N adults each generation. Let

n = (ny,ng,...,Ng) (3)

represent the numbers of the K different types of alleles present in adults, in a par-
ticular replicate population. As such, the elements of n can take all possible integral
values in the range 0 to 2NN, subject to the restriction that their sum, Z]K:l n;, is
the total number of alleles in a population, namely 2/N.

The possible values of the allele frequencies, X(t), are given by x, where

. (n1 N9y TLK) o n (4)
*n = \oN'2N 2N/ T aNe

Furthermore, if, in generation ¢, the set of frequencies, X(t¢), coincide with x,, then
2N x X(t+1) is a random variable with a multinomial distribution with parameters
2N and X + D(xm).

We write the probability that X(#) has the value x,, as F,(¢). The corresponding

probability distribution in generation ¢ + 1 is given by

W(t+1) Z Voo P ( (5)

where V;, m is a transition probability, namely the probability that X (¢ + 1) equals
Xn, given that X(¢) equals xp,. The transition probability takes the multinomial

form

Vn,m _ (2N)‘ Hil ([Xm + D(Xmﬂz)m (6)



where [Xm + D(xm)]; denotes the i’th element of the vector xm + D (Xm).

When there are more than two types of alleles, we can think of Eq. (5) as an
equation involving a multidimensional transition matrix (not a conventional, two di-
mensional matrix), where an element of this multidimensional matrix, namely the
transition probability V}, m, is labelled by indices n and m that are not single num-
bers, but K dimensional vectors. There is the further complication that the vector
“indices”, such as n, have components whose sum is constrained to have the value

2N.

3 Conversion to an ordinary matrix equation

In order to extract the general structure of a multiple allele problem in a transparent
and useful form, we convert Eq. (5) to an ordinary matrix equation. In doing so,
the transformed equation does not have indices which are vectors, unlike the quan-
tities in Eq. (5), but rather it has indices which are single numbers (scalars). This
resulting ordinary matrix equation allows us to exploit standard matrix approaches
or computational packages for matrices.

Our method of conversion involves the introduction of an indexing function /(n)
which yields a unique number — a scalar index — associated with each distinct “vector
index” n. The total number of distinct n’s is given by I,,.x and for a population of

size N, with K types of alleles at the locus in question, we have

I (2N + K —1)!
T QN)(K -1
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As n ranges over all allowed values, the indexing function, I(n), is explicitly con-
structed so that it takes the values 1,2, .., [ ax.

The ordinary matrices, to which the multiple allele problem is converted, are of
size of . X Imax and as might be expected, the value of I,,., rapidly increases with
N and K. For example, in a two allele model (K = 2) we have the familiar result
Inax = (2N + 1). By contrast, when K = 3 or K = 4, we find [,,,x takes the values
(2N +2)(2N +1)/2 or (2N + 3)(2N + 2)(2N + 1)/6, which are of order N? or N3,
respectively.

The indexing function, I(n), can be simply constructed by making a list of all
of the distinct n’s of the form n = (nq,na, ..., nx) whose elements are non negative
integers that sum to 2/N. The location of a given n in the list is its index. To make
the mathematical structure of multiple allele drift explicit, we shall arrange the list
so that the first K members (i.e., the first K of the n’s) are specified. In particular,
for » = 1,2,..., K, the 7’th vector n in the list corresponds to a population where
where all 2N alleles are allele A; — i.e., allele A; is fixed. The remaining vectors in
the list (at positions K + 1, K + 2, ..., I.x) can have an arbitrary order. As an
example, when there are K = 3 different alleles and the population size is N = 1,
we consider the set of all n’s with n; 4+ ns + n3 = 2 and can use the indexing scheme

of Table 1, although other forms of I(n) are obviously possible.

The indexing function, /(n), associates a unique integer in the range 1 to I, with

each possible value of the vector index, n. It is possible to take the opposite point of
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view, and associate a unique vector, namely a vector index, with each integer in the
range 1 to [,.x. We write the vector unique vector index associated with integer ¢ as
nl!. Using the example of Table 1 we then have that nl'/ = (2,0,0), n® = (0,2,0),

..., nl% = (1,1,0). The general relations between I(n) and nl/ are

@) = 8)

nf@™l — (9)

and these bear a superficial resemblance to the relation between logarithms and
exponentials.

We can use Eq. (9) to construct a column vector f(z), with /., elements, that
contains identical information to the distribution F,(¢). The elements of the vector

f(t), namely f;(t), are given by

fl(t) I~ Fn[i] (t)7 i=1,2, ..., Imax (10)

while the reverse transformation, from the f;(¢) to the F,(t), is simply

Fa(t) = frm) (). (11)

We can thus freely convert between quantities with vector and scalar indices, i.e.,
between the original form of the model, and the representation in terms of quantities

with scalar indices.
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As shown in Appendix B, the conversion of Eq. (5), to an ordinary matrix
equation, leads to the appearance of an I, X Iha.x matrix, which we write as v, and

has elements

Vij = nlid nlbil, Zu.] = 1727 “'7-[Inax- (12)
This is used to write Eq. (5) in the completely equivalent form f;(t+1) = ,irj‘ Uk fr(t),
which in matrix notation reads

£(t+ 1) = vE(t). (13)

This equation puts us in the familiar territory of an equation involving standard

objects: column vectors and a two dimensional matrix, and has the solution
f(t) = v'£(0). (14)

Working with this solution, which just involves the conventional matrix v, means
we can use standard linear algebra techniques to numerically determine all of the
properties of f(¢). We can then use Eq. (11) to return to the original, multiple-allele
representation, to calculate quantities of interest — or, indeed, we can calculate such

quantities directly from f(t).

4 Structure of the dynamics

While it is possible to directly work with Eq. (14) and utilise standard techniques

to solve it, more information and insight can be obtained by writing the matrix v
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in a form that expresses the underlying structure of the problem. Given that only
selection occurs in the dynamics, it follows that all alleles have the possibility of

fixing, and the matrix v must, under the indexing scheme adopted, have the form

v = : (15)

Here 1, u, 0 and w are all matrices, and with

K = Lpax — K (16)

1is a K x K identity matrix, 0 is an K’ x K matrix of zeros while u and w are
matrices of sizes K x K’ and K’ x K’ respectively that can be directly read off from
the form of v, once this matrix has been calculated.

As we show below, the interpretation of the nontrivial matrices u and w ap-
pearing in Eq. (15) is that (i) the matrix u governs transitions of a population
from being segregating to becoming fixed, and contains the probabilities of these
processes and (ii) the matrix w describes pure “segregation” dynamics, i.e., it con-
tains the probabilities of transitions between different states of a population that
continues to segregate.

To establish why the form for v in Eq. (15) must arise from the dynamics, and

the interpretation of the various block matrices in Eq. (15), we note that the vector

14



f(t) can be written as

where:

(i) fixed(¢) is a column vector with K elements that give the probabilities of a
population containing only a single type of allele by the end generation ¢, i.e., of
being fixed.

(ii) £58(¢) is a column vector with K’ elements that give the frequencies of pop-
ulations where more than one type of allele is segregating at generation t¢.

It follows that under the irreversible dynamics of fixation, the only processes
that can occur amongst the replicate populations are (a) segregating populations in
one generation contributing to both segregating and fixed populations in the follow-
ing generation and (b) fixed populations in one generation merely producing fixed
populations, from one generation to the next.

Schematically:
fixed —  fixed

segregating — segregating + fixed.

The action of viof Eq. (15) on f(¢) of Eq. (17), to produce f(t + 1) is

fﬁxed t + 1 fﬁxed t + ufseg t
(t+1) | [ £ + s s
£e5 (¢ 1 1) wE*E(¢)

which exactly reflects how some probability flows from segregating populations to

15



fixed populations, but not vice versa.

Let us assume that all replicate populations start at time ¢ = 0 with the same
definite set of frequencies, x,. We shall restrict all further considerations to x, which
do not correspond to fixed populations. Thus f*°4(0) vanishes, while £5°¢(0) has only
one non-zero element, corresponding to the set of frequencies x,, and flsfi) (0) =1.

For t = 1,2, ..., the solution of Eq. (18) can be written in the form

FoE(t) = wlEeE(0) (19)
flixed (1) — uiwr—lfsegm). (20)

5 Fixation probability and time to fixation

In Appendix C we provide derivations of three important quantities of the dynamics
of the problem, namely (i) the probability of fixation of a given type of allele, (ii) the
mean time that alleles in a population segregate and (iii) the mean time it takes a
given type of allele to fix. All results are given in terms of the initial (unfixed) allele

frequencies, x,, and the matrix

G= Zzl wil = (I-w)! (21)

where I is an identity matrix of size K’ x K’ (the size of w).
In order to refer to elements of the various matrices and vectors appearing in this

Section, we use the scalar index (that runs from 1 to I,,x) which was introduced in

16



Section 3. However, to avoid the need for any distracting offsets of the scalar index,
we shall label the elements of the various matrices/vectors according to their actual
position in Eq. (15) or Eq. (17). In particular, this means that the matrix u has
elements u; ; where ¢ runs from 1 to K, while j runs from K + 1 to Ijyax, while the
matrix w has elements w; ; where both ¢ and j run from K + 1 to .. Because
the matrix G is constructed from the matrix w (via Eq. (21)), its elements, G, ;,
also have ¢ and j running from K + 1 to I.,. Similarly, the elements of the vector
ffixed(¢) are labelled by an index running from 1 to K, while those of £¢&(¢) run from
K +1 to I .. With this method of referring to the elements of matrices and vectors,
we find:

(i) The fixation probability of allele A; is
IL;(xa) = [uG]; 1a) i=12,., K. (22)

(ii) The mean time that alleles are segregating in a population (the sojourn time)
at frequencies xy,, given an initial frequency of x, is written F [T'(xp)|Xa| and given
by

E[T(xp)|xa] = Grv),1(a)- (23)

(iii) The mean time to fixation of allele A;, given the starting frequencies x, is
given by
= [uG2]il(a)
ZtP(ﬂ{Az ﬁxes},xa) = W, 1= 1,2,..,[(. (24)
t=1 i,I(a)

where P(t|{A; fixes}, x,) is the probability that allele A; segregates for ¢ generations,

given the population starts at the frequencies x, and fixes at the end of generation

17



6 Numerical considerations

The exactness of the formalism presented in the present work can be illustrated by
comparing the numerical results it yields with exact results. In Appendix D we
carry out such a comparison for the change of expected values of allele frequencies
and their covariances that occur over one generation, namely F [X;(t + 1)|X(¢) = x|
and Cov (X;(t + 1), X;(t + 1)|X(¢) = x). The results of the Appendix indicate that
to the numerical precision with which the calculations are carried out (1 part in
10'3), there is agreement between the two sets of results.

Beyond calculations that provide a numerical verification of the formalism pre-
sented here, there is also the computational problem of dealing with the large matri-
ces that naturally arise in multiple allele drift problems. For example in calculating
the quantities in Section 5, we need to calculate the matrix G (Eq. (21)), which
plays a central role in the results (Egs. (22), (23) and (24)) and which may have a
substantial size.

We calculate the matrix G and related quantities from the transition probabilities
Vam given in Eq. (6), which are converted to the matrix v via Eq. (12). From v,
we directly read off the matrices u and w of Eq. (15).

The actual size of the matrix w suggests the numerical procedure that is best
adopted to determine the matrix G. If w is of moderate size (with size defined

by computer memory), then a numerical linear algebra package (e.g., Matlab) can
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directly determine G from w via Eq. (21). If the size of the matrix w is large, as can
easily be the case, then a straightforward way of proceeding is to rewrite the equation
for G in the form G = I4+wG and simply iterate this equation, starting with G = 1.
The iteration may be terminated when an iteration results in G changing by less than
a predetermined level (e.g., 1 part in 10'°) and this has worked well in practice, with
a matrix G with of order 10° elements being straightforwardly determined.

To give an idea of the computer time it takes to calculate e.g., times to fixation, we
have considered several illustrative cases. When K = 3 and N = 30, this corresponds
to Imax = 1891 and ordinary matrices with [, X Inax = 3,575,881 elements. On
a 2.66 GHz pc with a core 2 processor and 2 GB of RAM, the numerical linear
algebra package Matlab took approximately 20 seconds to calculate results for this
case (including construction of the matrix v). The iterative method (outlined above),
by contrast, is a relatively unsophisticated algorithm and achieves the same result
in a much longer amount of computer time, of the order of 800 seconds. A larger
population size of N = 50, with the same value of K corresponds to I,., = 5151
(i.e., a matrix having 26,532,801 elements) and requires approximately 150 seconds
on Matlab. The rapid increase of I,,,, with the number of alleles, as follows from Eq.
(7) means that when K =4, a computer of the above specification is restricted, when
using Matlab, to N .= 14 (corresponding to a matrix with 20, 205, 025 elements) and

requires approximately 120 seconds of computation time.

19



7 Summary

In this work we have considered the Wright Fisher model for a locus that is under
selection in a diploid sexual organism. We have assumed that there are more than
two alleles at this locus. The statistical description of a Wright Fisher model with
multiple alleles is, in its original formulation, given in terms of a vector. The elements
of this vector are the probabilities of occurrence of different sets of allele frequencies
in a population, and the indices of this vector are themselves vectors (giving the
numbers of different types of alleles). This is thus a multidimensional representation.
The dynamical behaviour of such a model requires a transition matrix that is also
multidimensional in character. In the present work this complicated description
is converted, by the introduction of a simple mathematical transformation, from
multidimensional matrices and vectors into ordinary matrices and vectors. This
has the immediate advantage that standard linear algebra packages may be used to
numerically determine the dynamics. Beyond this, however, we have, by a particular
requirement on the mathematical transformation, established a common form for
the general structure of multiple allele Wright Fisher models that holds, irrespective
of the number of alleles. This allows the transition matrix to be decomposed into
fundamental blocks, that, in the language of replicate populations, are responsible
for transitions from segregating to fixed populations, or describe populations that
continue to segregate, or describe fixed populations that remain fixed. This common
form for the structure of Wright Fisher models has allowed general expressions to be
determined for key quantities, such as the mean time of segregation (which is also

referred to as the sojourn time), the mean time of fixation and the probability of
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fixation, which apply, irrespective of the number of alleles.

It is readily apparent, and indeed demonstrated in the present work, that the
intrinsic size of the matrix and vectors needed to describe dynamics of a Wright
Fisher model, rapidly grow with the number of alleles and the number of adults in a
population. Using the mathematical machinery introduced here we can, for moderate
population sizes and moderate numbers of alleles, take a direct, essentially exact,
numerical approach in calculations. This can allow an effectively exact numerical

exploration of different selection schemes.
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Table 1

Index, I(n) | ny | ny | n3
1 21010
2 0(21]0
3 0101 2
4 0111
) 1101
6 111710

Table 1 Caption

Table 1 contains an illustration of how the indexing function 7(n) is constructed
when there are K = 3 alleles and the population size is N = 1. We list all distinct
vector indices, n = (ny,n2,n3), that represent the numbers of the K = 3 different
types of alleles there are in adults in a population. Elements of n are non negative
integers that satisfy nq, + ne + n3 = 2N = 2. The location of given n in the list is
its index. We have specifically organised the list so that when the index j takes one
of the first K values (in this example, j = 1,2,3), the n obtained corresponds to
a population fixed for allele A;. In Table 1 this means an index of value 1, 2 or 3
corresponds to a population that is fixed for allele A;, As or Az respectively. The
overall length of the list is given by I, of Eq. (7), and for K = 3 and N = 1, this

yields I,.x = 6, as Table 1 illustrates.
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Appendix A

In this Appendix, we derive Eq. (1) for the deterministic change of allele fre-
quencies, when population size is effectively infinite. For generality, we incorporate
mutation as well as viability selection. We shall make use of the Kronecker delta,
04,5, Which takes the value of unity when a coincides with b and vanishes otherwise.

Following Nagylaki (1992), we assume that at the start of generation ¢, the A;A;
unordered genotype (where i < j) of adults has frequency X ;(t) with ij:l(ig 3 Xig(t) =
1. Then the frequency of allele A; in adults is X;(t) = X;,(t) + %Zj(j>i) X (t) +
%Zj (j<i) Xji(t). The adults produce gametes. Taking R;; as the mutation rate
from allele A; to allele A; (with Zszl R;; = 1), the frequency of A, bearing gametes
is Xi(t) = Zfil Ry ;X;(t). Thus the frequency of A;A; unordered genotypes, after

random union of gametes and selection is

X75(t) = (2= 6 )Vig X; (X7 () Y (2= 6)Via X5 (6) X7 (1) (25)
k,1(k<I)

where V; ; is the viability of A;A; genotypes. The corresponding frequency of A; in
adults in generation ¢+1;is X;(t+1) = X7 (t)+ 1 > i) X (t) +1 2o ey X5 ()
and, using Eq. (25), this can be explicitly expressed in terms of the frequency of

alleles in adults in the previous generation, X;(t). We can thus generally write

Xi(t+1) = Xi(t) + Di(X(2))-
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Appendix B

In this Appendix, we derive the form of the dynamical equation for the distrib-
ution of the numbers of alleles of different types present in the population, in terms
of quantities with scalar indices.

As in the main text, the index ¢ runs from 1 to the value Iy given in Eq. (7)
and the quantity nl” is the i’th vector index.

Using Egs. (10) and (11), we can rewrite Eq. (5) as

fit+1) = Zm Valit i f1(m) (2)- (26)

The sum over m covers all possible the vector indices for the relevant values of K
and N. The sum can be replaced by Z?j" nlil nlit S [(nm)(t) since when j runs from 1
t0 Imax, the quantity nb! covers all allowed vector indices. Using Eq. (8) to replace
I(nV)) by j then yields fi(t +1) = ZJI-Z? Valil niit f5(t). With the introduction of
the Inax X Imax matrix v with elements v;; = V0, we arrive at fi(t + 1) =
Z;“:“af‘ v; ;f;(t) which is the equation given in the main text.

For completeness, we note that Vi, m = vim),1(m)-

24



Appendix C

In this Appendix, we derive expressions for (i) the probability of fixation of a
given allele type, (ii) the mean time alleles in a population segregate and (iii) the
mean time it takes alleles to fix.

We make use of the Kronecker delta, d, 5, which takes the value of unity, when a
coincides with b and vanishes otherwise. We shall use this definition of d,; when a
and b are both scalar quantities or both vectors. We also use the convention described
in Section 5, that elements of the various vectors and matrices are labelled with the
scalar indices appropriate to their actual position in Eq. (15) or Eq. (17). Thus the
matrix u has elements wu; ; where ¢ runs from 1 to K, while j runs from K + 1 to
I'nax; the matrix w has elements w; ; where both ¢ and j run from K +1 to . and
similarly for the elements the matrix G (because it is constructed from the matrix
w via Eq. (21)). In the same way, the elements of the vector fi*¢d(¢) are labelled by
an index running from 1 to K, while those of £*¢(¢) run from K + 1 to Ipax-

We begin the calculations by taking all replicate populations to start at time
t = 0 with the same definite set of frequencies, x,, and we only consider x, which
do not correspond to fixed populations. The identical initial genetic composition of
all replicate populations is expressed as Fy,(0) = dna or equivalently

f-seg<0) = 5i,I(a)a 1=K +1,K+2,.., [ha. (27)

(2

Fixation probability
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Taking ¢ to tend to infinity in Eq. (20) yields
fixed(50) = uGF*2(0) (28)

where

G= Z; Wil = (1—w)! (29)

and I is an identity matrix of the same size as w, namely K’ x K'.

The fixation probability of allele A; for this case is fi**d(c0). We write this as
the conditional probability of A; fixing, given initial frequencies of x,, i.e., P({4;
fixes}|x,) and also in the more conventional form IT;(x,). It then follows from Eqs.

(27) and (28) that
P({4; fixes}[xa) = ILi(xa) = [uG]; ;o) i=1,2,.., K. (30)

As a technical aside, we do not prove that I — w is invertible, which is required
for the existence of G (Eq. (29)), but note that this follows from all K alleles being
capable of fixing, since then there will be precisely K unit eigenvalues of the matrix
v (Eq. (12)), with all other eigenvalues smaller than unity. The form given for v in
Eq. (15) means the K x K identity matrix 1 incorporates K unit eigenvalues of v
and all of the remaining eigenvalues of v are also the eigenvalues of the matrix w.
Thus all K alleles being able to fix means all eigenvalues of w are smaller than unity,

so I — w is invertible and hence G exists.

Time of segregation (sojourn time)
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The Kronecker delta, dx, x(1), has the value of unity when x;, = X(#) and vanishes

otherwise. Thus the quantity

Xb) = Z5xb,X(t) (31)
t=0

is a random variable representing the total number of generations where allele fre-
quencies equal x,. The mean time that alleles are segregating at frequencies xy,,
given an initial frequency of x, is E [T'(xp)[Xa] = Y 1o E [0 x(1)]- We note that
E [0xy x| = Fo(t) = 15y () and using Eq. (19) we have E'[T'(xp)[Xa] = 32720 1 (1) =
D wtfseg(O)][(b). Using Egs. (27) and (29) then allows us to write the mean time

of segregation at frequencies x}, as
E [T (xb)[%a] = G1p)ica): (32)

The mean time of segregating at any non-fixed set of frequencies is

Imax

d 0 BT(xp)xal = > Giia) (33)

all non fixed b j=K+1

Time to fixation

From Eq. (20) of the main text, we observe that fi*°d(¢) breaks up into a sum of
t terms of the form [uw’~'f*¢(0)], = [uw" '], ;). Each such term has the natural
interpretation as a joint probability of two events: (i) the segregation of allele A; for

r — 1 generations and (ii) the occurrence of fixation of allele A; at the end of the r’th
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generation. This is consistent with the interpretation that f*¢d(¢) is the probability
that allele A; has fixed by the end of generation t.

Consider the particular generation where allele A; fixes, namely at the process of
thinning, at the end of the generation. We count the presence of more than one type
of allele, prior to fixation in this generation, as the occurrence of segregation. Thus
if we write the conditional probability that: allele A; segregates for t generations,
given allele A; fixes at the end of this time, as P(t|{A; fixes}, X,), it follows that this
equals [uw' '], ;) /TT;(xa). That is,

tfl]

i.1(a) t= 1’2,..., 1= 1727-“7[(' (34)

P(t|{AZ ﬁxes},xa) = m,
i,1(a

The mean time to fixation of allele A; is then given by

o o0 — 2
ZtP(ﬂ{Ai fixes}, x,) = Zt ' X G ]i’[(a), i=1,2,..,K. (35)
=1 =1 U‘G zI(a [UG]i,I(a)

From the above equation and Eq. (30), it follows that

=

DD tPHA fixes}, xa) P({A; fixes}|xa) = Y [uG?], (36)

i=1 t=1 =1

and it is natural to interpret this result as the mean time of segregating at any non-

fixed set of frequencies, i.e., > E[T(xp)|xa]. To establish this interpretation,
all non fixed b

Imax

we note that conservation of probability entails ) "7 v; ; = 1. Using the two row
vectors Lg and Ly of length K and K’, respectively, in which all elements are

1, we can express conservation of probability as (Lg,Lg/)v = (Lg,Lgs). This
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result, using Eq. (15), leads to Lxu + Lgw = Ly which can also be written as
Lxu = LxG~'. Multiplying this last result from the right by G? yields LxuG? =
LG and is equivalent to 3.5 [uGz]“(a) = Zf:?H Gi - By Eq. (33), this
does indeed equal the mean time of segregating at any non-fixed set of frequencies,

>, ElT(xp)[xal.

all non fixed b
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Appendix D

In this Appendix, we test the approach of this work, by comparing its results with
exact results. The exact results are for expected values of allele frequencies and their
covariances, conditional on the allele frequencies in the previous generation, namely
E[X;(t+1)|X(t) = x] and Cov (X;(t + 1), X;(¢t + 1)|X(t) = x). These quantities are
known, for an arbitrary number of allele types, K, and an arbitrary population size,
N (Nagylaki 1992; Chapter 9), when selection that has no (or negligible levels of)
dominance so allele frequencies in adults have a multinomial distribution (see main
text for details).

The viability of an A;A; genotype individual is taken to be (1 + s;)(1 + s;).
We incorporate mutation into the lifecycle, with [2;; denoting the probability of
a parental A; allele yielding an A; allele in a gamete (Zfil R;; = 1). Following
Nagylaki (1992; Chapter 9) we define

K K
Yoy Rigwi (14 8) (It s)a S0 Rija(1+s5)

= (37)
ka:l (L +5;)(1 + si)wy Z;il z;(1+ sj)
and obtain
EX;(t+ 1)|X(t) =x]| = a}" (38)
and
1 *k *k

where 6, ; denotes a Kronecker delta (0;; = 1 if i = j and vanishes otherwise).

To obtain expressions for the corresponding quantities using the formalism in-
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troduced in the present work, we use Eq. (5), which holds for a multidimensional
transition matrix (with elements V;, ) that incorporate both mutation and selec-
tion. We proceed by deriving expressions for the expected allele frequencies, and
covariances in terms of V}, o, and then expressing the results in terms of the ordinary
matrix v of Eq. (12) and numerically evaluating them. The forms of selection and

mutation, adopted above, yield a function D;(x) of Eq. (1) given by

K

S Rixi (14 s)(1+ si)x
Di(x) _ Z],kKl 3J ]( ])( k:) k = 2 - (4())

> w1 i (14 55) (1 + si)ai

and this determines the V}, , and hence the matrix v.
For the expected values of allele frequencies, we have E[X;(t 4 1)|X () = m/(2N)] =

5 1/(2N) Vi which can also be written 313 Vo m/ (2N) = St 101 1(amy / (2N)
7]

where n;”’ is the i’th component of the vector index n!. Using Eq. (8), we thus ob-
tain
D Imax . [7]
B Xt + D)X= 50| = D 25 41
(+ DX 5] = 3 Sy (41)

In a similar way, the conditional covariances are given by

Cov (Xi(t +1), X;(t+ DIX() = = )

2N
Imax _[K] , [K] Imax _[K] Imax (K]
n; 1y n; 5
4 J m) — . m — m) | - 42

We have compared the expressions above for the conditional expectations and

covariances for a range of NV from 10 to 30, for K = 3 and a range of s; ranging from
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—1 to 3. In all cases, without exception, the exact results and the results derived

from the formalism of this work differed by less than one part in 10'3.
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