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_________________________________________________________ 

Abstract. The importance of the promoter sequences in the function regulation of 

several important mycobacterial pathogens creates the necessity to design simple and 

fast theoretical models that can predict them. This work is proposing two DNA 

promoter QSAR models based on pseudo-folding Lattice Network (LN) and Star-

Graphs (SG) topological indices. In addition, a comparative study with the previous 

RNA electrostatic-driven secondary structure folding representations have been carried 

out. The best model of this work was obtained with only two LN stochastic electrostatic 

potentials and is characterised by accuracy, selectivity and specificity of 90.87%, 

82.96% and 92.95%, respectively. In addition, we pointed out the SG results 

dependence on the DNA sequence codification and we proposed a QSAR model based 

on codons and only three SG spectral moments. 

_________________________________________________________ 
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1. Introduction   

Protein synthesis promoter sequences play an important role in the function regulation 

of several important mycobacterial pathogens (Levine and Tjian, 2003; Wyrick and 

Young, 2002). In this sense, the prediction of the mycobacterial promoter sequences 

(Mps) could be interesting for the future discovery of new anti-mycobacterial drugs 

targets or in the study of proteins metabolism. Mycobacteria have a low transcription 

rate and a low RNA content per unit DNA. Thus, the transcription and translation 

signals in Mycobactaria may be different from those in other bacteria such as 

Esccherichia coli. The large variations among the characterized mycobacterial 

promoters suggest that the consensus sequences are not representative of these 

promoters. Consequently, a number of conflicting opinions regarding the presence and 

characteristics of consensus promoter sequences in the Mycobacteria have been 

presented in the literature (Mulder et al., 1997). Therefore, understanding the factors 

that are responsible for the low level of transcription and the possible mechanisms of 

regulation of gene expression in Mycobacteria, involve the examination of the 

mycobacterial promoter structure and the promoter transcription machinery, including 

chemical information about the involved RNA molecules (Arnvig et al., 2005; Harshey 

and Ramakrishnan, 1977). Efforts have been made to develop statistical algorithms for 

the sequence analysis and motif prediction by searching for homologous regions or by 
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comparing the sequence information with a consensus sequence (O'Neill and Chiafari, 

1989). Wide variations existing within individual promoter sequences are primarily 

responsible for the unsatisfactory results yielded by the promoter-site-searching 

algorithms that in essence perform statistical analysis (Mulligan and McClure, 1986; 

Mulligan et al., 1984). Therefore, it can be inferred that the recognition of 

mycobacterial promoter sequences require a powerful technique that is capable of 

unravelling those hidden patterns in the promoter regions, which are difficult to identify 

directly by sequence alignment.  

The Bioinformatics methods based on sequence alignment may fail in general for cases 

of low sequence homology between the databases query and the template sequences. 

The lack of function annotation (defined biological function) of the sequences used as 

template for function prediction constitutes another weakness of alignment approaches 

(Dobson and Doig, 2005; Dobson et al., 2004; Dobson et al., 2005). In addition, Chou 

demonstrated that the 3-dimensional structures developed based on homology 

modelling are very sensitive to the sequence alignment of the query protein with the 

structure-known protein (Chou, 2004). A group of researchers shows the growing 

importance of machine learning methods for predicting protein functional class 

independently of sequence similarity (Han et al., 2006). These methods often use as the 

input the 1D sequence numerical parameters, specifically defined to seek sequence-

function relationships. For instance, the so-called pseudo amino acid composition 

approach (Chou, 2001a; Chou, 2005) based on 1D sequence coupling numbers has been 

widely used to predict sub-cellular localization, enzyme family class, structural class, as 

well as other attributes of proteins based on their sequence similarity (Caballero et al., 

2006; Chou and Shen, 2006; Du et al., 2008) Alternatively, the molecular indices that 

are classically used for small molecules (Aguero-Chapin et al., 2006; Liao and Wang, 
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2004a; Liao and Wang, 2004b; Liao and Wang, 2004c; Liao and Ding, 2005; Liao et al., 

2005; Liao et al., 2006; Liu et al., 2002; Nandy, 1994; Nandy, 1996; Nandy and Basak, 

2000; Randic and Vracko, 2000; Randic and Balaban, 2003; Randic and Zupan, 2004; 

Randic et al., 2000; Song and Tang, 2005; Woodcock et al., 1992; Zupan and Randic, 

2005) have been adapted to describe the protein sequences. On the other hand, many 

authors have introduced 2D or higher dimension representations of sequences prior to 

the calculation of numerical parameters. This constitutes an important step in order to 

uncover useful higher-order information not encoded by 1D sequence parameters 

(Randic, 2004). One example of the 2D representations is the graphs used for proteins 

and DNA sequences. For example, the spectral-like and zigzag representations have 

been used suggesting an algorithm for encoding long strings of building blocks (like 

four DNA bases, twenty natural amino acids, or all 64 possible base triplets) (Aguero-

Chapin et al., 2006). The use of the graphic approaches to study biological systems can 

provide useful insights, as indicated by many previous studies on a series of important 

biological topics, such as enzyme-catalyzed reactions (Andraos, 2008; Chou, 1981; 

Chou, 1989; Chou and Forsen, 1980; Chou and Liu, 1981; Chou et al., 1979; Cornish-

Bowden, 1979; King and Altman, 1956; Kuzmic et al., 1992; Myers and Palmer, 1985; 

Zhou and Deng, 1984), protein folding kinetics (Chou, 1990), inhibition kinetics of 

processive nucleic acid polymerases and nucleases (Althaus et al., 1993a; Althaus et al., 

1993b; Althaus et al., 1993c; Chou et al., 1994), analysis of codon usage (Chou and 

Zhang, 1992; Zhang and Chou, 1993; Zhang and Chou, 1994), analysis of  DNA 

sequence (Qi et al., 2007).  Moreover, graphical methods have been introduced for 

QSAR study (Gonzalez-Diaz et al., 2006c; Gonzalez-Diaz et al., 2007b; Prado-Prado et 

al., 2008) as well as utilized to deal with complicated network systems (Diao et al., 

2007; Gonzalez-Diaz et al., 2007a; Gonzalez-Díaz et al., 2008). Recently, the "cellular 
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automaton image" (Wolfram, 1984; Wolfram, 2002) has also been applied to study 

hepatitis B viral infections (Xiao et al., 2006a), HBV virus gene missense mutation 

(Xiao et al., 2005b), and visual analysis of SARS-CoV (Gao et al., 2006; Wang et al., 

2005), as well as representing complicated biological sequences (Xiao et al., 2005a) and 

helping to identify protein attributes (Xiao and Chou, 2007; Xiao et al., 2006b). 

In this work, we are proposing a comparative study of the Mycobacterial DNA 

promoter prediction using pseudo-folding Lattice Network (LN) and Star-Graph (SG) 

topological indices. The first group of indices contains the mean stochastic electrostatic 

potential (LNξk), Markov spectral moments (LNπk) and Markov entropies (LNθk) of a 

Markov Model (MM) associated to a 2D network that numerically characterize DNA 

sequences and build a Quantitative Structure-Activity Relationships (QSAR) model to 

predict mycobacterial promoters sequence (Mps). The lattice-like representations (also 

called maps or graphs) for Mps and control group sequences (Cgs) were derived 

(González-Díaz et al., 2003; González-Díaz et al., 2006a; González-Díaz et al., 2005c; 

González-Díaz, 2007d). The ξk, πk and θk values of several types of graphs/networks 

have been the base for different QSAR studies of DNA/RNA and protein sequences (Du 

et al., 2007a; Du et al., 2007b; Garcia-Garcia et al., 2004; Marrero-Ponce et al., 2004a; 

Marrero-Ponce et al., 2005b; Marrero-Ponce et al., 2004b; Meneses-Marcel et al., 2005; 

Santana et al., 2006). The second group of TIs is derived from the Star-Graph 

representations (Harary, 1969). We subsequently developed a classifier to connect Mps 

information (represented by the ξk, πk, θk and star-graph TIs values) with the prediction 

of Cgs as Mps. The Linear Discriminant Analysis (LDA) was selected as a simple but 

powerful technique (González-Díaz et al., 2006b; González-Díaz, 2003a). 

2. Materials and methods 



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

  6

2.1 Pseudo-folding Lattice Network 

The first Markov Model (MM), also called MARCH-INSIDE, was used to codify the 

information of 135 Mps (González-Díaz et al., 2005a; González-Díaz et al., 2006a; 

González-Díaz et al., 2007d) and 511 random Cgs (see Table S.1 in the supplementary 

material). Our methodology considers as states of the Markov Chain (MC) any atom, 

nucleotide or amino acid depending on the class of molecule to be described (González-

Díaz et al., 2005e; González-Díaz, 2003b). Therefore, MM deals with the calculation of 

the probabilities (kpij) where the charge distribution of nucleotide moves from any 

nucleotide in the vicinity i at time t0 to another nucleotide j along the protein backbone 

in discrete time periods until a stationary state is achieved (Yuan, 1999). As can be seen 

from the discussion above, we selected LNξk, 
LNπk and LNθk based on the utility of non-

stochastic (González-Díaz and Uriarte, 2005; González-Díaz et al., 2005d; Ramos de 

Armas et al., 2004) and stochastic parameters (Randic and Vracko, 2000). Many 

researchers have demonstrated the possibility of predicting RNA from sequences 

(Aguero-Chapin et al., 2006) and we used 2D graphs to encode information about Mps 

sequences (Estrada, 2000; Estrada, 2002; Estrada and González-Díaz, 2003; González-

Díaz et al., 2005b; Gonzalez and Moldes del Carmen Teran, 2004; Vilar et al., 2005; 

Vilar et al., 2006). This RNA 2D graphical representation is similar to those previously 

reported for DNA (Jacchieri, 2000; Nandy, 1994; Nandy, 1996) using four different 

nucleotides. The construction of the 2D lattice graph corresponding to the Mps of the 

gene Alpha in Mycobacterum bovis (BCG) is shown in Table 1 and Figure 1. Each 

nucleotide in the sequence is placed in a Cartesian 2D space starting with the first 

monomer at the (0, 0) coordinates. The coordinates of the successive nucleotide are 

calculated with the following rules: 

a) Increase by +1 the abscissa axis coordinate for thymine (rightwards-step) or: 
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b) Decrease by –1 the abscissa axis coordinate for cytosine (leftwards-step) or: 

c) Increase by +1 the ordinate axis coordinate for adenine (upwards-step) or: 

d) Decrease by –1 the ordinate axis coordinate for guanine (downwards-step). 

Table 1 comes about here 

Figure 1 comes about here 

In the next step, we assigned to each graph a stochastic matrix 1Π. The elements of 1Π 

are the probabilities 1pij of reaching a node ni with the charge Qi moving through a walk 

of length of k = 1 from another node nj with charge Qj (Aguero-Chapin et al., 2006): 

∑∑
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where αij equals to 1 if the nodes ni and nj are adjacent in the graph or equal to 0 

otherwise; Qj is equal to the sum of the electrostatic charges of all nucleotide placed at 

this node. Note that the number of nodes (n) in the graph is equal to the number of rows 

and columns in 1Π but may be equal or even smaller than the number of DNA bases in 

the sequence. It then becomes straightforward calculating different types of invariant 

parameters for 1Π in order to numerically characterize the DNA sequence. In this work 

we calculated the following invariants:  
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where LNπk are the Markov spectral moments and indicate that we sum all the values in 

the main diagonal of the matrices LNπk= Tr(kΠ) = Tr[(1Π)k] (Tr is the trace operator), 

LNξk are the mean values of electrostatic potentials and LNθk are the Markov entropies 

(González-Díaz et al., 2007a). All calculations of the LNξk, 
LNπk and LNθk values for the 

DNA sequences of both groups (Mps and Cgs) were carried out with our in-house 

software MARCH-INSIDE, version 2.0 ® (González-Díaz et al., 2007a), including 

sequence representation.  

2.2 Star-Graph topological indices 

Each DNA sequence is a real network where the nucleotides are the vertices/nodes, 

connected in a specific sequence by the phosphodiester bonds. SG is an abstract 

representation of the real network having a dummy non-nucleotide centre and a number 

of “rays” equal with the nucleotide types. In the case of DNA, we can consider two 

codifications: the nucleotide code (as in the case of the amino acid protein sequences) 

and the DNA codons (the final incomplete codons are ignored). In the first codification, 

there are only four branches (“rays”) of the star corresponding to the four types of 

nucleotides: adenosine (a), thymidine (t), cytidine (c) and guanosine (g). Using the 

codons, the DNA sequences are virtually translated into amino acid sequences that 

generate 21 branches, 20 standard amino acids and an extra X non-amino acid 

corresponding to the STOP DNA codons (Griffiths et al., 1999). Even if the promoters 

are not naturally translated in proteins, the second codification is useful for a 

comparison with the protein SG calculations. The same DNA/protein can be represented 

by different forms which are associated to distinct distance matrices (Randic et al., 

2007). Standard star-graphs were constructed for each DNA promoter: each 
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nucleotide/vertex holds the position in the original sequence and the branches are 

labelled by the standard letters of the nucleotides (a, t, c and g). If the initial 

connectivity in the DNA sequence is included, the graph is embedded. In order to 

qualitatively evaluate the graphs, it is necessary to transform the graphical 

representation into correspondent connectivity matrix, distance matrix and degree 

matrix. In the case of the embedded graph, the matrices of the connectivity in the 

sequence and in the star graph are combined. These matrices and the normalized ones 

are the base for the calculation of the topological indices. 

For a visual comparison of the lattice and star-graph representations, the same promoter 

sequence from Table 1 was used to generate a standard SG based on codons that are 

virtually translated to amino acids (see Table 2 and Figure 2).  

Table 2 comes about here 

Figure 2 comes about here 

The star-graph topological indices are obtained with the in-house Sequence to Star 

Networks (S2SNet) python application.  This tool can transform any character string in 

SG topological indices. Our recent works (Munteanu et al., 2008a; Munteanu et al., 

2008b) proved the potential of S2SNet in protein QSAR models. The calculations 

presented in this work are characterized by embedded (E) and non-embedded (nE) TIs, 

no weights, Markov normalization and power of matrices/indices (n) up to 5. The result 

file contains the following embedded (super index “e”) or non-embedded TIs 

(Todeschini and Consonni, 2002): 

Shannon Entropy of the n powered Markov Matrices (SGθn): 

SGθn
(e)

 =  - ∑i pi * log(pi)                                                                                                (6) 

where pi are the ni elements of the p vector, resulted from the matrix multiplication of 

the powered Markov normalized matrix ( ni x ni ) and a vector ( ni x 1) with each 
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element equal to 1/ni; 

The trace of the n connectivity matrices (SGπn): 

SGπn
(e)

 = ∑i (Mn)ii                                                                                                          (7) 

where n = 0 – power limit, SGM = SG connectivity matrix (i*i dimension); ii = ith 

diagonal element; 

Harary number (H): 

H(e) = ∑i<j (mij/dij)                                                                                                         (8) 

where dij are the elements of the distance matrix and mij are the elements of the M 

connectivity matrix; 

Wiener index (W): 

W(e) = ∑i<j dij                                                                                                                (9) 

Gutman topological index (S6): 

S6
(e) = ∑ij degi * degj / dij                                                                                             (10) 

where degi are the elements of the degree matrix; 

Schultz topological index (non-trivial part) (S): 

S(e) = ∑i<j (degi + degj) * d                                                                                           (11) 

Balaban distance connectivity index (J): 

J(e) = (edges – nodes + 2) * ∑i<j mij * sqrt(∑k dik *∑k dkj)                                             (12) 

where nodes+1 = AA numbers/node number in the Star Graph + origin, ∑k dik is the 

node distance degree; 

Kier-Hall connectivity indices (nX): 

0X(e) = ∑i 1 / sqrt(degi)                                                                                                  (13) 

2X(e)=∑i<j<k  mij*mjk / sqrt(degi*degj*degk)                                                                   (14) 

3X(e)=∑i<j<k<m mij*mjk*mkm / sqrt(degi*degj*degk*degm)                                              (15) 

4X(e)=∑i<j<k<m<o mij*mjk*mkm*mmo / sqrt(degi*degj*degk*degm*dego)                         (16) 
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5X(e)=∑i<j<k<m<o<q mij*mjk*mkm*mmo*moq / sqrt(degi*degj*degk*degm*dego*degq)      (17) 

Randic connectivity index (1XR): 

1XR(e)=∑i<j  mij / sqrt(degi * degj)                                                                                 (18) 

The embedded and non-embedded SG TIs will be used to construct a DNA promoter 

classification model using the LDA statistical methods.  

2.3 Linear Discriminant Analysis 

LDA forward stepwise analysis from STATISTICA (StatSoft.Inc., 2002) was carried 

out for variable selection to build up the model (Garcia-Garcia et al., 2004; Kutner et 

al., 2005; Marrero-Ponce et al., 2004a; Marrero-Ponce et al., 2005b; Marrero-Ponce et 

al., 2004b; Meneses-Marcel et al., 2005; Santana et al., 2006). In order to decide if a 

DNA sequence is classified as mycobacterial promoter (Prom) or not (nProm), we 

added an extra dummy variable named Prom/nProm (binary values of 1/-1 for LN and 

1/0 for SG) and a cross-validation variable (CV). The best cross-validation methods 

used are practice is the independent dataset test, the subsampling test and the jackknife 

test (Chou and Zhang, 1995). The jackknife test has been increasingly used by 

investigators to examine the accuracy of various predictors (Chen and Li, 2007; Chou 

and Shen, 2007a; Chou and Shen, 2008; Diao et al., 2007; Ding et al., 2007; Lin, 2008; 

Xiao and Chou, 2007). In the actual work, the independent data test is used by splitting 

the data at random in a training series (train, 75%) used for model construction and a 

prediction one (val, 25%) for model validation (the CV column is filled by repeating 3 

train and 1 val). All of the variables included in the models were standardized in order 

to bring them onto the same scale. Subsequently, standardized linear discriminant 

equations that allow comparison of their coefficients were obtained (Chiti et al., 2003; 

Pawar et al., 2005). 

In the case of LN, the general QSAR formula is the following:   
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where LNMps-score is the continue score value for the DNA mycobacterial promoter 

classification corresponding to the lattice representation, LNπk are Markov spectral 

moments (traces), LNθk are the Markov entropies, LNξk the mean stochastic electrostatic 

potential, bk, ck, dk are the coefficients of the previous indices and a0 is the independent 

term. A similar formula is defining the SG QSAR model in Eq. 20. 
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where SGMps-score is the continue score value for the DNA mycobacterial promoter 

classification corresponding to the SG representation, SGπk
e / SGπk and SGθk

e / SGθk are 

embedded/non-embedded traces (Markov spectral moments) and the Shannon entropies, 

TIk
e / TIk are the other 22 standard SG embedded and non-embedded TIs (H, W, S6, S, J, 

0X, 2-5X, 1XR, He, We, S6
e, Se, Je, 0Xe, 2-5Xe, 1XRe), fk

e / fk, gk
e / gk and ek

e / ek are the TIs 

coefficients and e0 is the independent term. Accuracy, specificity, sensitivity, F, Wilk’s 

(λ) statistic (λ = 0 perfect discrimination, being 0 < λ < 1) were examined in order to 

assess the discriminatory power of the model. 

 

 

3. Results and discussion  

Many different parameters can be used to encode RNA sequence information and 

further assign or predict the function or physical properties (González-Díaz and Uriarte, 

2005). The present approach involves the calculation of different sequence parameters, 

which can be applied to different types of molecular graphs (Aguero-Chapin et al., 

2006), including DNA, RNA and proteins (Di Francesco, 1999; González-Díaz et al., 
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2005c). MM has been applied successfully to Genomics and Proteomics and represents 

an important tool for analyzing biological sequence data. In particular, MM has been 

used for protein folding recognition (Chou, 2001b) and for prediction of protein signal 

sequences (Chou and Shen, 2007b; Van Waterbeemd, 1995). This work compared two 

models based on different TIs including πk and θk values of the stochastic matrices 

1Π(LN) and 1Π(SG) (SGM) associated with LN and SG, LNξk parameters of  1Π(LN) as 

well as classic TIs for 1Π(SG). These parameters describe the distribution of the 

nucleotides of the DNA sequence in the above graphs/networks. This calculation was 

carried out for two groups of DNA sequences, one made up of Mps and the other 

formed by Cgs. In addition, previous results of the RNA secondary structure (2S) 

QSAR are compared. 

3.1. Results for DNA LN indices 

In the first study of the DNA LN representations, the best QSAR equation that classifies 

a novel sequence as Mps or not is the following (Table 3): 

LN
51 1.21.42.1 score-Mps ξξ LNLN ×+×−−=
                                                                 (21) 

The statistical parameters of this equation were Wilk’s statistic (λ=0.95) and error level 

(p-level<0.001). This discriminant function misclassified only 36 cases out of 511 Cgs 

used, reaching a high level of accuracy of 90.87%. More specifically, the model 

classified correctly 112/135 (82.9%) of Mps and 475/511 (92.9%) of the control group. 

Conversely, the remains four descriptors LNξ0, 
LNξ2, 

LNξ3 and 
LNξ4 do not have a 

significant relationship with the Mps characteristic. The use of only six molecular 

descriptors to model a data set of 585 sequences prevents us by large from chance 

correlation. In physical terms, the above results confirm other studies about the 

relationship between the electrostatic potential of the DNA molecule and its biological 
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activity. However, in this case not all the electrostatic interactions affect the activity in 

the same way. Finally, long-term electrostatic interaction potentials (LNξ0, 
LNξ2, 

LNξ3 and 

LNξ4) do not correlate with the Mps activity. The detailed results of the forward stepwise 

analysis are given in Table 3. 

Table 3 comes about here 

Analyzing the above equations, it is important to highlight that, the combination of a 

negative contribution of LNξ1 and a positive contribution of LNξ5 in Eq. 21 points to a 

pseudo-folding rule for the biological activity. A validation procedure was subsequently 

performed in order to assess the model predictability. This validation was carried out 

with an external series of Mps and randomized control sequences (Cgs). The present 

model showed accuracy of 90.87%, which is similar in comparison to results obtained 

by other researchers on using the LDA method in QSAR studies (González-Díaz et al., 

2007b). These results are also consistent with many others we have recently reviewed 

in-depth and published in the form of review article where we used different network-

like indices in small-sized, nucleic acid, and protein QSAR (González-Díaz et al., 

2007b; González-Díaz et al., 2005d; González-Díaz et al., 2007d; Marrero-Ponce et al., 

2005a; Marrero-Ponce et al., 2005b; Van Waterbeemd, 1995). 

3.2. Results for DNA SG indices 

The second study used the SG-QSAR models in order to evaluate the same 

mycobacterial DNA promoter property (see Table 3). The grouping of the embedded 

and non-embedded TIs was done similar to the lattice models: the traces (SGπk
e / SGπk), 

the Shannon entropies (SGθk
e / SGθk), the rest of embedded and non-embedded TIs (H, 

W, S6, S, J, 0X, 2-5X, 1XR, He, We, S6
e, Se, Je, 0Xe, 2-5Xe, 1XRe) and all SG TIs (pool). 

The Forward Stepwise selection variable method, conjugated with the nE & E TIs of the 

virtually translated DNA sequences, provides better results for the codon grouping of 
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the nucleotides, with accuracy, sensitivity and specificity greater than 70% for the SGπk
e 

/ SGπk and for the pool (Table 3). Even if the accuracy of the simple nucleotide 

sequences are up to 81.58% (pool), the selectivity and the specificity have values less 

than 70%. The best QSAR model using the SG based on the codon sequences is defined 

with the SGπk
e / SGπk group of indices in Eq. 22 and is characterized by 74.77% 

accuracy, 82.96% sensitivity and 72.60% specificity. 

eSGeSGSG
544

SG 2.19.13.19.1 score-Mps πππ ×−×−×+−=
                                             (22) 

Despite the good values of accuracy, sensitivity and specificity (80.80%, 74.81%, 

82.39%) for the pool group of TIs (SGθ0, SGθ4
e, SGπ4

e, SGπ5
e, W), the QSAR model cannot 

be considered due to the low sensitivity for the CV set (66.67%). Thus, the results based 

on the traces (spectral moments) are similar in the case of LN and SG representations, 

maintaining the SGπ5
e / LNπ5 in the equations. 

3.3. Comparison with RNA 2S and other indices 

In previous works, we published QSAR models to predict Mps using RNA electrostatic-

driven 2S folding representations. These models were based on the 2Sθk (González-Díaz 

et al., 2007c), 2Sπk (González-Díaz et al., 2005a) and 2Sξk (González-Díaz et al., 2006a) 

values for the 1Π(2S) matrix associated to RNA 2S folding representations. In Table 3 

we illustrate that the best values of accuracy, sensitivity and specificity of 97.60%, 

93.30% and 100% were found for 2Sθ0. This TI is present in the QSAR equations for 

DNA LN/SG and RNA 2S folding representations. All these observations pointed out 

the importance of the spectral moments, entropies and in the stochastic electrostatic 

potentials in the DNA/RNA QSAR models. In general, the results for RNA 2S folding 

representation are better, but require additional calculations for optimization of the RNA 

2S. Therefore, more RNA 2S are possible for the same DNA sequence (theoretically 
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because the promoters are have not correspondent RNA) introducing an indeterminacy 

in the final model prediction. In the Figure 3 we depicts a possible 2S for the RNA 

sequence corresponding to the DNA sequences used in Figures 1 and 2 (dG is the free 

energy). This RNA 2S was obtained with the online DINAMelt server (Markham and 

Zuker, 2005). The SG TIs that show to not be important for the DNA/RNA models (H, 

W, S, J) can successfully describe protein QSAR models (Munteanu et al., 2008b). This 

work pointed out the conclusion that the models based on SG, LN and also 2S, which 

are linear and have few variables, compares very favourably in terms of complexity 

with other models previously reported by Kalate et al. - these authors used a non-linear 

artificial neural network and a large parameter space (Kalate et al., 2003). 

Figure 3 comes about here 

5. Conclusions  

The work presents a comparative study of the parameters associated with LN and SG 

representations in order to predict the mycobacterial DNA promoters. LN QSAR 

classifier successfully discriminates between Mps and a control group, with values 

significatively better than the SG-QSAR results based on the DNA codon sequences. In 

addition, the DNA nucleotide sequences (used for LN) were not able to create a good 

model based on SG representations. The work promotes the use of the experience 

accumulated in small-molecules QSAR with spectral moments and other kind of indices 

(entropies and spectral moments) in new types of DNA QSAR studies, now in the focus 

of interest many researchers worldwide. 
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Legend for Figures 

Figure 1. LN for the Mps of the gene Alpha in Mycobacterum bovis (BCG). 

Figure 2. SG for the Mps of the gene Alpha in Mycobacterum bovis (BCG). 

Figure 3. RNA 2S for the Mps of the gene Alpha in Mycobacterum bovis (BCG).
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Legend for Tables 

Table 1. LN construction rules for the Mps of the gene Alpha in Mycobacterum bovis 

(BCG). 

Table 2. SG codifications for the virtually translated Mps of the gene Alpha in 

Mycobacterum bovis (BCG). 

Table 3. Summary of the LDA results for DNA LN and SG models vs. RNA 2S folding 

representations. 
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Table 1: 

 DNA Lattice Network 
c1g2a3c4t5t6t7c8g9c10c11c12g13a14a15t16c17g18a19c20 

a21t22t23t24g25g26c27c28t29c30c31a32c33a34c35a36c37g38g39t40 
a41t42g43t44t45c46t47g48g49c50c51c52g53a54g55c56a57c58a59c60 

g61a62c63g64a65 
 

n Nucleotide x y 
1 c1a3t5g25 0 0 
2 g2c10g26 0 -1 
3 c4t16 -1 0 
4 t6c8 1 0 
5 t7 2 0 
6 g9 1 -1 
7 c11c27t29 -1 -1 
8 c12a14g18c28c30g48 -2 -1 
9 g13g49 -2 -2 

10 a15c17a19t45t47 -2 0 
11 c20a32t44c46 -3 0 
12 a21 -3 1 
13 t22 -2 1 
14 t23 -1 1 
15 t24 0 1 
16 c31 -3 -1 
17 c33g43 -4 0 
18 a34t42 -4 1 
19 c35a41 -5 1 
20 a36 -5 2 
21 c37 -6 2 
22 g38 -6 1 
23 g39 -6 0 
24 t40 -5 0 
25 c50 -3 -2 
26 c51 -4 -2 
27 c52a54 -5 -2 
28 g53g55 -5 -3 
29 c56 -6 -3 
30 a57 -6 -2 
31 c58 -7 -2 
32 a59 -7 -1 
33 c60a62 -8 -1 
34 g61 -8 -2 
35 c63a65 -9 -1 
36 g64 -9 -2 
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Table 2: 

 

DNA codon Star-Graph 

DNA nucleotide 
sequence 

c1g2a3c4t5t6t7c8g9c10c11c12g13a14a15t16c17g18a19c20a21 
t22t23t24g25g26c27c28t29c30c31a32c33a34c35a36c37g38g39 

t40a41t42g43t44t45c46t47g48g49c50c51c52g53a54g55c56a57c58a59c60g61a62c63
 

DNA codons 
sequence 

cga1ctt2tcg3ccc4gaa5tcg6aca7 
ttt8ggc9ctc10cac11aca12cgg13 

tat14gtt15ctg16gcc17cga18gca19cac20gac21 

Virtually translated 
amino acid 
sequence 

R1L2S3P4E5S6T7F8G9L10H11T12R13Y14V15L16A17R18A19H20D21 
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Table 3: 

TI Ac 
(%) 

Se 
(%) 

Sp 
(%) Final TIs Vars. λ F p Ref. 

Primary structure of DNA nucleotide & LN 
LNθk 78.33 72.59 79.84 LNθ0 1 0.74 230.5 0.0001 a 
LNπk 81.73 78.52 82.58 LNπ0, LNπ1, LNπ5, 3 0.89 76.3 0.0001 a 
LNξk 90.87 82.96 92.95 LNξ1, LNξ5 2 0.82 142.1 0.0001 a 
Pool 92.88 75.56 97.46 LNθ0, LNπ0, LNξ1, LNξ5 4 0.83 130.8 0.0001 a 

Primary structure of DNA nucleotide sequences & SG 
SGθk 66.25 81.48 62.23 SGθ1

e, SGθ4
e 2 0.78 69.62 0.001 a 

SGπk 71.21 85.19 67.51 SGπ0
e, SGπ2

e, SGπ5
e 3 0.76 49.54 0.001 a 

TIk 75.39 68.15 77.30 W, Je, 0Xe 3 0.73 58.19 0.001 a 
Pool 81.58 68.15 85.13 SGπ5

e, H, 1XRe 3 0.67 79.94 0.001 a 
Primary structure of DNA codon sequences & SG 

SGθk 70.43 76.30 68.88 SGθ0, SGθ1, SGθ4
e 3 0.75 52.31 0.001 a 

SGπk 74.77 82.96 72.60 SGπ4, SGπ4
e, SGπ5

e 3 0.74 56.37 0.001 a 
TIk 76.16 59.26 80.63 S, 0X, 1XRe 3 0.72 60.98 0.001 a 

Pool 80.80 74.81 82.39 SGθ0, SGθ4
e, SGπ4

e, SGπ5
e, W 5 0.67 47.04 0.001 a 

RNA electrostatic-driven 2S folding 
2Sθk 97.60 93.30 100.00 2Sθ0 1 0.34 724.47 0.001 b 
2Sπk 93.83 83.70 98.89 2Sπ0, 2Sπ2 2 0.44 515.03 0.05 c 
2Sξk 96.58 85.19 100.00 2Sξ0, 2Sξ1 2 0.41 38.8 0.001 d 

 

Note: the terms Ac, Se, and Sp mean accuracy, sensitivity and specificity, and measure the ratio of the 
number of total, Mps, or Cgs sequences correctly classified by the model with respect to the real 

classification; Vars. = no of variables in the QSAR equations; SG = star-graph; LN = lattice network; 2S 
= secondary structure; super index “e” represents the embedded calculations; References (Ref.) are a: this 

work, b: (González-Díaz et al., 2007c), c: (González-Díaz et al., 2005a) and d: (González-Díaz et al., 
2006a).  
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Figure 1: 
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Figure 2: 
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Figure 3: 

 


