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The numerical simulation of scattering problems generally involves particular boundary conditions set on
the exterior boundary of the computational domain. These conditions are called Absorbing Boundary
Conditions (ABC) when they satisfy the following properties; ABCs correspond to the approximation
of a transparent condition, involve differential operators and minimize the reflections generated by the
exterior boundary. Despite the works carried out on the design of ABCs, the existing ABCs need to be
optimized and, recently, a new ABC has been proposed by Hagstrom et al. [8] . It is an improved Higdon
ABC (IHABC) [9] where the amplitude of reflected waves is minimized by including a differential operator
into the condition to model evanescent waves. The IHABC is very efficient when coupled with a finite
element method, but it seems to hamper the Courant-Friedrichs-Lewy (CFL) condition when included into
a Discontinuous Galerkin Method (DGM). Moreover, this condition is not easy to apply on arbitrarily-
shaped boundaries. In this work, we address the issue of designing optimized ABCs which do not penalize
the CFL condition when applying a DGM. We consider optimized ABCs adapted to arbitrarily-shaped
regular boundaries and we construct a transparent condition based on the decomposition of the exact
solution into a propagating field, an evanescent field and a grazing field. Then, a new condition is obtained
by combining the approximations of the transparent condition in the three corresponding regions. It is
not classical since it involves a fractional derivative arising from the grazing part of the solution. However,
the condition is easily included into a finite element scheme and we have implemented it into an Interior
Penalty Discontinuous Galerkin formulation. Numerical experiments have been performed and the results
have shown that it does not modify the CFL condition. Furthermore, the absorption rate is improved

when compared to classical ABCs.

1 Introduction

The truncation of the propagation domain is an im-
portant issue for the simulation of waves. It can be
done by introducing a Perfectly Matched Layer condi-
tion (see [4] in which this idea is initiated and [10] for
the application to acoustic waves) and this approach is
now widely well-known to be used since it is very ef-
ficient. Nevertheless, in some cases such as scattering
problems by elongated obstacles, the size of the compu-
tational box can be reduced significantly if the external
boundary is adapted to the shape of the scatterer. Now
the concept of PMLs seems to be more adapted to flat
boundaries and, in case of curved surfaces, Absorbing
Boundary Conditions (ABCs) might be more interest-
ing. Most of ABCs are constructed from an approxi-
mation of the Dirichlet-to-Neumann operator and high-
order conditions have been derived in order to improve
the absorption power [8, 9]. Nevertheless, high-order
conditions are generally written for piecewise-flat sur-
faces and corner conditions must also be introduced. In
this work, we present a new ABC which is obtained from
the combination of an ABC which construction and per-
formance are described in [3] and a boundary condition
including the behavior of grazing waves near the exter-
nal surface of the computational domain.

2 General setting

In this paper, we consider the time-dependent wave
equation in a two-dimensional domain 2 with a sound-
hard obstacle inside and an ABC on its external bound-
ary. We have

0?u — div (CQVU) =f, in(0,7) x Q,
w(0,2) =0; Qu(0,2) =0, in{,

Onpu =0,
Onu = Bu,

(S) (1)

on FN7

on I'aps,

where f is the source function, ¢ the velocity of the
wave u (the unknown field), T' the final time, n the unit
outward normal vector, I'y and T',,s respectively the
boundary of the obstacle and the ABC which is repre-
sented by the operator B. The operator B can be differ-
ential, for instance, it reads —%at — 5 which corresponds
to the curvature ABC (C-ABC) which is a well-known
ABC that only takes into account propagating waves
but it can also be a pseudo-differential operator.

In this paper, we set ¢ = 1 for a sake of simplicity and
we restrict our study to the 2D case but the extension
to the 3D case is relatively straight forward.

In [3], we have introduced a new ABC which is defined
by :



Theorem 2.1 A second-order family of ABCs taking
both propagating and evanescent waves into account
reads as

(On + o) (at 40, + g) w=0onTas  (2)
The construction of this condition is based on the
micro-diagonalization [13] of the acoustic wave equation
both in the hyperbolic and the elliptic region. We assume
that the neighborhood of T',,s can be parametrized
by (r, s) in such a way that Taps = {(r, s) = (0, s)}.
Then, r stands for the radial distance to I'yps and s
denotes the curvilinear abscissa. We then consider the
solution to the acoustic wave equation in the Fourier
domain (w and ¢ denote respectively the dual variables
of t and s) represented by the elliptic frequencies
{(w, &), h=26% — w? > 0} and the hyperbolic frequencies
{(w, &), h=26% — w? < 0} which respectively correspond
to the evanescent and the propagating waves. We have
used the following notations : k is the curvature of
the external boundary I',hs, A = 1 4 rk is a parameter
depending on the radial variable r while x depends on
s.

We can observed that the glancing region
{(w,&),h=26% — w? = 0} which corresponds to the
grazing waves is not considered. This is due to the
fact that the micro-diagonalization technique can not
be applied to these frequencies. As a consequence,
the resulting boundary condition does not take the
corresponding waves into account. In this work, we
concentrate on the modelling of the complete wave
field and we propose a new ABC including the glanc-
ing region which performance is illustrated by some
numerical experiments.

3 The new ABC

We cannot apply the micro-diagonalization in the region
{(w,€),h™2¢% — w? = 0} since in that region, the sys-
tem does not admit eigenvalues. We thus perform an
asymptotic expansion to design an ABC that takes the
grazing waves into account [5]. We first apply a par-
tial Fourier transform in the variable ¢ to the acoustic
wave equation and we consider its principal symbol in
the neighborhood of T',pg:

wiu + 02u + h™20%u = 0. (3)

In the neighborhood of T',g, the radial distance satisfies
7 << 1. Then thanks to a Taylor expansion we obtain

h=2 ~1—2rk. (4)

We now apply a Fourier transform on the variable s and
we get that the Fourier transform of w denoted by
satisfies

Ru+ [w? = (1-2rk)]a=0, (5)

which is an Airy equation (see [1]). Hence, 4 can be
written as

u=AAi(ar+ 8) + B Bi(ar + ), (6)

where A, B, a and (3 are constant with respect to r, Ai
and Bi are the Airy functions [1]. Since we are consid-
ering outgoing wave fields, the Airy function Bi must
be removed and we thus have B = 0. Then using the
properties of Ai (see [1] eq. (10.4.1) p.446) and (5), we
get

0= AAi ((i§)2/3 (2k)"° (r + “’;_252)) G

Finally, the grazing waves are represented by (7) and we
can then evaluate 0,Uj,—y = Onl|,—o. Since we consider
the region where w? = h™2¢2 and knowing that A = 1
on I',1s, we then have

173 Ai’ (0)

Dyij—o = (i€)** (2n) i) o ®

To obtain a condition written for u, we have to apply
an inverse Fourier which requires to give a sense to the
inverse Fourier transform of (i§ )2/ * 4 which leads to deal
with a fractional derivative [11].

Definition The Caputo fractional derivative of D% g of
order a (a € R) of a given function g is defined by

F (D& g(X)) = (ikx)" F(9(X)), (9)

where F denotes the Fourier transform and kx the dual
variable of X.

According to [1] (eq. (10.4.5) p.446),
1

Ai'(0) = “SAT/3) (10)
and (eq. (10.4.4) p.446)
, 1
Ai(0) = SAT(2/3) (11)

therefore, after applying an inverse Fourier transform on
(8), we get

Theorem 3.1 Grazing waves can be represented on
1_‘abs by

173 1'(2/3)
' (1/3)

Onu + (6K) D§/3u =0 on I'yps. (12)

To obtain a condition that both takes into account
the waves corresponding to the hyperbolic and the el-
liptic regions and to the interface between these two
regions, we compose (12) with (2).

Theorem 3.2 A third-order family of ABCs taking
propagating, evanescent and grazing waves into account
reads as

<3n + cTDz/?’) (On+0) (8,5 + Op + g) uw=0 on T4,
(13)

with ¢ == (6/%)1/3 }:gﬁg

Remark We could have only considered the case of
an ABC that only takes both propagating and grazing
waves into account. This ABC is given by

(8n + CTDE/B) (8,5 + On + g) u=0on Tups. (14)



4 Numerical experiments

Here, we only present the results obtained with (14), the
implementation of (13) is still in progress.

In [3], to incorporate the ABC (2) into a finite element
formulation, we have proposed to rewrite it in a more
convenient way which can be easily included in a vari-
ational formulation. After a space and time discretiza-
tion, we have tested the ABC in two given configura-
tions and we have numerically observed that there exists
an optimal choice of 0. Moreover, taking into account
evanescent waves seems to be a good idea to improve
the efficiency of the solution.

As in [3], to implement the ABC (14) into a finite ele-
ment formulation, we propose to use a more convenient
expression of (14) which can be easily introduced into a
variational formulation thanks to an auxiliary unknown
1. The ABC (14) is rewritten on I, as

K K -1 K2
Ot = —0iu — §u—|— (8,5 ~3 + c,»Df/?’) (83 - 4) U

and we define v as the surface field satisfying

2
(cTDz/?’ + 0 — g) P = (83 — ’1) u on I'aps.

Then the solution u satisfies
Opu = —0su — gu 4+ 1 on Taps.

To deal with the fractional derivative term, we set
another auxiliary variable ® only defined on I',ps by
& = D3y,

For the space discretization, we consider an Interior
Penalty Discontinuous Galerkin (IPDG) method [2, 7]
and a second-order Leap-Frog scheme for the time dis-
cretization which is quasi-explicit since all the matrices
are block-diagonal and therefore easily invertible. To
evaluate ® at each time step, we use a finite difference
scheme on I',ps which is known as the Shifted Grinwald
formula [12]

1 i+1
<I>(si7 nAt) = Wzgﬂb(siﬂ*l’ nAt), (15)
7=0

where s; = ih, h is the space step on I',ps (supposed to
be constant), At the time step and the weights g; are
given by go =1, g1 = —% and

_gj-1 (5

7 —J) <gj-1

95 = 7 '3

This scheme seems to be global on I',,s but it is in fact
pseudo-local. Indeed, at each time step, to find the value
of @ at a given point s; we don’t have to consider the
value of 1 at all the previous points but only at the
points in the neighborhood of s; since the weights g; cor-
responding to points s;_; 1 far from s; are very small.
We have compared the performances of the ABC (14) to
the ones of the C-ABC and the ABC (2) for two simple
configurations.

In the first configuration, the domain 2 is a disk of ra-
dius 3m, centered in (0, 0) and T,y is the boundary of €.
We consider zero initial condition and an off-center point

(0,2.85) | (-2,2) | (-2.85,0)
C-ABC 1.14 2.35 3.15
prop-ev (o = 0.7) 1.01 1.90 2.59
prop-grazing 0.97 1.68 2.40

Table 1: Relative L? error (in % ) - circle

source in space at (0, 1m) which is a second-derivative
of a Gaussian with a dominant frequency of 1Hz.

In the second configuration, the domain 2 is a ring cen-
tered in (0,0) of internal radius 1m and of external ra-
dius 3m. [,ps is the external boundary of the ring and
I'y is the internal one. We consider zero initial condi-
tions and an off-center point source in space at (0, 1.5m)
which is a second-derivative of a Gaussian with a dom-
inant frequency of 1H z.

In both configurations, we set the final time T" = 40s.
To compare the efficiency of the different ABCs, we set
three receivers near the absorbing boundary at points
(0,2.85m), (—2m, 2m) and (—2.85m, 0) and we compute
the relative L? )([0,T]) error at each receiver which

(z,y
coordinates are (x,y). This error is defined by

(foT(uapp(tu (x,y)) — tea(t, (, y)))2dt) v
(fOT(ueI(t7 (, y)))gdt) 1/2

where gy, is the approximation of the solution and ue,
is the exact solution obtained thanks to a Cagniard-de
Hoop method [6]. The error is given after 6000 itera-
tions (with a time step equal to 7e — 3s). According
to [3], in those given configurations the optimal choice
of o seems to be o = 0.7, that’s why we compare the
new ABC to the ABC (2) with ¢ = 0.7. In Tab.1, we
give the results for the first configuration and in Tab.2,
the ones for the second one. We can observe that the
solution at the first receiver located above the source is
very accurate, whatever the condition is. This is due to
the fact that most of the waves impinge the boundary at
normal incidence above the source. On the contrary, the
solutions obtained at the two other receivers are more
accurate with the new condition than with the C-ABC
or the ABC (2).

Moreover, we have computed the solution with the new
ABC until T = 130s (20000 iterations) and we observe
that the solution remained stable. We thus claim that
the new condition preserves the long-time stability of
the wave equation.

Nevertheless we must observe that the experiments we
have carried out concern the case of a circular boundary,
for which the curvature ABC is already very accurate.
Therefore we are now investigating the performances of
the new ABC on an elliptic boundary. In particular, we
wish to know if it can improve significantly the accuracy
of the solution obtained with the C-ABC or with ABC

(2)-




(0,2.85) | (-2,2) | (-2.85,0)
C-ABC 1.42 7.21 5.77
prop-ev (o = 0.7) 1.22 6.03 4.84
prop-grazing 1.11 5.46 4.44

Table 2: Relative L? error (in % ) - ring

5 Conclusion

In this paper, we have proposed a new ABC for
the acoustic wave equation that can be justify for
any arbitrarily shaped surface by using a micro-local
diagonalization process or an asymptotic expansion.
This ABC has been written for all regular convex
domains and consider the hyperbolic, the elliptic
regions and the frontier between these two regions.
We have performed some numerical tests in simple
configurations and we have observed that the accuracy
of the solution is improved. We plan to test numerically
other configurations as elliptic domains or more general
convex domains. We expect to see more significant
improvements in the accuracy of the solution with such
configurations than in the case of circular domains. We
also have to implement the complete ABC (13) and we
expect the solution to be more accurate. Even if the
construction of the ABC in the 3D case is the same
as in the 2D case, the implementation of the ABCs
involving a fractional derivative are not easy. Indeed, to
the best of our knowledge, there is no existing schemes
for such a configuration. To overcome this difficulty, we
plan to consider the fractional derivative with respect
to t instead of the fractional derivative with respect to
s, since in the case of the grazing waves w? = ¢2. In
that case, there would not be any difference between
the 2D case and the 3D case.
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