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Abstract—In urban environments, detection of moving ob-
stacles and free space determination are key issues for driving
assistance systems or autonomous vehicles. This paper presents
a lidar-based perception system for passenger-cars, able to do
simultaneously mapping and moving obstacles detection. Nowa-
days, many lidars provide multi-layer and multi-echo measure-
ments. A smart way to handle this multi-modality is to use grids
projected on the road surface in both global and local frames. The
global one generates the mapping and the local is used to deal with
moving objects. An approach based on both positive and negative
accumulation has been developed to address the remnant problem
of quickly moving obstacles. This method is also well suited for
multi-layer and multi-echo sensors. Experimental results carried
out with an IBEO Alasca and an Applanix positioning system
show the performance of such a perception strategy.

Index Terms—Intelligent Vehicles, Environmental Perception,
Mapping, Mobile Object Detection

I. INTRODUCTION

Autonomous vehicles are becoming a reality in urban areas

for human transportation. Indeed, several works in the world

have shown some impressive results. However, autonomous

driving in urban environment remains a problem and need the

understanding of the scene to predict its evolution. Perception

systems use different sensors and the measurements can be

noisy, biased or incomplete. New lidar technologies (multi-

layer, multi-echo) can bring a solution to this problem by

increasing significantly the number of measurements. This

sensing technology provides reliable perception of the sur-

roundings even if the laser beam is partially reflected. The

perceptive problem can be decomposed in different parts: the

localization, the mapping and the mobile objects detection and

tracking.

• Ego-Localization (EL) :

Positioning task is a recurrent problem in robotic appli-

cations. GPS, Inertial Measurement Units (IMU), pro-

prioceptive or exteroceptive odometry are main solutions

proposed for Inteligent Vehicles. Today, reliable submetric

positioning systems exist but they remain too expensive

for commercial application.

• Mapping (M):

Many robotic works have treated the mapping of static

environments with different approaches. Generally, map-

ping is coupled with the localization task to address

the Simultaneous Localization And Mapping (SLAM)

problem [1], [2], [3]. Two main approaches exist: the

feature-based approach tries to map with a predetermined

set of geometrical shapes (segment, arc, etc...) and the

grid approach is based on a discret space representation

that makes easier data association and fusion.

• Mobile Object Detection and Tracking (MOT) :

SLAM methods are very sensitive to the presence of

moving objects in the scene. Indeed, the algorithms are

based on the temporal coherency of the mapping process.

A way to address this issue is to detect and track the

moving objects [4], [5], [6], [7]. Usually, a detection

and tracking system is developed in the feature-based

framework and works in 3 steps: clustering of raw data

for object detection, data association and temporal fusion.

The main sources of error are in the clustering phase

and in the association step. Some recent works use

parametric models [8]. Using a grid approach for the

MOT problem is not usual but some works relative to

the Bayesian Occupancy Filter (BOF) [9] tend to solve

that by clustering cells with specific criteria.

In this work, we consider a mobile robot moving in planar

world. As we assume to be in an urban environment, there

can be a lot of obstacles and a lot of moving objects as

illustrated in Figure 1. In this paper, we do not consider the

ego-localization (EL) problem, that’s why we use a positioning

system ’Applanix Pos LV 220’ which is an integrated multi-

sensor system that provides a very precise 3D pose (position

and heading) of the vehicle. The two other problems (M

and MOT) are linked together because they deal with the

perception system. The main difference is the mobility of the

objects. It is the criterion that we use to do the classification.

To manage this strategy, we use the grid-based framework.

This paper presents a perception scheme mainly dedicated

to the detection of the mobile objects on the souroundings

allowing the mapping of the static environement in spite of

the presence of moving objects. This detection strategy can

be used afterward in a tracking algorithm to be able to predict

the free space for navigation applications. The main advantage

of this approach is that there is no clustering phase and it is

adapted to a wide range of urban obstacles (pedestrian, vehicle,

bicycle,...). It can also cope with the multi-echo measurements

that are frequent with new generation lidars.

In the first section, the framework to fuse sensors data

is presented. Then, the combination strategy based on accu-
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mulation will be described followed by a section showing

experimental results.

Fig. 1. Urban situation: the red car is equipped with a multi-layer lidar

II. FUSION FRAMEWORK

We use a 2D grid representation that is defined as a discret

space projected on the floor. Each cell of the grid represents a

piece of space and contains data computed from perception

of the environment. We use a dual space representation:

an instantaneous local map called Scan-Grid (SG) which is

composed of polar cells of size L × ϕ (L is a length and ϕ

represents an angular sector) and a global map called Grid-

Map (GM) which is Cartesian map referenced in the world.

Cartesian cells are L-length squared. This section describes

how these maps are defined according to the sensor model

and the environment model.

A. Lidar Scan

The sensor used is an IBEO Alasca lidar. It is a four-scan

sensor which provides a 3D points cloud of the environment at

each scan. This sensor can do measurements up to 200 meters

in a front field of 320°, with a rate from 8Hz up to 40hz

depending on the needed angular resolution. It uses a 905 nm

wavelength Infra-Red laser which has an aperture of 0.25°. The

angular resolution is adaptive according to the angle as shown

in figure (2). This sensor is also able to provide several echoes

per line of sight if, for instance, the laser beam is partially

reflected by an obstacle. Another characteristic is that it can

return no measurement in the considered line of sight. If there

is no echo, two cases are possible : there is no object until the

max range or there is is an obstacle which doesn’t reflect the

laser beam. Therefore, the sensor model presented hereafter,

proposes to take into account of these sensor particularities.

B. Multi-echo Scan-Grid

Using the sensor model, we can build from each lidar

scan, the Scan-Grid (SG), which is a 2D local instantaneous

occupancy grid . Because the lidar is a polar sensor, a polar

grid model is used to compute the occupancy of the cells.

The sensor precision is higher than grid resolution and the

grid is sensor-centered. So, we can use an ideal sensor model

as a 1D explicit solution as shown on the top part of the

Figure 4. Considering the Scan-Grid, let SG (r, θ) denote the

Fig. 2. Alasca XT angular resolution in function of the angle of measurement
and of the frequency

state of a cell taking integer value, refering to three different

states for the cell described by the table I. The intensity of the

value corresponds to the redondancy, that is a mesure of the

confidence.

Cell State SG values

occupied positive
unknown null

free negative

TABLE I
SCAN-GRID VALUES TABLE
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Fig. 3. Multi-echo sensor model. Example of one row of the Scan-Grid
computation : in the middle, a bird view of the real scene. On the top, the
figure shows the sonsor model compute from the multiple echos as described
in .On the bottom, figure shows the affectation for the row corresponding to
this angle.

This is illustrated by the Figure 3. Each row of the scan

grid corresponds to one angular sector. In this sector, several



echoes are possible because of three reasons: i) in one direction

it is possible to receive several echoes, ii) the projection of

4 layers on the same plane can provide echoes located at

different distances and iii) the angular resolution of the lidar

is not constant and some times better than the resolution of

the grid (several lidar directions can be projected on the same

column of the polar grid). Therefore, it is worth to notice

that this grid sensor model takes into account the multiple

echo capabilities. The SG is initialized with 0, each angle

is processed independently as shown by the Figure 3, each

measurement increases the value of the corresponding cell and

decreases the value of the cells preceding the first occupied

cell. The negative information characterizes the free space.

Cells between two occupied cells and cells following the last

detected cell are affected at 0. An example of SG is given in

Figure 4 where multi-echoes are observed.

Fig. 4. Multi-echo sensor model: on the left the camera view of the scene and
on the right the SG projected in a Cartesian frame, white cells are occupied,
black are free, and gray are unknown.

C. The Grid-Map

The Grid-Map (GM) is defined as a global accumulation 2D

grid and stores the mapping information. It is a cartesian map

and each cell of size L×L is a piece of the 2D projection of the

global space. By global, we mean that this grid is referenced

to an East-North-Up frame which is considered fixed. The GM

is used to create the lidar based perceptive map of the area.

This implies that all the static elements of the scene will be

mapped included pseudo static elements such as parked cars.

D. From the Scan Grid to the Grid Map

A key point of the method is that the SG can be projected in

the GM frame using the pose provided by the Applanix sensor,

this is illustrated by Figure 5. First, the polar grid is converted

in a Cartesian one using a bi-linear interpolation. Then, a

transformation of the Cartesian SG is applied in order to make

the projection. This consists in one rotation and one translation.

The rotation is done with a bi-linear transformation, because

each projected cell may project partially on several cells.

Bi-linear transformation may interpolate values, so, in the

transformated cell, value are mixtures between the values of

the neighborhood of the polar cell. This causes a smoothing

of edges.

SG

GM

Fig. 5. Successive transformations to use the SG with the GM

III. IMPLEMENTATION OF THE ACCUMULATION

ALGORITHM

The processing architecture applied to the GM is described

in Figure 6. This section details the GM updating phase with

an accumulation algorithm. The framework presented in the

section 2 is generic and instead of making the fusion using the

presented accumulation algorithm, a probabilistic or evidential

fusion framework could be used. The accumulation process

is described to address the problem of Mapping and Mobile

Objects Tracking (MMOT).

Correction

Computing

Update Conditionning

Scan-Grid (t)

Grid-Map Al(t-1) Grid-Map Al(t)

Threshold Classification
Static Objects

Mobile Objects

Fig. 6. Architecture of the GM process

A. Negative and positive accumulation in the GM

In an accumulation strategy, each cell of the GM stores an

indicator Al which represents the current accumulation level

of occupancy.

Al ∈ [AminAmax]

The limit Amin represents a free cell whereas Amax repre-

sents an occupied cell.

This map is initialized with the average value A0 =
Amax+Amin

2
in all the cells. This means that there is no a

prior knowledge of the environment.

The update process provides a positive or negative accumu-

lation using the values coming from the SG. The incrementing

process aims to build the map by integrating occupancy mea-

surements like a 2D histogram [10]. Some recent works have

used a similar approach applied to the SLAM problem [11].

This work focus on the localization problem, using matching

on the map to realize odometry. In opposition, in our method,

localisation is provided, there is no matching or data associ-

ation since the algorithm just performs a filtering in order to

extract moving objects.

The mapping step is composed of 3 stages.

• Correction computing
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Fig. 7. Positive and negative accumulation mechanism in a cell of the map

Using the SG projected in the GM frame, the correction term

ct is calculated according to the sign of the cell value (Fig. 7).

First, the accumulation levels of the occupied cells are

incremented using the K1 gain. This carry out the mapping

of the static world, but the cells crossed by mobile obstacles

are incremented too. The principal difference between a static

and a moving obstacle is that the moving one does not occupy

the same position all the time. The occupied cell will become

free after the moving object leaves the cell.

That’s why the empty cells are decremented using the K2

gain. This negative accumulation process has a non negligible

response time. In order to reduce this lag, K2 has to be larger

than K1. A particular problem of this solution is that small

obstacles which are not detected at each scan will be not

mapped.

• Updating

The updating process is an integration. It is realized by

summing the accumulation level with the correction term:

Alt = Alt−1 + ct

Where Alt and ct are respectively the Accumulation level

and the Correction at the time t as show on Figure 7.

• Conditioning

In this integration method, the level of accumulation depends

of several parameters : occupancy, integration time and visible

ratio of the object with respect to the size of the cell. To solve

this, a saturation limits the accumulation level. Figure 8 shows

the accumulation level behavior of one cell according to the

SG value.
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Fig. 8. In part 1, the cell is not scanned: Al doesn’t change. In part 2, the
cell is scanned as empty: Al decreases until threshold Amin. In part 3, the
cell is detected as occupied: Al increases with a different speed to Amax. In
part 4, the cell is declared empty after few iterations.

B. Mobile Object Detection

The detection method we propose consists in comparing

the current SG with the GM. Because of the transformations

(polar/cartesian and local/global), the projection of the SG on

the GM does not contain integer values but real ones. SG

cells are compared with a detection threshold DTh in order

to consider only the cells containing an object. Then, the Al

of corresponding GM cell is compared with a classification

threshold CTh in order to define if cells are occupied by

moving or static objects. Figure 9 explains the classification

scheme.
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Fig. 9. Behavior of the Al of an occupancy cell depending on the dynamic
of the object. On the left, a static object reaches the threshold after a few
time.On the rigth, the cell occupied by a moving object does not reach the
threshold CTh during the time the cell was detected.

IV. RESULTS

A. Experimental setup

The algorithm presented before was tested on a data-

set acquired with a real vehicle in urban conditions. The

complete data set is a 20-minutes long sequence, acquired in

collaboration with the French geographic institute (IGN) in

Paris. The vehicle follows a reference track (Fig.10) repeated

3 times.

Fig. 10. On the top the test vehicle with the lidar sensor in front. On the
bottom, the track follow by the vehicle

We exploit the data provided by 3 sensors: the lidar Alasca

XT, the Applanix positioning system and one camera. In order

to synchronize the data between the sensors, time stamps in

GPS time have been used. The lidar was mounted in a way

to have its lowest layer horizontal. Its acquisition frequency



was 15 Hz, with an angular resolution max of 0.25° in front

of the vehicle and 1° on the side. The Applanix positioning

system is composed by 2 GPS, 1 IMU and 1 odometric

sensor. The quality of the precision has been evaluated by

comparing its output with 2 others positioning systems IXSEA

LandINS (high precision positioning solutions than are usually

used as ground truth). The camera was triggered by the lidar:

this simplifies the synchronization problem. This camera was

installed just under the lidar at the front bumper. Until now,

the camera is just used for validation and scene visualization.

The SG covers a range of 200 meters and angulare field of

180°, with a resolution of 0.5m in range and 1° in angle. The

global GM used covers 800m x 700m area with a resolution

of 0.5m.

The algorithm has been implemented with MATLAB. It is

not real time in the current implementation: it takes 1.5 s on

a laptop (Intel Centrino at 2Ghz) to compute and display one

step.

In this implementation, the gain K1 is set to 1 and the

Al takes value in [0 30] , that implies a maximal lag of 2s

for static elements mapping in the case they are detected at

each scan. In order to increase the reactivity of the system for

mobile object mapping, the decrementing gain K2 has to be

higher than K1. K2 is set to 5 in this experiments. We haven’t

choose a too important value to avoid that wrong measurement

affects significantly the map. The detection threshold DTh was

set to 0.5 and the classification threshold CTh was set to 10.
All these values were fixed in an trial-and-test way.

B. Results

The validation was made in two steps. First, the validation

of the mapping and then the validation of the classification.

The mapping validation has been done using a referenced

free space map provided by the IGN. This map does not take

into account of the presence of some long time stationary

objects like cars parked.

The classification validation is made by using images

coming from the camera. It is illustrated here using several

scenarios (intersection, crossing car,etc..) detailed afterward.

1) Mapping Results: We compare the map built during one

loop of the reference track (Fig. 11) with the the map called

“free space map” provided by the IGN. This free space map

is a 3D mesh of the road surface, it was created manually

by expert operators from high-resolution aerial images using

photogrametry.

The key point we want to put in is that in spite of many

moving objects were present in the scene, static object like

buildings are correctly mapped and the free space is correctly

determined. Depending of the sensor field of view, we can

map several aligned objects like parked cars and building using

different lidar layers. Since moving objects are not tracked in

time and can momentarily become static (by stopping at traffic

light for example), they can appear as static environement in

the GM. This problem appears in the partircular case where

mobile objects leave the field of view of the ego-vehicle sensor

when they are stoped. Small objects (typically less than 0.5m

Parked cars

non detected 

Barrier

Car waiting

to turn

Heavy traffic

intersection

Fig. 11. Comparison between the GM and the free space map provided, black
is the mapped occupied cells, and gray is the 2D projection of free-space map

or hollow object) such as barrier or sign-posts can not be

correctly mapped using the proposed method. This is due

mainly to the sensor model grid resolution.

2) Classification Results: The following two scenarios ex-

tracted from the complete sequence show the classification per-

formance of the algorithm in different cases. The classification

output is represented on the GM, in superposition with the

mapping, using two colors. Green cells are considered moving

whereas blue cells are considered static. The first column

contains zoomed parts of the GM around the vehicle with the

classified objects. In the second column, the view of the scene

is given (the camera has been installed at the same elevation

than the lidar). The detected objects are manually highlighted

here using bounding boxes in order to make the link between

the detected objects in the GM and their position in the image.

• Intersection

This scenario is illustrated by Figure 12. The ego-vehicle

is stopped at an intersection and two vehicles cross in

front of it. Vehicles come from both right and left sides

with a high radial speed. The car is correctly detected

whereas the van is partially miss-classified.

• Pedestrian crossing the street

This scenario is illustrated by Figure 13. The vehicle

approaches an intersection and stops in order to let two

pedestrians go across the road. Pedestrians are partially

miss classified since they walk slowly.

One can notice that the field of view of the camera (˜70°) is

small in comparison with the lidar one (˜140°). So, objects on

the side are detected by the lidar before being visible on the

image.

Moving vehicles are well detected. Some miss-detections

have been observed in case of long vehicles, because their long

size induces a spacial accumulation during a significant time.



Fig. 12. Intersection scenario

Fig. 13. Pedestrians crossing the street scenario

Other miss-detections occur if objects are moving too slowly

like pedestrians waiting on the sidewalk before crossing the

road. The classification results may be improve by using a

higher resolution map.

V. CONCLUSION

This paper has presented a perception fusion scheme based

on both local and global grid interactions. The contribution of

this work is to propose a smart approach which can provide the

navigation space, the mobile obstacles and static objects. In its

current implementation, accurate localization is a prerequisite.

The results we have reported here illustrate the nice perfor-

mance of such a strategy for detecting mobile objects which is

a crucial data processing step in perception. One perspective

is to analyze how a dead-reckoning localization method, using

for instance lidar odometry, will degrade the method. Another

perspective is to use prior information like the IGN map in

order to start with a prior map or to improve the detection

performance by filtering object out of the road.

Here, the data fusion is simply done using positive and

negative accumulation with saturation, the absence of knowl-

edge being managed using no accumulation. This strategy has

shown to be very efficient for capturing pieces of informa-

tion coming from all the lidar’s echoes. Finally, this fusion

framework can be adapted to the implementation of other

fusion paradigms such as the Bayesian or evidential ones. The

evidential fusion method is our main perspective in order to

handle the absence of information in a rigorous framework.
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