Dispersive wave runup on non-uniform shores

Abstract : Historically the finite volume methods have been developed for the numerical integration of conservation laws. In this study we present some recent results on the application of such schemes to dispersive PDEs. Namely, we solve numerically a representative of Boussinesq type equations in view of important applications to the coastal hydrodynamics. Numerical results of the runup of a moderate wave onto a non-uniform beach are presented along with great lines of the employed numerical method (see D. Dutykh et al. (2011) for more details).
Liste complète des métadonnées

Cited literature [18 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00553762
Contributor : Denys Dutykh <>
Submitted on : Saturday, March 5, 2011 - 10:57:08 AM
Last modification on : Thursday, January 11, 2018 - 6:12:26 AM
Document(s) archivé(s) le : Monday, June 6, 2011 - 2:22:57 AM

Files

DD_TK_DM-FVCA6.pdf
Files produced by the author(s)

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

Collections

Citation

Denys Dutykh, Theodoros Katsaounis, Dimitrios Mitsotakis. Dispersive wave runup on non-uniform shores. Finite Volumes for Complex Applications VI Problems & Perspectives, 4, Springer Berlin Heidelberg, pp.389-397, 2011, 978-3-642-20671-9. ⟨10.1007/978-3-642-20671-9_41⟩. ⟨http://link.springer.com/chapter/10.1007/978-3-642-20671-9_41⟩. ⟨hal-00553762v3⟩

Share

Metrics

Record views

858

Files downloads

264