The Mean First Rotation Time of a planar polymer

Abstract : We estimate the mean first time, called the mean rotation time (MRT), for a planar random polymer to wind around a point. This polymer is modeled as a collection of n rods, each of them being parameterized by a Brownian angle. We are led to study the sum of i.i.d. imaginary exponentials with one dimensional Brownian motions as arguments. We find that the free end of the polymer satisfies a novel stochastic equation with a nonlinear time function. Finally, we obtain an asymptotic formula for the MRT, whose leading order term depends on the square root of n and, interestingly, depends weakly on the mean initial configuration. Our analytical results are confirmed by Brownian simulations.Our analytical results are confirmed by Brownian simulations.
Type de document :
Pré-publication, Document de travail
2011
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00553669
Contributeur : Stavros Vakeroudis <>
Soumis le : lundi 9 mai 2011 - 19:22:41
Dernière modification le : jeudi 16 mars 2017 - 01:07:38
Document(s) archivé(s) le : mercredi 10 août 2011 - 02:51:51

Fichiers

MRT.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00553669, version 3
  • ARXIV : 1101.1737

Collections

UPMC | PMA | INSMI | PSL | USPC | MODALX

Citation

Stavros Vakeroudis, Marc Yor, David Holcman. The Mean First Rotation Time of a planar polymer. 2011. <hal-00553669v3>

Partager

Métriques

Consultations de
la notice

177

Téléchargements du document

75