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Abstract

This paper deals with the multi-objective path placement optimization for Parallel Kinematics

Machines (PKMs) based on energy consumption, actuators torques and shaking forces. It aims

at determining the optimal location of a given test path within the workspace of a PKM in

order to minimize the electric energy used by the actuators, their maximal torque and the

shaking forces subject to the kinematic, dynamic and geometric constraints. The proposed

methodology is applied to the Orthoglide, a three-degree-of-freedom translational PKM, as an

illustrative example.
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1 Introduction

Optimal trajectory planning has been a relevant area for roboticists for many years. Several

authors have worked on trajectory planning based on different optimization objectives. A

review of trajectory planning techniques is given in [1]. Trajectory planning usually aims at

minimizing the travel distance [2], travel or machining time [3, 4] and/or the energy consumed

[5, 6], while satisfying several geometric, kinematic and dynamic constraints. The trajectory

planning deals with the determination of the path and velocity/acceleration profiles (or the

time history of the robot’s joints), the start and end points of the trajectory being predefined

and fixed in the workspace.

Another less explored aspect of trajectory planning is the placement of a given path within

the workspace. It aims at determining the optimum location of a predefined path to be followed

by the end-effector of a Parallel Kinematics Machine (PKM) or a robot, within its workspace

with respect to one or many given objective(s) and constraint(s). This path can be the shape

of a component to be machined, a welded profile or an artistic/decorative profile etc. In such

situations, the trajectory planner cannot alter the shape of the path but he/she can only

play with the location of that path within the workspace in order to optimize one or several

criterion(a). Such an approach can be very interesting in many robotic applications. For

example, in machining applications, the location of the workpiece within the workspace may

affect the electric energy used by its actuators.

The path placement problem has not been extensively studied in the past. Nevertheless,

some researchers proposed to solve it with respect to various optimization objectives. Several

performance criteria for path location problems can be considered simultaneously (multiob-

jective) or individually, such as travel time, different kinetostatic performance indices (such

as, manipulability or the conditioning number of the normalized kinematic Jacobian matrix),

kinematic performance (velocity, acceleration), collisions, wear and vibration reduction, energy

consumption etc.

Nelson and Donath [7] proposed an algorithm for the optimum location of an assembly task
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in a manipulator workspace while taking the manipulability measure as the optimization crite-

rion. The location of the assembly task that results in the highest manipulability is considered

as optimal position. Aspragathos [8, 9] used the concept of the orientation of the manipulability

ellipsoid relative to the desired path and introduced a criterion to characterize the best velocity

performance of the robot end-effector with the path location. Fardanesh et al. [10] proposed

an approach for optimal positioning of a prescribed task in the workspace of a 2R-robot arm

to minimize the cycle time. In another study, Feddema [11] formulated and solved a problem

of robot base placement for a minimum joint motion time within a work cell. The proposed

algorithm considers only the kinematics and the maximum acceleration of each joint in order

to obtain a 25% cycle time improvement for a typical example. Hemmerle [12] presented an

algorithm for optimum path placement of a redundant manipulator by defining a cost function

related to robot joints motion and limits. The proposed approach did not consider the path as

a whole but discrete points of that path. Pamanes and Zeghloul [13] considered several kine-

matic indices to find the optimal placement of a robot by specifying the path with a number

of points and then assigning an optimization criterion to each point. The objective was to find

the path location in order to have optimal values of all the criteria assigned to the path points.

In [14], the problem of optimal placement with joint-limits and obstacle avoidance is addressed.

Lately, a general formulation was presented to determine the optimal location of a path for a

redundant robotic manipulator while dealing with mono- and multi-objective problems [15].

In another relevant work, Wang et al. [16] proposed a mathematical model to determine

the right position and orientation of a workpiece in the workspace of a Stewart platform based

NC-miller machine tool. The idea of their study was to analyze the effects of geometric and non-

geometric constraints on the workspace and subsequently, using these information to determine

the right pose of the workpiece in the workspace a parallel machine tool. However, the only

objective that they considered was the location of the workpiece for the accessibility of a specific

machine tool.

With a general literature survey, it comes out that although several performance indices are
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introduced or considered, there is no emphasis on the dynamic aspects reflecting the energy

consumption by the PKM actuators, while executing a specific task. Another less explored but

important criterion of optimal path placement can be the minimization of the shaking forces

and moments experienced by the base of the PKM. Shaking forces and moments can affect the

performance of a PKM in terms of excessive loads, accuracy, wear, fatigue, etc. Accordingly, we

introduce two indices characterizing the variations and the maximum value of the shaking forces.

The maximum actuators torque is considered as another optimization objective. Keeping in

view these aspects, the authors recently presented an approach for the optimal path placement

for a manipulator based on energy consumption [17]. In the same vein, it is pertinent to follow

a multiobjective approach to optimize the location of a path to be followed by the end-effector

of a PKM within its workspace. The objectives are to minimize the energy consumed by its

actuators, minimize the shaking forces and/or moments and minimize the maximum actuators

torques. Finally, the proposed approach is applied to the Orthoglide: a three-degree-of-freedom

translational PKM.

The paper is organized as follows: in section 2, a multi-objective path placement optimiza-

tion problem is formulated, by means of the design variables, the objective functions and the

constraints. Moreover, an algorithm is proposed to solve such a problem. In section 3, the

optimum locations of a test path within the workspace of the Orthoglide are highlighted.

2 Path Placement Optimization

The problem aims at determining the optimal location of a predefined path to optimize some

objective functions. The entire path is supposed to be known within the framework of this

research work. The path location can be defined in a similar way as to define the location of

a workpiece with respect to a PKM reference point. The optimization problem is composed

of three sets, namely, the set of design variables, the set of objective functions and the set

of design constraints. Accordingly, the optimization problem aims at determining the design

variables, characterizing the path location, in order to minimize the objective functions subject
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to the design constraints.

2.1 Decision Variables: Path Location Parameters

In order to formulate and describe the problem, two frames are defined: i) the path frame

Fp and ii) the base frame Fb, as shown in Fig. 1(a). The path frame Fp, is attached to the

given/required path at a suitable point such as the geometric center of the path. As Fp is

attached to the path, the end-effector trajectory parameters remain constant in this reference

frame, no matter where it is located, i.e., the path is fully defined and constant in Fp. It can

also be named as workpiece frame since it characterizes the position and the orientation of

the workpiece within the workspace. The base frame Fb can also be called global or PKM

frame. It is attached to the PKM base and is used to locate a workpiece (or Fp) with respect

to the PKM coordinate system. The location and orientation of Fp with respect to Fb can

be defined in such a way that the whole path lies within the workspace. The position of Fp

Figure 1: Path placement characterization, Fb and Fp being the base and path frames

with respect to Fb is defined with the Cartesian coordinates of the origin of Fp. The relative

orientation of the two frames is characterized by the Euler angles. Accordingly, any trajectory

defined in Fp can be expressed in Fb by means of a transformation matrix. For instance, the
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Cartesian coordinates xPb
, yPb

, zPb
of point P in Fb are obtained from its Cartesian coordinates

xPp
, yPp

, zPp
expressed in Fp by means of the transformation matrix bTp from Fp to Fb:

[

xPb
yPb

zPb
1

]T

Fb

= bTp

[

xPp
yPp

zPp
1

]T

Fp

(1)

Let Op be the origin of the path frame of Cartesian coordinates (xOp
, yOp

, zOp
) expressed in Fb

and let the Euler angles φ, θ, ψ characterize the orientation of Fp with respect to Fb, as shown

in Fig. 1(b). The transformation matrix bTp is expressed as,

bTp =



















cosφ cos θ cosφ sin θ sinψ − sinφ cosψ cos φ sin θ cosψ + sin φ sinψ xOp

sin φ cos θ sinφ sin θ sinψ + cosφ cosψ sinφ sin θ cosψ − cos φ sinψ yOp

− sin θ cos θ sinψ cos θ cosψ zOp

0 0 0 1



















(2)

Let x = [xOp
yOp

zOp
φ θ ψ]T define the path location within the workspace in Fb.

Then, the components of x are the decision variables of the optimization problem.

In the context of a general machining process like milling operation, the feature to be machined

in the workpiece is defined with respect to its frame, namely Fp. Likewise, the machining

operation conditions such as machining velocity and acceleration are fully defined in Fp. Finally

the part location in the workspace is defined in Fb.

2.2 Optimization Objectives

The path placement optimization is performed with the aim of minimizing four objective func-

tions, namely, (i) electric energy consumption, (ii) variations in the shaking forces, (iii)maximum

shaking forces and (iv)maximum actuators torques. In the following sections, the mathematical

expressions of these objective functions are given.
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2.2.1 Electric Energy

The energy used by the motors depends on their velocity and torque. As the electric current

drawn varies with motors required velocities and torques, the motor’s self-inductance phe-

nomenon appears. The current I drawn by the motors and the motor electromotive potential

Ve can be calculated as a function of the required torque τ and the angular velocity ω of the

actuators, namely,

I = τ/Kt (3)

Ve = Keω (4)

Kt being the torque sensitivity factor expressed in [Nm/A] and Ke the back electromotive force

constant expressed in [V.(rad/sec)−1]. The total electric power PT is composed of resistive

power loss, PJ ; inductive power loss, PL; and the power used to produce electromotive force,

PEM [18], i.e.,

PT = PJ + PL + PEM (5)

where

PJ = RI2 , PL = LI
dI

dt
, PEM = VeI (6)

R being the motor winding resistance expressed in Ohm [Ω] and L the motor inductance

coefficient expressed in Henry [H]. Finally, the energy E consumed by a motor can be evaluated

by integrating PT over the total trajectory time T, namely,

E =

∫ T

0

PTdt (7)

PT being the instantaneous electric power at instantaneous time t, defined in Eq. (5).

It should be noted that Eq. (3) allows us to consider the energy used by the actuators while they

do not move but still produce a torque to keep the PKM at a certain stationary configuration

(with respect to that particular direction or actuator). Finally, the total energy Et consumed

by n actuators can be written as:

Et =

n
∑

i=1

Ei (8)
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Ei being the total electric energy required by the ith actuator, given by Eq. (7). Consequently,

the first objective of the path placement optimization problem can be written as:

f1 (x) = Et → min (9)

2.2.2 Shaking Forces

Shaking or dynamic forces and moments are the inertial forces and moments exerted on the

base of a PKM due to the uneven mass distribution. These forces/moments may deteriorate

system performance by introducing excessive vibration, noise, wear and fatigue. Furthermore

required input torques and forces may also increase to account for these shaking effects. Hence,

in order to overcome these drawbacks and to improve system performance in terms of accuracy,

precision, fatigue life, vibration reduction, motion planning and control, the study of the shaking

forces and moments is of prime importance.

Dynamic balancing has been an area of research for some decades and several authors have

contributed to this domain by formulating and analyzing the problems for either some particular

applications or for more general prospects [19, 20, 21]. Here, we will use this concept in order

to optimize the path location within the workspace of the PKM to minimize the shaking forces

effects.

For the purpose of simplicity, shaking forces are exclusively considered in this research work

while shaking moments are left for future works.

In order to assess the effect of shaking forces, two indices are proposed, namely,

1. Shaking force variation index, Iδf , considers the maximum variation in the shaking forces

along the trajectory, i.e.,

Iδf = max (dFsh) (10)

where dFsh =
∑n

i=1
dF i

sh is the sum of the variations in the n shaking forces, n being the

number of limbs. The variation in the shaking forces for the ith limb is given by,

dF i
sh =

√

[max(Fi
x)−min(Fi

x)]
2 +

[

max(Fi
y)−min(Fi

y)
]2

+ [max(Fi
z)−min(Fi

z)]
2 (11)
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where Fi
x,F

i
y and Fi

z are 1×Nt dimensional vectors, representing the respective force

profile along trajectory, Nt being the number of time steps. The variations in the shaking

forces will influence the base platform vibrations. Hence, the second objective function

of the path optimization problem can be written as,

f2 (x) = Iδf → min (12)

2. Maximum shaking force index, If , characterizes the magnitude of the maximum shaking

forces experienced by the base platform along the trajectory, i.e.,

If = max (Fsh) (13)

where Fsh =
∑n

i=1
Fi

sh is 1 × Nt dimensional vector representing the sum of the shaking

forces experienced by the n limbs with Nt time steps. The maximum shaking force gives

an idea of the maximum extra loads experienced by the actuators resulting from the

shaking forces, for a particular trajectory. Hence the knowledge of the maximum shaking

forces can help the designer to select the appropriate actuators to cater for these excessive

loads on the system. Accordingly, the third objective function of the path optimization

problem can be written as,

f3 (x) = If → min (14)

2.2.3 Maximum Torque

In order to reduce the actuators loads, the magnitude of the maximum torque τmax experienced

by the PKM actuators is considered. For a PKM of n actuators, τmax is defined as,

τmax = max (τ1max
, . . . , τimax

, . . . , τnmax
) (15)

τimax
being the magnitude of the maximum torque experienced by the ith actuator along the

trajectory. Consequently, the fourth objective function of the path optimization problem can

be written as,

f4 (x) = τmax → min (16)
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2.3 Constraints

The path placement optimization problem is subject to geometric, kinematic and dynamic

constraints. Geometric constraints include joint limits and the boundaries of the workspace.

Kinematic constraints deal with the maximum actuators velocities whereas dynamic constraints

are related to actuators wrenches, namely,

qil ≤ qi ≤ qiu , q̇i ≤ q̇iu , τi ≤ τiu (17)

qi, q̇i, τi are respectively the ith actuator displacement, rate and torque. qil is the lower bound

and qiu (resp. q̇iu and τiu) is the upper bound of ith actuator displacement (resp. rate and

torque). For a given path placement vector x, these constraints can be evaluated by means of

the PKM kinematic, velocity and dynamic models.

It is noteworthy that the PKM geometric constraints guarantee that the whole path lies inside

the prescribed workspace. Similarly, the bounds on actuators rate (q̇iu) and torque (τiu) ensure

that the PKM will not go through any singular configuration while following the path.

2.4 Problem Statement and Solution

The goal of this research work is to help the path planner find the best location of the path to be

followed by the PKM in order to minimize the four objective functions defined in the foregoing

subsections. The multi-objective path placement optimization problem can be formulated as:

“For a predefined path in Fp, find the optimum location and orientation of Fp with respect to

Fb, defined by the decision variables x, in order to minimize the objective functions f1, f2, f3

and f4 while respecting the kinematic, velocity and dynamic constraints of the PKM ”

Mathematically, the problem can be formulated as follows:

min
x

(f1(x), f2(x), f3(x), f4(x)) subject to:























qil ≤ qi ≤ qiu

q̇i ≤ q̇iu

τi ≤ τiu

(18)
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To solve the problem, a general optimization approach based on Multi-Objective Genetic Al-

gorithm (MOGA) is proposed as illustrated in Fig. 2. Starting with the input variables, the

inverse kinematic model (IKM), the inverse velocity model (IVM) and the inverse dynamic

model (IDM) of the PKM are used to determine the objectives functions and constraints for

particular designs variables. MOGA is used to generate the initial population, evaluate the

objective functions and constraints in order to generate new populations by carrying out the

reproduction, cross over and mutation operations. The Pareto optimal solutions are obtained

from the final feasible population.

3 Case Study: Application to the Orthoglide

3.1 Description of the Orthoglide

The Orthoglide is a Delta-type PKM [22] dedicated to 3-axis rapid machining applications

developed in IRCCyN [23]. It gathers the advantages of both serial and parallel kinematic ar-

chitectures such as regular workspace, homogeneous performances, good dynamic performances

and stiffness. The Orthoglide is composed of three identical legs, as shown in Fig. 3(a). Each

leg is made up of a prismatic joint, two revolute joints and a parallelogram joint. Only the

prismatic joints of the legs are actuated.

The Orthoglide geometric parameters are function of the size of the prescribed Cartesian

Table 1: Orthoglide workspace parameters
Workspace size Lworkspace = 0.2 m

Point Cartesian coordinates in Fb [m]
Ob (0, 0, 0)
C (−0.027,−0.027,−0.027)
Q+ (0.73, 0.73, 0.73)
Q− (−0.127,−0.127,−0.127)

workspace, namely, Lworkspace [24]. The base frame Fb is defined with the prismatic actuators

axes, namely, Xb, Yb and Zb, the origin Ob of Fb being their common intersection point. Two
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Input Data

Geometric & Dynamic Parameters
Definition of base frame Fb
Electric motors parameters

Path definition

Definition of Path frame Fp

Trajectory Definition in Fp

Initial Population
x

0
= [xOp0

yOp0
zOp0

φ
0

θ
0

ψ
0
]T

Resolution

Transformation Matrix bTp

Trajectory Definition in Fb

Objectives and Constraints Evaluation

IKM, IVM and IDM

MOGA

Solutions

Evaluation

Max. Generations?

Final Population

Pareto Optimal Solutions

Reproduction

Cross Over

Mutation

Yes

No

Figure 2: Flowchart of the path location optimization process
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Figure 3: A snap and workspace of the Orthoglide

points Q+ and Q− are defined in such a way that the transmission factor is 1/2 and 2 at these

two points [25]. A cube is then constructed with Q+Q− as its diagonal. It should be noted that

the cubic workspace center, i.e., point C, and the origin Ob of the reference frame Fb do not

coincide, as shown in Fig. 3(b). In the scope of this study, Lworkspace is equal to 0.200m. Ac-

cordingly, the coordinates of points Q+, Q− and C for the said workspace are given in Table 1.

Similarly, the prismatic actuators bounds, ρmin and ρmax, can be calculated [24]. Table 2 shows

the lower and upper bounds of the prismatic joints displacements and their maximum allowable

velocity and torque for the Orthoglide. The geometric, kinematic and dynamic parameters of

the Orthoglide are defined in [23, 24, 25, 26].

Table 2: Orthoglide actuators parameters (i = x, y, z)
ρimin

0.126m
ρimax

0.383m
vimax

1.00m.s−1

τimax
1.274Nm
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3.2 Objective Functions Formulation for the Orthoglide

3.2.1 Electric Energy for the Orthoglide

The electric energy Ei used by each actuator is calculated by means of Eqs. (3)-(7). As the Or-

thoglide has three 3-phase Sanyo Denki synchronous servo motors (reference : P30B0604D),

Eq. (5) is multiplied by 3 to cater for the power consumed by the each phase of the motor in

order to calculate the electric power PT i used by each actuator, i.e.,

PTi
= 3(RI2 + LI

dI

dt
+ VeI) (19)

3.2.2 Shaking forces formulation for the Orthoglide

Shaking forces fsh at the base platform of a PKM depend on the mass and the acceleration of

the center of mass of each moving element. For a system of w masses, fsh can be expressed as:

fsh =
w
∑

j=1

mj c̈j (20)

where mj is the mass and c̈j is the acceleration of the center of mass of the jth element. In

order to calculate the shaking forces at the Orthoglide base-frame, three reference frames,

corresponding to each leg, are defined at points A1, A2 and A3, as shown in Fig. 4. The shaking

forces for each leg are calculated independently in the respective reference frame. Each leg is

supposed to be composed of six components, namely,

M1: foot of length Lf ,

M2: the small side of the parallelogram joint attached to the foot. Its length is equal to d,

M3,M4: the longer sides of the parallelogram joint. Their length is equal to Lb,

M5: the small side of the parallelogram joint attached to the end-effector,

M6: the link between M5 and the end-effector of length e.

Besides these leg elements, there are two other moving masses: the mass of the moving part of

the prismatic actuator, Ma, and the one of the end-effector, Mp. The mass of each member Mj

is denoted by mj and the center of mass with respect to the point Ai (i = 1, 2, 3) of each element
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F0

X0

Y0

Z0A1

X1

Y1

Z1

A2

X2

Y2

Z2

A3

X3

Y3
Z3

Fb

Ob

Xb

Yb

Zb

Figure 4: Definition of the reference frames

Table 3: Orthoglide parameters
Parameter Value Parameter Value

ma 0.300 kg Lb 0.310m
m1 0.248 kg d 0.080m

m2, m5 0.095 kg Lf 0.150m
m3, m4 0.117 kg e 0.031m
m6 0.010 kg λ 45 ◦

mp 0.932 kg
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is denoted by Cji, (j = 1 . . . 6, a, p), as shown in Fig. 5. The mass of each element and the

geometric parameters of the Orthoglide are presented in Table 3. Assuming that the material

of the leg components is homogeneous with center of mass at their geometric center, vectors cji

of the jth element of the ith leg can be expressed in terms of the geometric (Lb, Lf , d, e, λ) and

the configuration (q1i, q2i, q3i) parameters of the Orthoglide, as shown in Fig. 5. Therefore, the

acceleration c̈ji of each element can be calculated. These relations are given in the Appendix.

Knowing the mass and acceleration of each element of the ith leg, the shaking forces at the base

point of the leg (point Ai) can be calculated by using Eq. (20), i.e.,

f ish = (m1 +ma) c̈1i +m2c̈2i +m3c̈3i +m4c̈4i +m5c̈5i +m6c̈6i +mpc̈pi (21)

The total shaking force at the base frame of the Orthoglide can be obtained by summing up

the forces experienced at points A1, A2 and A3. With the definitions of reference frames at

points Ai, the total shaking force in the reference frame F0, of origin point A1, as shown in

Fig. 4, can be written as:

Ai

Ai

Xi

Xi

Yi

Yi

Zi

Zi

P

PM1
M2

M3

M4 M5
M6

Cai

Cai

C1i

C1i

C2i

C2i

C3i

C3i

C4i

C4i

C5i

C5i

C6i

C6i Cpi

Cpi

d

λ

Lf

Lb

Lb
cos
q3i

cos
q2i

Lb sin q3i

Lb cos q3i sin q2i

q1i

q1i

q2i

q2i

q3i

q3i

Figure 5: Orthoglide ith leg
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f0sh =













F 1
x + F 2

z + F 3
y

F 1
y + F 2

x + F 3
z

F 1
z + F 2

y + F 3
x













(22)

The magnitude of the shaking force experienced by the ith actuator at point Ai, can be written

as:

F i
sh =

√

(F i
x)

2 +
(

F i
y

)2
+ (F i

z)
2 (23)

Accordingly, two shaking force indices, defined in Sec. 2.2.2, can be calculated for the given

discrete time steps.

3.2.3 Maximum Torque for the Orthoglide

The magnitude of the maximum torque τmax experienced by the Orthoglide actuators can be

written as:

τmax = max (τ1max
, τ2max

, τ3max
) (24)

with τimax
= max(τi), τi being the 1×Nt dimensional vector of the ith actuator for Nt trajectory

points. The inverse dynamic model of the Orthoglide described in [27, 26] is used to evaluate

the actuators torques.

3.3 Trajectory Planning and External Forces

In order to apply the methodology proposed for path placement optimization, a rectangular

test path is proposed. The test path is defined by the length L and the width W of the

rectangle, as shown in Fig. 6(a). Path reference frame Fp is located at the geometric center of

the rectangle. This type of path can be the example of the generation of a rectangular pocket

like that of Fig. 6(b). The position of Fp in the base frame Fb is defined with the Cartesian

coordinates of the origin of Fp, Op(xOp
, yOp

, zOp
) and the orientation of Fp with respect to

Fb is given by Euler’s angles, as depicted in Fig. 1(b). For the sake of simplicity, only one of

the three rotation angles is considered i.e, rotation about Zb-axis while XbYb and XpYp planes
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are considered to be always parallel. Accordingly, there are four path placement variables, i.e.,

x = [xOp
yOp

zOp
φ]T , as illustrated in Fig. 6(a).

The magnitude of the end-effector velocity is supposed to be constant along the path. Hence,
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Figure 6: Test path characterization

for given path dimensions, position vector pFp
= [xPp yPp zPp]

T and velocity vector vFp
=

[ẋPp ẏPp żPp]
T in the path frame can be evaluated as a function of time. Figure 7 shows the

position and velocity profiles in Fp for a 0.05m×0.10m rectangular path and for a constant

end-effector velocity of 1.0m.s−1. Position and velocity vectors defined in Fp can be expressed

in Fb by means of the transformation matrix defined in Eq. (2), namely,



















xPb

yPb

zPb

1



















=



















Cφ −Sφ 0 xOp

Sφ Cφ 0 yOp

0 0 1 zOp

0 0 0 1





































xPp

yPp

zPp

1



















,


















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where C and S respectively stands for cosine and sine functions. For the matter of simplicity

and not to deal with tangent and curvature discontinuities, the path is considered to be com-

posed of four independent line segments. Therefore the discontinuities between the segments

are neglected.

In order to analyze the effect of external cutting/machining forces in the generation of a given
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Figure 7: Test trajectory for a rectangular path of size 0.05× 0.10m
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path, a groove milling operation is considered as shown in Fig. 8 [28]. With constant feed rate

or end-effector velocity vp of magnitude 0.66m.s−1, i.e, 40m.min−1, the three components of

cutting forces are considered, i.e., component in the feed direction, Ff= 10N; component along

the axis of cutting tool, Fa=25N; and the component Fr= 215N, orthogonal to Ff and Fa.
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3.4 Results and Discussions

Multiobjective optimum path placement problems are solved for the Orthoglide for the test

path described in the previous section. The constraints of the optimization problem are the

geometric, kinematic and dynamic ones. The geometric constraints are the upper and lower

bounds of the prismatic joints variables. The kinematic constraints are the maximum velocities

that the prismatic actuators can produce whereas the dynamic constraints are the limits on the

actuators torques. Kinematic and dynamic constraints are specified by the actuators designer

and are obtained from the catalogue. As already mentioned, the optimization variables are the

coordinates of the origin of path reference frame Fp and the orientation angle of Fp with respect

to Fb. The numerical values of the constraints used for the Orthoglide are given in Table 2.

Multi-objective path placement optimization problem for the Orthoglide can be expressed as,

min
x

(f1 :Et, f2 :Iδf , f3 :If , f4 :τmax) subject to:























ρmin ≤ ρx,y,z ≤ ρmax

vx,y,z ≤ vmax

τx,y,z ≤ τmax

(25)

where x = [xOp yOp zOp φ]T . The subscripts x, y and z are used for three prismatic actu-

ators or three Cartesian directions.

The problem is modeled with MATLAB and modeFRONTIER [29]. A multiobjective ge-

Table 4: modeFRONTIER algorithm parameters
Scheduler MOGA-II
Number of iterations 100
Directional cross-over probability 0.5
Selection probability 0.05
Mutation probability 0.1
DNA string mutation ratio 0.05
DOE algorithm Sobol
DOE number of designs 40
Total number of iterations 40× 100 = 4000

netic algorithm (MOGA) is used to obtain the Pareto frontiers for a rectangular test path of
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dimensions 30mm×60mm with an end-effector velocity Vp=0.66 m.s−1. A screen-shot of the

modeFRONTIER model is shown in Fig. 9 and its scheduler and DOE (design of experiments)

parameters are given in Table 4.

The Pareto frontiers obtained are shown in Fig. 10 whereas maximum and minimum (opti-
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g4

f1
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f3

f4

Objective Functions

Constraints

Logic Ends

External Script
(MATLAB Code)

Scheduler Block

DOE Scheduler

Figure 9: modeFRONTIER model

Table 5: Design parameters that correspond to the Pareto solutions for which the objective
functions are either a minimum or a maximum

Objective xp [m] yp [m] zp [m] φ [deg] Value ∆ %∆

Et [J]
Emax −0.0276 −0.0348 −0.0789 37.2 56.49

33.54 59.38
Emin 0.0141 −0.0044 0.0097 1.44 22.94
Iδfmax −0.0204 −0.0693 −0.0019 0.63 2.445

Iδf [N]
Iδfmin 0.0009 −0.0011 −0.0164 45.0 0.034

2.41 98.60

If [N]
Ifmax 0.0389 −0.0801 −0.1114 40.1 2.620

0.456 17.39
Ifmin 0.0009 −0.0011 −0.0164 45.0 2.164
τmax 0.0381 −0.0056 0.0714 24.0 1.135

τmax [Nm]
τmin 0.0053 0.0069 −0.1166 42.0 0.849

0.287 25.24
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Figure 10: Pareto frontier for the Orthoglide path placement problem

mum) values of each objective, corresponding design parameters and percentage variation (%∆)

are given in Table 5. Path locations in the Orthoglide workspace for maximum and minimum

objective functions are shown in Fig. 11.

Table 5 shows that the variations in the shaking forces (Iδf ) can be significantly reduced (almost

to zero) with an appropriate path placement. As a matter of fact, up to 60% of the energy

consumption can be saved with a proper path placement. Maximum shaking forces If and

maximum actutators torque τmax can be reduced to 17% and 25%, respectively.

Figure 12 shows the shaking forces experienced by the three prismatic actuators of Orthoglide

for minimum energy consumption and minimum Iδf path locations. It can be seen that although

the maximum values of the shaking forces for both Pareto-points are almost the same, their

variations can be reduced considerably with proper path location. The smoother the shaking

force variations, the lower the vibrations in the mechanism. From Table 5 and Fig. 11(a) it can

be noted that optimum points with respect to Et, Iδf and If lie in the neighbourhood of the

isotropic configuration of the Orthoglide (xp = yp = zp ≈ 0) whereas for τmax, zp attain their

minimum value, i.e., at the base of the workspace. Similarly with respect to orientation, φ, Et

is minimum for φ ≈ 0 ◦ and the other three objectives are minimum for φ ≈ 45 ◦.

Figure 13 summarizes the variational trends as well as the inter-dependency between the objec-

tive functions and design variables by means of a scatter matrix. The lower triangular part of
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Figure 11: Path locations in the Orthoglide workspace for minimum and maximum objective
functions

the matrix represents the correlation coefficients whereas the upper one shows the correspond-

ing scatter plots. Diagonal elements represents the probability density charts of each variable.

The correlation coefficients vary from -1 to 1. Two variables are strongly dependent when their

correlation coefficient is close to -1 or 1 and independent when the latter is null. From Fig. 13,
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Figure 12: Shaking forces experienced by three actuators for Emin and Iδfmin

• Et, Iδf and τmax strongly dependent as the correlation coefficients between Et, Iδf ; Et,

τmax; and Iδf , τmax are equal to -0.822, -0.785 and 0.819, respectively. However, the lower
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Et, the higher τmax and Iδf .

• the correlation of If with Et, Iδf and τmax is very low as the corresponding correlation

coefficients are equal to -0.113, 0.185 and -0.065, respectively.

• φ has strong and direct correlation with Et (0.907) whereas it has strong and inverse

correlation with Iδf and τmax (-0.966, -0.828, respectively);

• xp, yp, zp have very week or unpredictable relations with respect to all objectives and

parameters.

As Iδf and τmax are linearly related, the lower Iδf , the lower τmax, no matter the scale of

variation of both functions. Et and τmax are antagonistic. Likewise, Et and Iδf are antagonistic.

Regarding the design variables, the path orientation φ is the most influential for the considered

test path. Finally, the foregoing results are only valid for the Orthoglide and the given test

path. However, the methodology illustrated in this section is appropriate for any PKM and

test path.

Et
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If
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φ

φ

Figure 13: Scatter matrix for objective functions and design variables
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4 Conclusions

An approach to optimally locate a given trajectory profile, path or task within the workspace

of a PKM is presented. The electric energy consumed by the actuators to carry out that given

path is considered as the primary optimization criterion. The electric energy requirement is

calculated with the help of the required actuators torques and velocities along with motors

electric parameters. Kinematic, velocity and dynamic modeling is used to come up with the

trajectory parameters like actuators velocities, accelerations and torques to realize the given

path at a certain location in the workspace. To guarantee a realistic solution, actuators per-

formance limits such as their joint limits, maximum velocities and torque capabilities are used

as the constraints of the optimization problem. The minimization of the effects of the shaking

forces and minimization of the actuators peak torques are considered as other optimum path

placement criteria, hence obtaining a multiobjective optimization problem.

The proposed methodology is applied to the Orthoglide, a 3-DOF translating PKM with a reg-

ular cubic workspace. A rectangular shaped test path is considered as an illustrative example.

Such a path can be used to realize pocketing operations.

The use of the electric energy instead of the mechanical energy as an optimization criterion

is pertinent. Although actuator electric energy consumption depends on the mechanical en-

ergy requirements, the electric energy evaluation is more comprehensive than its mechanical

counterpart. The general approach used to calculate the mechanical energy with the help

of velocity and dynamic models, i.e., by using actuators torques and velocities, may lead to

an under estimation of the energy requirements in the case where actuators are experiencing

torques with zero velocities. Besides, usual mechanical energy calculations do not consider the

resistive energy loss in the motors windings as well as the energy loss due to the variations

in the actuators velocities. Those variations affect the current requirements and hence induce

electromotive forces in the actuators. Accordingly, the electric energy formulation takes into

account all these energy losses.

The energy required to perform a given task depends on the position and the orientation of the
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task within the workspace. Accordingly, some electric energy can be saved by properly select-

ing the position and the orientation of the task. Indeed, a misplaced task can cause excessive

energy consumption and can force the actuators to go over their performance limits. For the

Orthoglide, the optimum path location is found to be in the neighbourhood of the isotropic

configuration but there is no general rule to predict the exact optimal position and orientation

of a task particularly for a complicated three dimensional task or for an irregular workspace.

However, a detailed analysis of the energy variation within the workspace for a given task can

lead to the optimal position/orientation of that particular task. Numerical optimization algo-

rithms are useful for such a comprehensive analysis in which all the problem constraints and

performance measures can be considered simultaneously.

Variations in the shaking forces experienced by the base platform of a PKM also vary with

the path location. However, the lower the shaking forces, the higher the energy consumption.

The magnitude of the maximum shaking forces can also be reduced with path location but to

a lower extent compared to the reduction of the variations in the shaking forces. Similarly, the

magnitude of the maximum actuators torques can be reduced with appropriate path location.

However, the energy consumption would increase with the minimization of the shaking forces

effects and maximum torques. Hence, a trade-off has to be made by the user.

In the future work, some multi-objective problems will be treated with more objectives and

constraints and with complex tasks and irregular workspaces. Furthermore, along with shaking

forces, shaking moments will also be considered.
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Appendix

Expressions of cji , j = 1 . . . 6, a, p and i = 1, . . . , 3, used for the calculations of the shaking

forces for the Orthoglide with reference to Fig. 5, (C and S respectively stand for sine and

cosine functions):

cai = [0 0 q1i]
T (A.1)

c1i =

[

0
Lf

2
Sλ q1i +

Lf

2
Cλ

]T

(A.2)

c2i = [0 LfSλ q1i + LfCλ]
T (A.3)

c3i =

[

Lb

2
Cq3iCq2i LfSλ+

d

2
−
Lb

2
Sq3i q1i + LfCλ+

Lb

2
Cq3iSq2i

]T

(A.4)

c4i = c3i + [0 d 0]T (A.5)

c5i = [LbCq3iCq2i LfSλ− LbSq3i q1i + LfCλ+ LbCq3iSq2i]
T (A.6)

c6i = c5i + [0 0 e/2]T (A.7)

cpi = c5i + [0 0 e]T (A.8)

Twice differentiating Eqs. A.1 to A.8, result:

c̈ai = [0 0 q̈1i]
T (A.9)

c̈1i = c̈ai (A.10)

c̈2i = c̈ai (A.11)
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c̈3i =













Lb

2
(−q̇22iCq3iCq2i − q̈2iCq3iSq2i + 2q̇2iq̇3iSq2iSq3i − q̇23iCq2iCq3i − q̈3iCq2iSq3i)

Lb

2
(q̇23iSq3i − q̈3iCq3i)

q̈1i +
Lb

2
(−q̇23iCq3iSq2i − q̈3iSq3iSq2i − 2q̇2iq̇3iSq3iCq2i − q̇22iCq3iSq2i + q̈2iCq3iCq2i)













(A.12)

c̈4i = c̈3i (A.13)

c̈5i =













Lb(−q̇
2
2iCq3iCq2i − q̈2iCq3iSq2i + 2q̇2iq̇3iSq2iSq3i − q̇23iCq2iCq3i − q̈3iCq2iSq3i)

Lb (q̇
2
3iSq3i − q̈3iCq3i)

q̈1i + Lb(−q̇
2
3iCq3iSq2i − q̈3iSq3iSq2i − 2q̇2iq̇3iSq3iCq2i − q̇22iCq3iSq2i + q̈2iCq3iCq2i)













(A.14)

c̈6i = c̈5i (A.15)

c̈pi = c̈5i (A.16)


