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Non-parametric regression on the hyper-sphere with uniform design

Jean-Baptiste Monnier1

Abstract

This paper deals with the estimation of a function f defined on the sphere S
d of Rd+1 from

a sample of noisy observation points. We introduce an estimation procedure based on wavelet-

like functions on the sphere called needlets and study two estimators f~ and fF respectively

made adaptive through the use of a stochastic and deterministic needlet-shrinkage method.

We show hereafter that these estimators are nearly-optimal in the minimax framework, explain

why f~ outperforms fF and run finite sample simulations with f~ to demonstrate that our

estimation procedure is easy to implement and fares well in practice. We are motivated by

applications in geophysical and atmospheric sciences.

Keywords:Non-parametric regression, uniform design, minimax rate, needlets, needlet-shrinkage,
stochastic thresholding.
Mathematics Subject classification (2000)62G08, 62G05, 62C20.

1 Introduction

Many branches of applied sciences call upon simple and powerful statistical methods to efficiently
analyze spherical data. This is precisely the case of geophysical and atmospheric sciences, where
data are usually collected via satellite or ground stations around the globe. Although there exists
a basis of spherical harmonics in L

2(S2), its elements are poorly localized, which makes them of
little use to represent locally-supported or multi-scale functions on the sphere (see Freeden and
Michel (2004, p. 32)). Furthermore, the direct or indirect transposition of Euclidean wavelets to the
sphere inherently leads to artificial distortions. This problem has been addressed by a proliferating
literature leading to the creation of a wide variety of wavelet frames intrinsic to the sphere (see
Freeden et al. (1998); Freeden and Michel (2004) for example). These spherical wavelet frames
have since then found many applications in modeling the Earth’s magnetic field (Holschneider et al.
(2003); Maier (2005); Panet et al. (2005)), atmospheric flows (Fengler (2005)), oceanographic flows
(Freeden et al. (2005)) or ionospheric currents (Mayer (2004)). At the same time, Narcowich and
Ward (1996) introduced spherical basis functions (SBFs) and used them to design multi-resolution
analysis MRA of spherical signals. SBFs were successfully applied in modeling the regional gravity
field (Schmidt et al. (2007, 2006)) or the global temperature field (Li (1999); Li and Oh (2004)).
However, the issue was raised that SBFs are actually single-scale (see Li (1999) for example),
which, from a practical perspective, makes it difficult for the MRA construct given by Narcowich
and Ward (1996) to discriminate global from local phenomena. To address that problem, Li (1999)
proposed a multi-scale statistical method built upon SBFs of varying bandwidths, which led to
new questions of bandwidth selection.
More recently, Narcowich et al. (2006, 2007) have shown it is possible to construct well concentrated
frames on the hyper-sphere called needlets, which outperform previous spherical wavelet frames
and SBFs in many ways. These needlets are very natural building blocks on the sphere and
although they are not exactly an orthogonal basis, they behave almost like one (Narcowich et al.
(2006)). They are in fact semi-orthogonal in the sense that any two needlets that are at least
two levels apart are orthogonal. Besides each needlet is localized around a center point of Sd and
decaying almost exponentially away from this point. Needlets improve in fact considerably on
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Université Denis Diderot, Paris 7

Laboratoire de Probabilités et Modèles Aléatoires
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Figure 1: These graphs represent the needlets ψj,η for η = η0 , (0, 0, 1) (Cartesian coordinates),
and j ∈ {0, 1, 2, 3}. We display a polar view of the needlets, that is ψj,η0 = ψj,η0(ϕ, θ), where
ϕ and θ stand respectively for the spherical coordinates colatitude and longitude. In this polar
representation, we let ϕ play the role of the length of the radius vector, while θ stands for the angle
between the latter radius and the x-axis

other spherical basis since, similarly to Euclidean wavelets, they characterize Besov spaces on the
sphere and provide us with Jackson estimates of best approximations with needlets (Narcowich
et al. (2006, Theorem 6.2)). In addition, needlets are truly multi-scale since they concentrate
more and more around their center along increasing needlet levels (see Figure 1). As will be
highlighted underneath, these fine features turn needlets into a powerful alternative to existing
spherical wavelet frames or SBFs in performing sensible multi-scale modeling of spherical functions.
They are indeed already extensively used for applications in astrophysics (e.g. Faÿ et al. (2008);
Guilloux et al. (2009); Marinucci et al. (2008)).
In this paper, we consider the problem of recovering f from the observation of n independent and
identically distributed (iid) realizations (Yi, Ti), i = 1, . . . , n of the random vector (Y, T ) generated
by the model

Y = f(T ) + σV, T ∼ U(Sd), V ∼ N (0, 1) (1)

where T is uniformly distributed on the hyper-sphere: T ∼ U(Sd), V is a real-valued standard
normal random variable: V ∼ N (0, 1), σ ∈ R+∗ quantifies the magnitude of the error and f is a
real-valued map of a wide Besov scale. In the sequel, we introduce an estimation procedure, which
features multi-scale capabilities and is robust and easy to implement, since it rests in practice
on the calibration of one single parameter (see Section 7). It is noteworthy that our results hold
under the assumption that the data are uniformly scattered on the sphere, which is however not
the case in most of the practical situations mentioned earlier. Further research is needed in order
to circumvent that problem and show that our results eventually generalize to a warped needlets
setting (Kerkyacharian and Picard (2004)).
We prove in this paper that two well chosen needlet estimators f~ and fF allow to reconstruct
with near-minimax-optimality a very wide range of functions f defined on the sphere. In the se-
quel, we will write f� to refer indifferently to f~ or fF, unless stated otherwise. This will prove
very convenient in statements that apply to both estimators. As is well-known, we mean by “near-
optimality” that the approximation loss between f� and f is within a logarithmic factor of the
optimal minimax rate for a given a priori class. Optimal estimators tend to be overwhelmingly
specific to the smoothness class and the loss for which they are optimal and become irrelevant

2



to any other setting. However, by relaxing the requirement of optimality to near-optimality, it
becomes possible to choose f� to be nearly-optimal over a wide range of losses and smoothness
classes (Donoho et al. (1995)). In this paper, near-minimaxity is thus not only obtained for the
celebrated L2-loss but also for the L∞-loss, which means that f� converges uniformly to f as
the sample size grows. Besides, the near-optimality of f� holds over a wide range of smoothness
classes, which makes these results particularly interesting in practice, when there is only scarce
information available on the objective function f .
The two needlet estimators f~ and fF are respectively made adaptive through the use of a stochas-
tic and deterministic thresholding method. Although they verify a wide range of similar properties,
the proofs of their near-optimality differ slightly. We run numerical simulations on f~ and show
how the stochastic thresholding outperforms the deterministic one. As described in Section 7,
this is due to the fact that the stochastic thresholding parameter adjusts to the magnitude of the
sample noise at each sample coefficient β̂j,η (see Section 5). Furthermore, we study the impact of
the dimension d on both estimators. Despite the well-known deterioration of minimax rates as the
dimension d increases, we show that working on a higher dimensional underlying unit sphere Sd

sharpens the constants in our minimaxity results and makes the construction of both estimators
easier.
This paper extends the optimality results of Baldi et al. (2009) to the regression setting, which is
essentially made possible thanks to the sharp localization properties of needlets, as will be made
precise in the proof of Lemma 10.3.
The plan of the paper is as follows. In Section 2 and Section 3 we review some background material
on needlets and Besov spaces on the sphere. Readers familiar with these latter matters may jump
directly to Section 4, where we introduce the model and set notations that will be used through-
out the paper. Section 5 presents our thresholding estimators, whose minimax performances are
stated in Section 6. Section 7 describes the performance of the estimators on some simulated data.
Finally, Section 8–Section 10 contain the proofs.
In the sequel, the symbol , stands for equal by definition. In addition, for two functions A, a of
the variable γ, we write A(γ) ≈ a(γ) when there exist constants c, C independent of γ such that
ca(γ) ≤ A(γ) ≤ Ca(γ) for all values of γ. Furthermore, we will write C(β) to mean that the
constant C depends on parameter β.

2 Needlets and their properties

In this section, we give an overview of the needlets construction and describe some of their prop-
erties. It is inspired from Narcowich et al. (2006) where the needlets were originally introduced
and presents similar material as in Baldi et al. (2009, Section 2). We first introduce spherical
harmonics. We then detail the needlet construction. It is essentially divided into two steps: a
Littlewood-Paley decomposition and a quadrature formula.

2.1 Spherical harmonics

In what follows, we write M the surface measure of S
d, that is the unique positive measure

on Sd which is invariant under rotation and has the area ωd of Sd as total mass, that is ωd =
2π(d+1)/2/Γ(d+1

2 ). Denote by Hl the set of spherical harmonics of degree l (Stein and Weiss
(1975, Chap. 4)). We can consider Hl as a subspace of L2(Sd) with inner product (f, g) =∫
Sd
f(x)g(x)M(dx) and show that Hk ⊥ Hl for k 6= l and the collection of finite linear com-

binations of ∪Hl is dense in L2(Sd). Moreover we can compute al,d , dimHl = O(ld−1) and
exhibit an orthonormal basis {Yl,m;m = 1, . . . , al,d} of Hl and, subsequently, an orthonormal basis
∪l≥0{Yl,1, . . . , Yl,al,d} of L2(Sd). Thus, for any f ∈ L2(Sd), the orthogonal projector on Hl is given
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by

PHl
f(ξ) =

al,d∑

m=1

(f, Yl,m)Yl,m(ξ) =

∫

Sd

Pl(ξ, x)f(x)M(dx)

where we have written Pl(ξ, x) =
∑al,d
m=1 Yl,m(ξ)Yl,m(x) the projection kernel on Hl. Thanks to the

addition theorem Müller (1966, Theorem 2), we have Pl(ξ, x) = cl,dLl(ξ � x) where cl,d , al,d/ωd,
the operator “�” stands for the usual Euclidean scalar product of Rd+1, and Ll is the Legendre
polynomial of degree l and dimension d + 1 (Müller (1966, p 16)). From now on, we will write
Pl(ξ � x) in place of Pl(ξ, x).

Remark 2.1. For practical implementation, let’s recall that we have
∫ 1

−1

Ll(t)Lk(t)(1 − t2)
d−2
2 dt = c̃l,dδl,k, c̃l,d =

ωd
ωd−1

1

al,d
=

√
πΓ(d2 )

al,dΓ(
d+1
2 )

In Section 7, we will run simulations on the sphere of R3. In this case, d = 2, so that we have

ω2 = 4π, c̃l,2 = 2
2l+1 and we can write Nl =

√
2l+1
2 Ll the normalized Legendre polynomials. Besides

cl,2 = 2l+1
4π and we will therefore use kernels of the form Pl(ξ � x) =

2l+1
4π Ll(ξ � x) =

√
2l+1
8π2 Nl(ξ � x)

for simulations.

A direct application of Parseval’s formula in L2(Sd) leads to
∫

Sd

Pl(ξ � x)Pk(x � τ)M(dx) = δl,kPl(ξ � τ) (2)

Let’s write Pl the space of spherical harmonics of degree at most l. Obviously, the kernel Kl =∑l
k=0 Pk stands for the orthogonal projector on Pl. Unfortunately, the poor localization properties

of Kl are a major obstacle to its use for function decomposition outside the L2 framework. This
problem is circumvented in Narcowich et al. (2007) by the introduction of a new kernel whose
construction is based on the Littlewood-Paley decomposition.

2.2 Littlewood-Paley decomposition

Let ϕ be a C∞ function on R, symmetric and decreasing on R+ such that suppϕ ⊂ [−1, 1], ϕ(z) = 1
if |z| ≤ 1

2 and 0 ≤ ϕ(z) ≤ 1 otherwise. We set b2(z) , ϕ(z/2)−ϕ(z) so that b2(z) ≥ 0 and b(z) 6= 0
only if 1

2 ≤ |z| ≤ 2. We now define the following kernels for j ≥ 0,

Θj ,
∑

l≥0

b2(l/2j)Pl =
∑

2j−1<l<2j+1

b2(l/2j)Pl

Ψj ,
∑

l≥0

b(l/2j)Pl =
∑

2j−1<l<2j+1

b(l/2j)Pl

For any ξ, τ ∈ Sd, we write

{Ψj ∗ f}(ξ) ,
∫

Sd

Ψj(ξ � x)f(x)M(dx),

{Ψj ∗Ψk}(ξ � τ) ,
∫

Sd

Ψj(ξ � x)Ψk(x � τ)M(dx)

It appears as a direct consequence of eq. (2) that Θj , Ψj ∗Ψj for j ≥ 0. As detailed in Narcowich
et al. (2006, Theorem 2.2), these new kernels are in fact nearly exponentially localized in the sense
that, for any k > 0, there exists a constant ck > 0 such that, for any ξ, η ∈ Sd,

|Θj(ξ � η)|, |Ψj(ξ � η)| ≤
ck2

jd

{1 + 2jdist(ξ, η)}k
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where dist stands for the geodesic distance on the sphere. As proved in Narcowich et al. (2007,
Theorem 3.1), we have the following result

Proposition 2.1. For every f ∈ L
p(Sd) and 1 ≤ p <∞, or if p = ∞ and f is continuous, the

following identity holds in Lp,

f = P0 ∗ f + lim
J→∞

J∑

j=0

Θj ∗ f

2.3 Quadrature formula and needlets

The needlets arise as by-products of kernel Ψ by means of a quadrature formula (Narcowich et al.
(2006, Corollary 2.9)). For all l ∈ N, there indeed exists a finite subset Xl ⊂ S

d and positive real
numbers λη > 0, indexed by the elements η ∈ Xl, such that for all f ∈ Pl

∫

Sd

f(x)M(dx) =
∑

η∈Xl

ληf(η)

In particular, it is obvious from the above definition of the operator Ψj that x 7→ Ψj(ξ, x) ∈ P[2j+1],
so that x 7→ Ψj(ξ, x)Ψj(x, τ) ∈ P[2j+2]. Thus we can apply the quadrature formula to write

Θj(ξ � τ) =

∫

Sd

Ψj(ξ � x)Ψj(x � τ)M(dx) =
∑

η∈X[2j+2]

ληΨj(ξ � η)Ψj(η � τ) (3)

Now, write X[2j+2] = Zj and define the needlet of center η ∈ Zj and level j by

ψj,η(ξ) ,
√
ληΨj(ξ � η)

With these notations, eq. (3) leads to

Θj ∗ f(ξ) =
∑

η∈X
[2j+2]

√
ληΨj(ξ � η){

√
ληΨj ∗ f(η)} =

∑

η∈Zj

(ψj,η, f)ψj,η(ξ)

As described in Narcowich et al. (2006, Corollary 2.9), the choice of the sets of cubature points
Zj is not unique, but one can impose the conditions #Zj ≈ 2jd and λη ≈ 2−jd. These last results
together with Proposition 2.1 lead to the following equality in Lp, p ≥ 1,

f = P0 ∗ f +
∑

j≥0

∑

η∈Zj

(f, ψj,η)ψj,η (4)

The ψj,η’s appear therefore as building blocks on the sphere. They obviously inherit the fine
localization properties of the Ψj ’s, which prompted Narcowich, Petrushev and Ward to call them
needlets. Besides, they are more and more localized around their center as j increases and therefore
capture sample phenomena occurring at finer and finer scales. These last features turn them into
a very handy tool to tackle statistical problems on the sphere. From this localization property it
follows that for 0 < p ≤ ∞,

cp2
jd{ 1

2− 1
p} ≤ ‖ψj,η‖p ≤ Cp2

jd{ 1
2− 1

p } (5)

Moreover, as shown in Baldi et al. (2009, Lemma 2), we have the following useful lemma

Lemma 2.1. For any j ≥ 0, we have,
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1) For every 0 < p ≤ ∞

‖
∑

η∈Zj

ληψj,η‖p ≤ c2jd{
1
2− 1

p}



∑

η∈Zj

|λη|p



1
p

(6)

2) For every 1 ≤ p ≤ +∞


∑

η∈Zj

|(f, ψj,η)|p



1
p

2jd{
1
2− 1

p } ≤ c‖f‖p (7)

We refer the reader to the above-mentioned article for a detailed proof. Let’s now turn to the case
where f belongs to a Besov space on the sphere and describe how these latter spaces relate to
needlets.

3 Besov spaces on the sphere and needlets

In this section we summarize the main properties of Besov spaces on the sphere following the
presentations given in Baldi et al. (2009); Narcowich et al. (2006, Section 5). Besov spaces on the
sphere can be defined as follows

Definition 3.1. The Besov space Bsrq , Bsrq(S
d), where s ∈ R, 0 < r, q ≤ ∞, is the set of all

measurable functions on Sd such that

‖f‖Bs
rq

,




∞∑

j=0

{2js‖Θj ∗ f‖r}q



1
q

<∞

where the `q-norm is replaced by the `∞-norm when q = ∞. It is in fact possible to show that this
definition is independent of the choice of ϕ used to build kernels Θj.

Besides, the following noteworthy theorem (Narcowich et al. (2006, Theorem 5.5)) sheds some light
on the tight intertwining between Besov spaces and needlet coefficients.

Theorem 3.1. Let be given s, r, q such that 1 ≤ r ≤ +∞, s > 0, 0 ≤ q ≤ +∞. For any
sequence {gj,η, η ∈ Zj , j ≥ 0}, we write

‖g‖bbbsrq = ‖
{
2j{s+

d
2− d

r }‖{gj,η}η∈Zj‖`r
}

j≥0
‖`q

In addition, for any measurable function f , we define βj,η , (f, ψj,η) provided it makes sense, and
we consider the sequence {βj,η, η ∈ Zj , j ≥ 0}. Then we have ‖β‖bbbsrq ≈ ‖f‖Bs

rq
and, thus, f ∈ Bsr,q

if and only if
‖β‖bbbsrq <∞ (8)

In the sequel we shall write ‖f‖Bs
rq

in place of ‖β‖bbbsrq . Furthermore we will denote by Bsr,q(M) the
ball of radius M of the Besov space Bsr,q. Let’s now recall the Besov embedding theorem on the
sphere. We refer the reader to Baldi et al. (2009, Theorem 5) for a detailed proof.

Theorem 3.2. (The Besov embedding)

Bsr,q ⊆ Bsp,q, if p ≤ r ≤ ∞

Bsr,q ⊆ B
s+ d

p− d
r

p,q , if s >
d

r
− d

p
and r ≤ p ≤ ∞
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4 Setting and notations

In this section, we describe the model and introduce notations that will be used throughout the
paper. We start with a few notations. For d ≥ 1, s > d

r , 0 < r ≤ ∞, we set

ϑ , ϑpr ,
s+ d

p − d
r

2(s+ d
2 − d

r )
, ς ,

s

2s+ d
, ϑ∞ , ϑ∞r ,

s− d
r

2(s+ d
2 − d

r )

We will write X ∼ P to mean that the random variable X follows law P, X ∼ Y to mean that X
and Y have the same law and denote the standard Gaussian law by N (0, 1). In the sequel C and
c stand for absolute constants, which may vary from line to line or even inside a same equation.
And in order to lighten the notations, we sometimes write A ≡ Ã to mean that A is a lighter
typographical way to refer to Ã. We write (Ω,F ,P) a probability space on which Y, T and V are
defined according to Y = f(T )+V , where T is uniformly distributed on Sd, V is normal with mean
zero and standard deviation σ and f ∈ Bsrq(M). In particular, we can take (Ω,F ,P) to be the

canonical probability space associated to the vector (V, T ), that is, Ω ≡ R×S
d, F = B(R×S

d), for
all w = (v, t) ∈ R×Sd, (V, T ){w} = (V (v), T (t)) = (v, t) = w and P ≡ PV,T = PV ⊗PT . Obviously,
PV (dv) = ϕσ(v)λ(dv), where ϕσ(v) is the normal density with mean zero and standard deviation
σ and λ the Lebesgue measure on (R,B(R)); and PT is the uniform law on the sphere Sd, that
is PT (dt) = M(dt)/ωd where M stands for the spherical surface measure introduced earlier. We
write as well Pf , PY,T the law of the vector (Y, T ) and Ef the expectation with respect to Pf .
When there is no ambiguity, we denote P ≡ Pf and E ≡ Ef . Alternatively and when appropriate,
we will write the model Y = f(T ) + σV with corresponding modifications.

5 Needlet estimation of f on the sphere

Given the set of n iid observations (Yi, Ti), i = 1, . . . , n, we can compute

1

n

∑

i≤n
Yiψj,η(Ti) =

1

n

∑

i≤n
f(Ti)ψj,η(Ti) +

1

n

∑

i≤n
σViψj,η(Ti)

In the sequel, we will adopt the following notations y∗j,η , ωd
∑
i≤n Yiψj,η(Ti)/n, ζ

∗
j,η , ωd∑

i≤n f(Ti)ψj,η(Ti)/n and γ∗j,η , ωd
∑
i≤n σViψj,η(Ti)/n. In addition we write %2j,η ,

∑
i≤n ψj,η(Ti)

2/n

and ξj,η =
√
nγ∗j,η/(σωd%j,η). Since the Vi’s are iid standard normal and independent from the Ti’s,

we know that Var(γ∗j,η|T1, . . . Tn) = σ2ω2
d%

2
j,η/n. Thus ξj,η ∼ N (0, 1) conditionally on the Ti’s. We

therefore observe the sequence {y∗j,η, j ≥ 0, η ∈ Zj}, such that y∗j,η = ζ∗j,η + {σωd%j,η/
√
n}ξj,η, for

all j ≥ 0 and all η ∈ Zj .
Eq. (4) shows that the estimation of f by f� ≡ f�(Yi, Ti; i = 1, . . . n) reduces to the estimation

of its needlet coefficients βj,η and P0 ∗ f . It is easily proved that β̂j,η , y∗j,η and P̂0 ,
∑
Yi/n

are respectively strongly consistent and unbiased estimator of βj,η and P0 ∗ f . We further want
the estimator f� to be adaptive to inhomogeneous smoothness. In that perspective we use a hard
thresholding method, which aims at canceling out coefficient estimates β̂j,η that result mainly from
noise. In the sequel we study two estimators f~ and fF built respectively upon a stochastic and
a deterministic thresholding method. We denote by β~

j,η the needlet coefficients of f~ and set

β~
j,η , β̂j,η1{|β̂j,η|≥κj,ηt(n)}, where κj,η = $%j,η, $ is a constant and t(n) =

√
logn/n. Similarly,

we denote by βF

j,η the needlet coefficients of fF and set βF

j,η , β̂j,η1{|β̂j,η|≥κt(n)}, where κ is a

constant. In the sequel, we will write f�, β�
j,η and κ to refer indifferently to f~, β~

j,η and $, or

fF, βF

j,η and κ.

Finally, we cut the series expansion of f� at level J such that 2Jd = n/{C0 logn}. With these
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notations, the needlet estimator of f can be written as

f�
J = P̂0 +

J∑

j=0

∑

η∈Zj

β�
j,ηψj,η (9)

Before we move on to the study of the minimax rates for the estimator f�, notice that in the above
construction of f�, we remain free to choose the values of κ and C0. We will see later that C0 is
in fact very much related to κ so that we are truly left with one tuning parameter κ. We will give
some hints on ways of evaluating it in Section 7.

6 Minimax rates for Lp norms and Besov spaces on the

sphere

In the sequel, we will denote by C
~
z the set of conditions

$ ≥ 4max
(
4e2ω2

d‖f‖2∞, ω2
dσ

2, z + 1
)
,

C0 ≥ $max

(
2C2

∞
c22e

2
,

2

m−

)
,

2Jd =
n

C0 log n

C
~
z

and C
F
z the set of conditions

κ ≥ 4max
(
2ωdC2 max(4‖f‖2∞, 3σ2), z + 1

)
,

C0 > max(6ωd‖f‖∞C∞, κ/{2m−}),
2Jd =

n

C0 logn

C
F
z

where the constants C∞, c2 are defined in Proposition 8.2 and m− is defined in Lemma 10.1. Once
again, the couple f�,C�

z will denote indifferently f~,C~
z or fF,CF

z . We now present two theorems
that describe the asymptotic properties of the estimator f� of f . In a first theorem, we compute
an upper-bound on the loss of our estimator over Besov balls and Lp-norms. Its proof can be found
in Section 8.

Theorem 6.1. Let be given f ∈ L∞. Consider the estimator f� (see eq. (9)) of f built upon n
iid observations (Yi, Ti) drawn from the model stated in eq. (1). Then, for d ≥ 1, s > d

r , 0 < r ≤ ∞,
we have

a) For any z > 1, there exists some constant c∞ such that, as soon as the conditions C
�
z are

verified,

sup
f∈Bs

r,q(M)

E‖f� − f‖z∞ ≤ c∞(logn)2z
(

n

logn

)−zϑ∞

(10)

b) For any 1 ≤ p < ∞, there exists a constant cp such that, as soon as the conditions C
�
p are

verified,

sup
f∈Bs

r,q(M)

E‖f� − f‖pp ≤ cp{logn}p
(

n

logn

)−pϑ
, if r ≤ dp

2s+ d
and p ≥ 2 (11)

sup
f∈Bs

r,q(M)

E‖f� − f‖pp ≤ cp{logn}p
(

n

logn

)−pς
, if r >

dp

2s+ d
(12)
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Notice that the above result places f� within a larger logn factor of the n/ logn term than in
Baldi et al. (2009, Theorem 8). The proof we present here is marginally simpler than theirs and
eventually more systematic since it introduces a function of a floating parameter l as an upper-
bound and optimizes with respect to l. To be more specific, in contrary to Baldi et al. (2009,
Proposition 15), Proposition 8.2 does not use the fact that there exists an index J1(s) beyond
which |βj,η| ≤ t(n), which makes our demonstration simpler albeit less precise.
In a second theorem, we compute a lower bound on the loss of f estimators over Besov balls and
Lp-norms. Its proof follows similar lines as the proof of the lower bound detailed in Baldi et al.
(2009). It is therefore not reported here but made available at www.math.jussieu.fr/~monnier.

Theorem 6.2. (Lower bound) We write infθ the lower-bound over all estimators θ of f , that
is all measurable functions of the Yi, Ti, i = 1 . . . , n. Then, for d ≥ 1, s > d

r , 0 < r ≤ ∞, we have

a) If 1 ≤ p ≤ 2,
inf
θ

sup
f∈Bs

rq(M)

Ef‖θ − f‖pp ≥ cn−pς

b) If 2 < p ≤ +∞

inf
θ

sup
f∈Bs

rq(M)

Ef‖θ − f‖pp ≥
{
cn−pς , if r > dp

2s+d

cn−pϑ, if r ≤ dp
2s+d

These two theorems demonstrate that our estimator f� is in fact nearly-optimal in all the above
settings. Although these minimaxity results hold for a “ big enough” sample size n, the estimator
f� fares well in practice over finite samples too, as will be shown through simulations in the next
section.

7 Simulations
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1.5
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−3

−2
−1

0
1

2
3

4

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Phi

fnoisy for sigma = 0.04 ; fmax = 0.24

Theta

Figure 2: Display of the function f : x ∈ S2 7→ 0.65 exp(−k1‖x − x1‖2)/b1 + 0.35 exp(−k2‖x −
x2‖2)/b2 on a grid of points of the unit sphere of R3 parametrized by their spherical coordinates
colatitude ϕ and longitude θ. We choose x1 = (0, 1, 0), x2 = (0,−0.8, 0.6), k1 = 0.7, k2 = 2
and bi =

∫
S2
exp(ki‖x − xi‖2)M(dx), i = 1, 2. We set σ = 0.04 and represent N = 10, 000

noisy observations Yi at locations Ti simulated using the transformation θ = 2π(rand() − .5) and
ϕ = sin−1(2rand()− 1)
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Figure 3: Computation of f~ from the observation of 20, 000 vectors (Yi, Ti). To clearly picture the
contribution of each level j to the value of the estimator at each point, we graph f~

J for J = 0, 1, 2, 3
on the grid. In the title of each sub-figure we indicate the value of σ, $ (constant multiple of k0),
J (corresponds to j), diff (which stands for the value of ‖f~−f‖∞ on the grid), SR (which stands
for “survival rate” and displays the percentage of coefficients that survives thresholding at level
J), and max (which gives the maximum value of the estimator f~ on the grid)

For the sake of brevity, we only report here the main results of our simulations. The interested
reader is referred to the addendum at www.math.jussieu.fr/~monnier for a thorough discussion.
Remark we expect the stochastic thresholding to outperform the deterministic one, since it adjusts
the constant thresholding parameter $ by the sample noise standard deviation %j,η at sample coef-

ficient β̂j,η. The comparison between fF and f~ on simulated data shows that the two estimators
perform similarly at needlet levels 0 ≤ j ≤ 3, due to the fact that %j,η remains almost constant
across cubature points η at these resolution levels. However, %j,η varies more widely from one
cubature point to another at higher needlet levels causing f~ to adjust more efficiently to the
noise than fF and outperform it.
We therefore run simulations with f~. Notice that the condition on $ depends on ‖f‖∞, which is
unknown in practice. However, if we have any prior insight into f , we can replace ‖f‖∞ by any real
constant that overshoots it, which gives us more flexibility. We compute conditions C~

z numerically.
With our test function f (see Figure 2), such that ‖f‖∞ = 0.24, we obtain C0 ≥ $5 · 105. It thus
appears that our proof of the near-optimality of f~ imposes drastic conditions on the parameter
C0. From a theoretical standpoint, f~

J is the near optimal estimator of f as soon as N/ logN is
of order C02

2J , which means that we would have to gather unrealistically large data samples in
order to build an estimator f~

J of f that would contain information up to degree of resolution J
for large C0. However, numerical simulations tend to demonstrate that our procedure fares well
under much less drastic conditions.
The most obvious way of fixing the free thresholding parameter $ is to monitor the proportion
of coefficients that are zeroed out at each resolution level as a function of $. It is clear that the
more coefficients thresholded at high levels, the smoother the estimator. The ultimate choice of $

10
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should therefore be related to an a priori knowledge of the smoothness of f . Numerical simulations
show that f~ recovers the overall shape of f , even for values of σ that are large in front of ‖f‖∞.
Without over-fitting the data, we obtain an estimation error ‖f~

2 − f‖∞ = 0.046 for σ = 0.04 (see
Figure 3) and ‖f~

2 − f‖∞ = 0.062 for σ = 0.5.
Finally, notice that, despite the “curse of dimensionality” on minimax rates, conditions C

�
z are

loosened as d increases while the upper-bound constants that appear in Theorem 6.1 become
smaller.

8 Proof of the minimax rate

Let us now move on to the proofs of the theorems presented in Section 6. We first introduce two
propositions that we will need later on in the proof.

Proposition 8.1. For all z > 0, we have

E|P̂0 − P0 ∗ f |z ≤ Cn− z
2

In the sequel, we denote by D
~(γ, z) the set of conditions

$ ≥ max

(
16e2ω2

d‖f‖2∞, 4ω2
dσ

2, z, 4

{
2γ

d
+ 1

})
,

C0 ≥ max

(
1

m− max
(z
2
,
γ

d

)
, $max

(
2C2

∞
c22e

2
,

2

m−

))
,

2Jd =
n

C0 logn

D
~(γ, z)

and D
F(γ, z) the set of conditions

κ ≥ max

(
8ωdC2 max(4‖f‖2∞, 3σ2),max

(
z, 8(

γ

d
+

1

2
)

))
,

C0 > max(6ωd‖f‖∞C∞, κ/{2m−}),
2Jd =

n

C0 logn

D
F(γ, z)

As usual, the couple f�,D�(γ, z) will denote indifferently f~,D~(γ, z) or fF,DF(γ, z).

Proposition 8.2. Consider the constant m− defined in Lemma 10.1, and c2 and C∞ such
that, for all j ≥ 0, η ∈ Zj, c2 ≤ ‖ψj,η‖2 and ‖ψj,η‖∞ ≤ C∞2jd/2. For any f ∈ L∞, γ > 0, z > 1,
l ∈ [0, z], and under the set of conditions D

�(γ, z) on κ, C0 and J , the following two inequalities
hold true,

J∑

j=0

2jγE sup
η∈Zj

|β�
j,η − βj,η|z ≤ C



t(n)

z−l(J + 1)z
J∑

j=0

2jγ sup
η∈Zj

|βj,η|l + n− z
2



 (13)

J∑

j=0

2j(γ−d)E
∑

η

|β�
j,η − βj,η|z ≤ C



t(n)

z−l
J∑

j=0

2j(γ−d)



∑

η∈Zj

|βj,η|l

+ n− z

2



 (14)

We delay their proofs to Section 9 and Section 10. The proof of Proposition 8.2 in the deterministic
thresholding case follows very similar lines as with stochastic thresholding. For the sake of brevity,
we therefore only detail the proof in the stochastic thresholding case. The interested reader is
referred to www.math.jussieu.fr/~monnier for a full proof. Let us now prove that Proposition 8.1
and Proposition 8.2 yield the statements of Theorem 6.1.
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8.1 Minimax rate for the L∞-norm

We begin with eq. (10). Let’s first assume that r = q = ∞, that is f ∈ Bs∞,∞(M). It is clear that

E‖f� − f‖z∞ ≤ C
{
E‖

J∑

j=0

∑

η∈Zj

(β�
j,η − βj,η)ψj,η‖z∞

+ ‖
∑

j>J

∑

η∈Zj

βj,ηψj,η‖z∞ + E|P̂0 − P0 ∗ f |z
}
, I + II + III

(15)

Let’s now prove that each of the terms I, II and III are at most O({logn}2z{n/ logn}−zs/(2s+d)).
We indeed see immediately that III is of the good order thanks to Proposition 8.1 and z

2 ≥ zs
2s+d .

For II we have

II
1
z ≤ C

∑

j>J

‖
∑

η∈Zj

βj,ηψj,η‖∞ ≤
∑

j>J

sup
η∈Zj

|βj,η|‖ψj,η‖∞

≤ C
∑

j>J

2−j(s+
d
2 )C∞2

jd
2 ≤ C2−Js ≤ C

{
logn

n

} s
d

where the second inequality is a direct result from Lemma 2.1, eq. (6); and the third inequality
comes from Theorem 3.1, eq. (8) together with eq. (5) and the fact that f ∈ Bs∞,∞(M). It is now
enough to notice that z sd ≥ zs

2s+d to conclude that II is of the good order.
For I, we apply successively the triangular inequality and Hölder with the pair of conjugate expo-
nents z and z/(z − 1), z > 1,

E‖
J∑

j=0

∑

η∈Zj

(β�
j,η − βj,η)ψj,η‖z∞ = (J + 1)z−1

E

J∑

j=0

‖
∑

η∈Zj

(β�
j,η − βj,η)ψj,η‖z∞

And finally, we apply Lemma 2.1, eq. (6) to get

I ≤ C(J + 1)z−1
J∑

j=0

2jd
z
2E sup

η∈Zj

|β�
j,η − βj,η|z

Then we apply Proposition 8.2, eq. (13) with γ = d z2 and thus under conditions D
�(dz/2, z).

Notice in particular that this latter set of conditions is equivalent to C
�
z. This leads us to,

J∑

j=0

2jd
z
2 E sup

η∈Zj

|β�
j,η − βj,η|z ≤ C



t(n)

z−l(J + 1)z
J∑

j=0

2jd
z
2 sup
η∈Zj

|βjη|l + n− z
2





where l ∈ [0, z]. We denote A,B the two terms in-between braces on the right-hand-side above.
Notice first that the last term B is of the right order as z

2 >
zs

2s+d . Moreover, since f ∈ Bs∞∞(M),

we have supη∈Zj
|βjη|l ≤M l2−jl(s+

d
2 ). The first term A can therefore be bounded by

A ≤ Ct(n)z−l(J + 1)z
∑

j≤J
2jd

z
2 2−jl(s+

d
2 ) = Ct(n)z−l(J + 1)z

∑

j≤J
2jα(l)

where we have written α(l) , 2s+d
2 (l∗ − l) and l∗ = dz

2s+d . Obviously α(l) is a decreasing function
of l. Moreover we have z > l∗. We can thus explore all the following cases,

i) l = l∗ implies A ≤ C(log n)z+1t(n)z−l
∗
= C(logn)z+1[t(n)2]

sz
2s+d , as z− l∗ = 2 sz

2s+d , which is
of the right order.
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ii) l > l∗ implies α(l) < 0 and A ≤ C(log n)zt(n)z−l. However z−l
2 ≥ sz

2s+d is impossible as
z−l
2 < z−l∗

2 = sz
2s+d .

iii) l < l∗ implies α(l) > 0 and A ≤ C(logn)zt(n)z−l−
2α(l)

d . Notice that z − l − 2α(l)
d = 2 lsd and

1
2 (2

ls
d ) ≥ zs

2s+d leads to l ≥ l∗, which is impossible.

Therefore, we have I ≤ C(log n)2z {logn/n}
sz

2s+d , which finishes to prove eq. (10) of Theorem 6.1

in the case where r = q = ∞. The Besov embedding Bsrq(M) ⊂ B
s− d

r∞∞ (M) allows for a direct
transposition of this result to the general case where r and q are chosen arbitrarily. Thus it appears
that, in the general case, each of the terms I, II and III are at most O({logn}2z{n/ logn}−zϑ∞

).
Which finishes the proof of eq. (10).

8.2 Minimax rate for the Lp-norm in the regular case, r > dp

2s+d

Let’s prove eq. (12), that is the regular case. Since Bsr,q(M) ⊂ Bsp,q(M) for r ≥ p, this case will be
assimilated to the case p = r, and from now on, we only consider r ≤ p. We have

E‖f� − f‖pp ≤ C
{
E‖

J∑

j=0

∑

η∈Zj

(β�
j,η − βj,η)ψj,η‖pp

+ ‖
∑

j>J

∑

η∈Zj

βj,ηψj,η‖pp + E|P̂0 − P0 ∗ f |p
}
, I + II + III

(16)

Let’s now prove that each of the terms I, II and III are at most O({logn}p{n/ logn}−pς). We
indeed see immediately that III is of the good order thanks to Proposition 8.1 and p

2 ≥ sp
2s+d . For

II we have

II
1
p ≤ C

∑

j>J

‖
∑

η∈Zj

βj,ηψj,η‖p ≤ C
∑

j>J

2−j(s−
d
r+

d
p )

≤ C2−J(s−
d
r+

d
p ) = C

{
logn

n

} s
d− 1

r+
1
p

where the second inequality comes from Theorem 3.1, eq. (8), and uses the embedding Bsr,q(M) ⊂
B
s− d

r+
d
p

p,q (M) for r ≤ p. Thus, we have to find the conditions which lead to s
d − 1

r + 1
p ≥ s

2s+d .

Since we are in the regular case, we have r > dp
2s+d , that is

s
2s+d ≤ rs

dp . Thus, as r ≤ p and s > d
r ,

we have

0 ≤ r

d

(
1

r
− 1

p

)(
s− d

r

)
=

(
s

d
− 1

r
+

1

p

)
− rs

dp
≤
(
s

d
− 1

r
+

1

p

)
− s

2s+ d

which shows that II is of the good order.
For I, we use the triangular inequality together with Hölder inequality to get

E‖
J∑

j=0

∑

η∈Zj

(β�
j,η − βj,η)ψj,η‖pp ≤ C(J + 1)p−1

J∑

j=0

2jd(
p
2−1)

∑

η∈Zj

E|β�
j,η − βj,η|p.

Then we apply Proposition 8.2, eq. (14) with γ = dp2 , z = p and thus under conditions D�(dp/2, p).
This leads us to,

J∑

j=0

2jd(
p
2−1)

E

∑

η

|β�
j,η − βj,η|p ≤ C




t(n)
p−l

J∑

j=0

2jd(
p
2−1)



∑

η∈Zj

|βj,η|l

+ n− p

2





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where l ∈ [0, p]. We denote A,B the two terms in-between braces on the right-hand-side above.
Notice first that the last term B is of the right order as p

2 > sp
2s+d . Now choose l ∈ [0, r]. The

embedding Bsrq(M) ⊂ Bslq(M) ensures that
∑

η∈Zj
|βj,η|l ≤M l2−jl{s+

d
2− d

l }. The first term A can
therefore be bounded by

A ≤ Ct(n)p−l
∑

j≤J
2jd(

p
2−1)2−jl{s+

d
2− d

l } = Ct(n)p−l
∑

j≤J
2jα(l)

where we have written α(l) , 2s+d
2 (l∗ − l) and l∗ = dp

2s+d . Obviously α(l) is a decreasing function
of l. Moreover, as we are in the regular case, we have r > l∗. We can thus explore all cases,

i) l = l∗ implies A ≤ C(log n)t(n)p−l
∗
= C logn[t(n)2]

sp
2s+d , as p− l∗ = 2 sp

2s+d , which is of the
right order.

ii) l > l∗ implies α(l) < 0 and A ≤ Ct(n)p−l. However p−l
2 ≥ sp

2s+d is impossible as p−l
2 <

p−l∗
2 = sp

2s+d .

iii) l < l∗ implies α(l) > 0 and A ≤ Ct(n)p−l−
2α(l)

d . Notice that p − l − 2α(l)
d = 2 lsd and

1
2 (2

ls
d ) ≥

ps
2s+d leads to l ≥ l∗, which is impossible.

Thus, we have I ≤ C(log n)p
{

logn
n

} sp
2s+d

, which finishes to prove eq. (12).

8.3 Minimax rate for the Lp-norm in the sparse case, r ≤ dp

2s+d

Let’s now turn to the proof of eq. (11). We proceed as above and observe first that in order to
have s > 0 as well as r ≤ pd

2s+d ⇔ s ≤ pd
2 (1r − 1

p ), it is necessary that p ≥ r. As above, we have

E‖f� − f‖pp ≤ C
{
E‖

J∑

j=0

∑

η∈Zj

(β�
j,η − βj,η)ψj,η‖pp

+ ‖
∑

j>J

∑

η∈Zj

βj,ηψj,η‖pp + E|P̂0 − P0 ∗ f |p
}
, I + II + III

(17)

Let’s prove that each of the terms I, II and III are at most O({logn}p{n/ logn}−pϑ). For p ≥ 2,

III is of the right order. For II, using again the embedding Bsr,q(M) ⊂ B
s− d

r+
d
p

p,q (M) for r ≤ p
and Theorem 3.1, we have

II
1
p ≤ C

∥∥∥
∑

j>J

∑

η∈Zj

βj,ηψj,η

∥∥∥
p
≤ C2−J(s−

d
r+

d
p ) ≤ C

{
logn

n

} s
d− 1

r+
1
p

And the constraint p( sd − 1
r +

1
p ) ≥

p
2

s+ d
p− d

r

s+ d
2− d

r

holds true since s > d
r .

For I, we use again the triangular inequality together with Hölder inequality to get

E‖
J∑

j=0

∑

η∈Zj

(β�
j,η − βj,η)ψj,η‖pp ≤ C(J + 1)p−1

J∑

j=0

2jd(
p
2−1)

∑

η∈Zj

E|β�
j,η − βj,η|p.

Then we apply Proposition 8.2, eq. (14) with γ = dp2 , z = p and thus under conditions D�(dp/2, p).
This leads us to,

J∑

j=0

2jd(
p
2−1)

E

∑

η

|β�
j,η − βj,η|p ≤ C




t(n)
p−l

J∑

j=0

2jd(
p
2−1)



∑

η∈Zj

|βj,η|l

+ n− p

2





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where l ∈ [0, p]. We denote A,B the two terms in-between braces on the right-hand-side above.
Notice first that, similarly with III above, the last term B is of the right order. Now choose

l ∈ [r, p]. The embedding Bsrq(M) ⊂ B
s− d

r+
d
l

lq (M) ensures that
∑
η∈Zj

|βj,η|l ≤ M l2−jl{s+
d
2− d

r }.
The first term A can therefore be bounded by

A ≤ Ct(n)p−l
∑

j≤J
2jd(

p
2−1)2−jl{s+

d
2− d

r } = Ct(n)p−l
∑

j≤J
2jα(l)

where we have written α(l) , (s+ d
2 − d

r )(l
∗ − l) and

l∗ =
d(p2 − 1)

s+ d
2 − d

r

As s > d
r , α(l) is a decreasing function of l. Moreover

l∗ − dp

2s+ d
=

d

r(s + d
2 − d

r )

{
dp

2s+ d
− r

}

Since we are in the sparse case, that is r ≤ dp
2s+d , and s > d/r, we have r ≤ dp

2s+d ≤ l∗. Notice now

that l∗ < p since l∗ < p⇔ 0 < p(s− d
r ) + d. Thus we can choose l ∈ [r, p] with r ≤ dp

2s+d ≤ l∗ < p.
We again optimize with respect to l,

i) l = l∗ implies A ≤ C(log n)t(n)p−l
∗
and p−l∗

2 = pϑ, which is of the right order.

ii) l > l∗ leads to A ≤ Ct(n)p−l and p−l
2 < p−l∗

2 = pϑ, which makes it impossible to have
p−l
2 ≥ pϑ.

iii) l < l∗ leads to A ≤ Ct(n)p−l−
2α(l)

d and 1
2 (p − l − 2α(l)

d ) ≥ pϑ leads to l ≥ l∗, which is
impossible.

Thus, we have I ≤ C(log n)p
{

logn
n

}pϑ
, which finishes to prove eq. (11).

9 Proof of Proposition 8.1

First notice that

E

(
|P̂0 − P0 ∗ f |z

)
≤ C




E| 1
n

∑

i≤n
{f(Ti)− Ef(T )}|z + E| 1

n

∑

i≤n
Vi|z






We write Xi = f(Ti) − Ef(T ). We have |Xi| ≤ 2‖f‖∞, EXi = 0. And we define t2 , EX2
i and

s(z) , E|Xi|z < ∞. We can thus apply Rosenthal inequality (see Petrov (1995, p. 54)) to obtain,
for z ≥ 2, E|∑Xi/n|z ≤ C{n−z+1s(z)+n−z

2 tz} ≤ Cn− z
2 . For 0 < z ≤ 2, the well-known ordering

of the Lp norms ‖.‖L1 ≤ ‖.‖L2 on probability spaces and the fact that the Xi’s are mutually

independent and centered lead to E|∑Xi/n|z ≤
(
E|Xi|2

) z
2 n− z

2 ≤ tzn− z
2 . Moreover notice that,

since the Vi’s are iid standard normal,
∑
Vi/n ∼ n− 1

2σZ, where Z is standard normal. And thus
E|∑Vi/n|z = n− z

2 σzE|Z|z ≤ Cn− z
2 , which concludes the proof.
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10 Proof of Proposition 8.2

In what follows, we will write ‖.‖p to denote the usual norm of Lp(Sd,M/ωd). This will make the
transition between expectations over functions of uniform random variables and Lp-norms easier.
Besides, with this notation, eq. (5) transforms into

cp/(ω
1/p
d ) ≤ ‖ψj,η‖p2−jd{

1
2− 1

p } ≤ Cp/(ω
1/p
d ) (18)

10.1 Two useful Lemmas

In this paragraph we introduce two lemmas that will prove very helpful in the demonstration of
Proposition 8.2. The first one is concerned with finding an upper-bound to the probability of the
events {%2j,η ≤ s} and {%2j,η ≥ t}. It goes as follows
Lemma 10.1. For any s ∈ (0, ‖ψj,η‖22) and any t ∈ (‖ψj,η‖22,+∞), we have

P(%2j,η < s) ≤ n−ν0(C0,s), P(%2j,η > t) ≤ n−ν∗(C0,t)

where we have written

ν0(C0, s) ,
C0(‖ψj,η‖22 − s)2

(2C4
4/ωd) +

4
3C

2
∞{‖ψj,η‖22 − s} ,

ν∗(C0, t) ,
C0(t− ‖ψj,η‖22)2

(2C4
4/ωd) +

4
3C

2
∞{t− ‖ψj,η‖22}

Remember for later use that

mj,η , ν0(1,
‖ψj,η‖22

2
) = ν∗(1,

3‖ψj,η‖22
2

) =
‖ψj,η‖42

(8C4
4/ωd) +

8
3C

2
∞‖ψj,η‖22

Besides, since the map g : x ∈ R+ 7→ x2

8C4
4+

8
3C

2
∞x

is non-decreasing and, given eq. (18), we have,

for all j ≥ 0, η ∈ Zj,
m− , g(c22/ωd) ≤ mj,η ≤ m+ , g(C2

2/ωd)

Proof. This is in fact a direct application of Bernstein inequality. Let’s start with the term P(%2j,η >
t). Notice that

P(%2j,η > t) = P

(
1

n

n∑

i=1

ψj,η(Ti)
2 > t

)

= P

(
1

n

n∑

i=1

{ψj,η(Ti)2 − ‖ψj,η‖22} > t− ‖ψj,η‖22

)

We write Xi , ψj,η(Ti)
2−‖ψj,η‖22. Now, given that EXi = 0, ‖Xi‖∞ ≤ 2‖ψj,η(.)2‖∞ ≤ 2C2

∞2jd ≤
2C2

∞2Jd and EX2
i ≤ ‖ψj,η‖44 ≤ C4

4{2jd(
1
2− 1

4 )}4/ωd ≤ C4
42
Jd/ωd and 2Jd ≤ n/{C0 log n}, we can

apply Bernstein inequality. For t− ‖ψj,η‖22 > 0, we get

P(%2j,η > t) ≤ exp

(
− n(t− ‖ψj,η‖22)2
2E{ψj,η(Ti)2 − ‖ψj,η‖22}2 + 2

3 t‖ψj,η(.)2 − ‖ψj,η‖22‖∞

)

≤ exp

(
− n(t− ‖ψj,η‖22)2
2Jd(2C4

4/ωd +
4
3C

2
∞{t− ‖ψj,η‖22})

)

≤ exp

(
− C0(t− ‖ψj,η‖22)2
2C4

4/ωd +
4
3C

2
∞{t− ‖ψj,η‖22}

logn

)

= exp (−ν∗(C0, t) logn)
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As regards the term P(%2j,η < s), write

P(%2j,η < s) = P

(
1

n

n∑

i=1

ψj,η(Ti)
2 < s

)

= P

(
1

n

n∑

i=1

{ψj,η(Ti)2 − ‖ψj,η‖22} < −(‖ψj,η‖22 − s)

)

= P

(
1

n

n∑

i=1

(−Xi) > ‖ψj,η‖22 − s

)

Besides (−Xi) verifies the same hypotheses as Xi above. Thus for s ∈ (0, ‖ψj,η‖22), we have
‖ψj,η‖22 − s > 0 and we are brought back to the preceding case. Which concludes the proof.

The second Lemma focuses on finding an upper bound on the probability that κj,ηt(n) be beyond
or under a given constant value gj,η.

Lemma 10.2. Let z > 0 be given. Let gj,η be a strictly positive constant that eventually depends
on j and η. For any l ∈ [0, z], any s ∈ (0, ‖ψj,η‖22) and any t ∈ (‖ψj,η‖22,+∞), we have

P(gj,η ≥ κj,η
2
t(n)) ≤ Cg2lj,ηt(n)

−2l + n−ν0(C0,s) (19)

P(gj,η < 2κj,ηt(n)) ≤ Cgl−zj,η t(n)
z−l + n−ν∗(C0,t) (20)

In particular eq. (19) together with the obvious fact that, for any x, y ≥ 0,
√
x+ y ≤ √

x +
√
y,

lead to

P(gj,η ≥ κj,η
2
t(n))

1
2 ≤ Cglj,ηt(n)

−l + n− ν0(C0,s)

2 (21)

Besides, if gj,η ≤ C2−j
d
2 , we have obviously that

gzj,η ≤ Cglj,η (22)

Notice in particular that Lemma 2.1, eq. (7) and the fact that f ∈ L
∞ lead to |βj,η| ≤ C2−j

d
2 ,

which in turn implies that both |βj,η| and supη∈Zj
|βj,η| verify eq. (22).

Proof. Let’s start with the proof of eq. (19). For any s ∈ (0, ‖ψj,η‖22), we have

E1{gj,η≥
κj,η

2 t(n)} = E1{gj,η≥
κj,η

2 t(n)}(1{%2j,η≥s} + 1{%2j,η≤s})

For any l ≥ 0, the left term can be bounded as follows

E1{gj,η≥
κj,η

2 t(n)}1{%2j,η≥s} ≤ E1{gj,η≥$
√

s
2 t(n)}

≤ 1{gj,η≥$
√

s
2 t(n)}g

2l
j,η

{
$
√
s

2
t(n)

}−2l

≤ Cg2lj,ηt(n)
−2l

As regards the right one, we have

E1{gj,η≥
κj,η

2 t(n)}1{%2j,η≤s} ≤ P(%2j,η ≤ s) ≤ n−ν0(C0,s)

where the last inequality is a direct application of Lemma 10.1. This finishes to prove eq. (19).
Let’s now turn to eq. (20). Its proof follows the same lines. For any t ∈ (‖ψj,η‖22,+∞), we have

E1{gj,η<2κj,ηt(n)} = E1{gj,η<2κj,ηt(n)}(1{%2j,η≤t} + 1{%2j,η>t})
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The term on the right-hand-side can therefore be bounded by

E1{gj,η<2κj,ηt(n)}1{%2j,η>t} ≤ P(%2j,η > t) ≤ n−ν∗(C0,t)

where the second inequality is a direct application of Lemma 10.1. Let l be chosen such that
l ∈ [0, z], that is z − l ≥ 0 and turn to the other term. We have

E1{gj,η<2κj,ηt(n)}1{%2j,η≤t} ≤ E1{gj,η<2
√
t$t(n)}

≤ gl−zj,η (2
√
t$t(n))z−l = Cgl−zj,η t(n)

z−l

which finishes to prove eq. (20).

10.2 Proof of Proposition 8.2 in the stochastic thresholding case

The proof relies on the following Lemma, which gives upper-bounds on various measures of the
deviation of β̂j,η from the true coefficient βj,η, the last one in eq. (25) being threshold-dependent.

Lemma 10.3. Let’s define the constant C∞ by ‖ψj,η‖∞ ≤ C∞2jd/2 as in eq. (5) and C0 > 0.
For any q ≥ 1, there exist constants C1(q), C2(q) such that, as soon as the following conditions are
verified,

f ∈ L
∞, $ ≥ 4ω2

dmax(4e2‖f‖2∞, σ2),

C0 > $max(2C2
∞/{c22e2}, 2/m−), 2J , n/{C0 log n}

we can write,

E|β̂j,η − βj,η|q ≤ C1(q)n
− q

2 (23)

E sup
η∈Zj

|β̂j,η − βj,η|q ≤ C2(q)(j + 1)qn− q
2 (24)

P

(
|β̂j,η − βj,η| ≥ $%j,ηt(n)

)
≤ 2n−$

2 (25)

Proof. Proof of eq. (25). A triangular inequality gives |β̂j,η − βj,η| ≤ |ζ∗j,η − βj,η| + |γ∗j,η|. We

notice in particular that, for any u > 0, {|β̂j,η − βj,η| ≥ u} ⊂ {|ζ∗j,η − βj,η| ≥ u
2 }
⋃{|γ∗j,η| ≥ u

2 }.
And therefore

P(|β̂j,η − βj,η| ≥ u) ≤ P(|ζ∗j,η − βj,η| ≥
u

2
) + P(|γ∗j,η| ≥

u

2
) , I(u) + II(u) (26)

Obviously, this result holds true for a stochastic u as well. Therefore we can take u = κj,ηt(n),
where we have written κj,η = $%j,η. Thanks to eq. (26), we only need to bound I(κj,ηt(n)/2) and
II(κj,ηt(n)/2). We first deal with this latter term.
Upper bound for II(κj,ηt(n)/2). Recall from Section 5 that |γ∗j,η| ∼ ωd%j,ησ|ξ|/

√
n, where

ξ ∼ N (0, 1) conditionally on the Ti’s. We can thus write

II(κj,ηt(n)/2) = P(|γ∗j,η| ≥
κj,ηt(n)

2
) = P(|ξ| ≥ $

√
logn

2σωd
)

≤ 4σωd

$
√
2π logn

exp

(
−$

2 log n

8σ2ω2
d

)
≤ n−$2/8σ2ω2

d

where the before last inequality results from a conditioning with respect to the Ti’s and a regular
Gaussian tail-inequality and the last inequality holds true for n big enough. So in order to get
eq. (25), we just need to pick $ such that $ ≥ 4σ2ω2

d. We now turn to the other term.
Upper bound for I(κj,ηt(n)/2). We write Xi , ωdf(Ti)ψj,η(Ti)− βj,η. Obviously ζ∗j,η − βj,η =

18



∑
Xi/n, where the sum is over all the Xi’s, i = 1, . . . , n. Since κj,η = $%j,η, the problem

reduces to finding an upper bound to I(%j,ηδ) where δ is a given constant. We will subsequently
obtain an upper bound for I(κj,ηt(n)/2) by choosing δ ≡ $t(n)/2. With these notations, we have
I(%j,ηδ) = P(|∑Xi| ≥ n%j,ηδ). In a first step, we remove the absolute values and focus on finding
an upper bound to P(

∑
Xi ≥ n%j,ηδ). Let h be a strictly positive non-decreasing function. We

can write

h(
∑

Xi) ≥ h(
∑

Xi)1{
∑
Xi≥n%j,ηδ} ≥ h(n%j,ηδ)1{

∑
Xi≥n%j,ηδ}

Taking the expectation leads to

Eh(
∑

Xi) ≥ Eh(n%j,ηδ)1{
∑
Xi≥%j,ηδ} (27)

Since h is a strictly positive function, we can apply a reverse Hölder inequality to the right-hand-
side (Adams and Fournier (2003, Theorem 2.12)). That is, with p = 1/2 and q = −1 as conjugate
exponents

Eh(n%j,ηδ)1{
∑
Xi≥n%j,ηδ} ≥ P(

∑
Xi ≥ n%j,ηδ)

2

(
E

1

h(n%j,ηδ)

)−1

(28)

Let’s choose h(x) , eλx, where λ > 0. Combining eq. (27) and eq. (28), we get

P(
∑

Xi ≥ n%j,ηnδ)
2 ≤ Ee−λn%j,ηδEeλ

∑
Xi

This together with the independence of the Ti’s and thus of the Xi’s leads to

P(
∑

Xi ≥ n%j,ηδ)
2 ≤ Ee−λn%j,ηδ

(
EeλXi

)n
(29)

Let’s first look for an upper bound to (EeλXi )n = exp(n logEeλXi). Obviously

eλXi = 1 + λXi + (eλXi − 1− λXi) = 1 + λXi + λ2X2
i θ(λXi) (30)

where we have written θ(x) = (ex − 1 − x)/(x2)1{x 6=0} + (1/2)1{x=0}. As is easily verified, θ is
a positive non-decreasing function. Moreover, notice that EXi = 0, EX2

i ≤ ω2
d‖f‖2∞‖ψj,η‖22 and

‖Xi‖∞ ≤ 2ωd‖f‖∞‖ψj,η‖∞ and ‖ψj,η‖∞ ≤ C∞2Jd/2. Therefore, taking the expectation in eq. (30)
leads to

EeλXi ≤ 1 + λ2ω2
d‖f‖2∞‖ψj,η‖22θ(2λωd‖f‖∞C∞2Jd/2)

Notice finally that log(1 + u) ≤ u for all u ≥ 0, so that

(EeλXi )n ≤ exp{n log(1 + λ2ω2
d‖f‖2∞‖ψj,η‖22θ(λωd‖f‖∞C∞2Jd/2))}

≤ exp{nλ2ω2
d‖f‖2∞‖ψj,η‖22θ(2λωd‖f‖∞C∞2Jd/2)} (31)

We now turn to the problem of bounding Ee−λn%j,ηδ. Notice that

Ee−λn%j,ηδ ≤ Ee−λn%j,ηδ1{%2j,η≤t} + Ee−λn
√
tδ
1{%2j,η>t} , A0 +B0 (32)

We have obviously B0 ≤ e−λn
√
tδ. As regards A0, notice that for any t ∈ (0, ‖ψj,η‖22), we have

A0 ≤ P(%2j,η ≤ t) ≤ n−ν0(C0,t) where the last inequality is a direct application of Lemma 10.1.
Combining the upper bounds on A0 and B0 together with eq. (32), eq. (31) and eq. (29), we obtain

P(
∑

Xi ≥ n%j,ηδ)
2 ≤ (e−λn

√
tδ + e−ν0(C0,t) logn)enλ

2ω2
d‖f‖2

∞‖ψj,η‖2
2θ(2λωd‖f‖∞C∞2Jd/2)

, e−ν1(t,C0,δ,λ) logn + e−ν2(t,C0,δ,λ) logn
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where

ν1(t, C0, δ, λ) ,
n

logn

√
tλδ − n

lognC2
∞2Jd

‖ψj,η‖22
4

θ1(2λωd‖f‖∞C∞2Jd/2)

ν2(t, C0, δ, λ) , ν0(C0, t)−
n

log nC2
∞2Jd

‖ψj,η‖22
4

θ1(2λωd‖f‖∞C∞2Jd/2)

and θ1(x) = x2θ(x). Recall that 2Jd = n/{C0 logn}, that is 2−Jd/2 =
√
C0t(n). As C∞2Jd/2

explodes, it is clear that we have to take λ = λ0 , a2−Jd/2 = a
√
C0t(n), a > 0 for νi, i = 1, 2

to have a lower bound. Besides we take δ = δ0 , $t(n)/2. With these parameters values, we
have θ1(2λ0ωd‖f‖∞C∞2Jd/2) = θ1(2ωd‖f‖∞C∞a) ≤ 2ω2

d‖f‖2∞C2
∞a

2e2ωd‖f‖∞C∞a, where the last
inequality follows from the mean value theorem. Hence, if we choose C0 , b2$, b > 0, we obtain

ν1(t, b
2$, δ0, λ0) ≥ $

(√
tab

√
$

2
− (ab)2

2
ω2
d‖f‖2∞‖ψj,η‖22e2ωd‖f‖∞C∞a

)
(33)

ν2(t, b
2$, δ0, λ0) ≥ $

(
b2ν0(1, t)−

(ab)2

2
ω2
d‖f‖2∞‖ψj,η‖22e2ωd‖f‖∞C∞a

)
(34)

In order to verify eq. (25), we just need to pick t ∈ (0, ‖ψj,η‖22), a > 0 and b > 0 such that
νi(t, b

2$, δ0, λ0) ≥ $, i = 1, 2. Given eq. (33) and eq. (34), it leads to the following three
constraints on the parameters $, a, b, t

√
$ ≥ 2

ab
√
t

(
1 +

(ab)2

2
ω2
d‖f‖2∞‖ψj,η‖22e2ωd‖f‖∞C∞a

)

ν0(1, t) ≥
1

b2
+
a2

2
‖f‖2∞ω2

d‖ψj,η‖22e2ωd‖f‖∞C∞a

t ∈ (0, ‖ψj,η‖22)

which are obviously always feasible. In particular, we can take t = t0 , ‖ψj,η‖22/2, a = cb
√
2/(bωd‖f‖∞),

cb = 1/(e‖ψj,η‖2), b ≥ max(C∞
√
2/(c2e),

√
2/m−), where c2 and m− have been defined in

Lemma 10.1 and $ ≥ {4ωd‖f‖∞/(
√
2cb

√
t0)}2 = 16e2ω2

d‖f‖2∞. Under these conditions, we
have thus proved that P(

∑
Xi ≥ n%j,η$t(n)) ≤ n−$/2. Besides, it is clear that P(

∑
Xi ≤

−n%j,η$t(n)) = P(
∑

(−Xi) ≥ n%j,η$t(n)). And the (−Xi)’s verify the same properties as the
Xi’s, which prompts us to apply the same reasoning as above. This leads straightforwardly to
P(|∑Xi| ≥ n%j,η$t(n)) ≤ 2n−$/2 and finishes the proof of eq. (25).
Proof of eq. (24). First notice that with #Zj = 2jd and for q ≥ 1 we have

E sup
η∈Zj

|β̂j,η − βj,η|q =
∫

R+

quq−1
P( sup
η∈Zj

|β̂j,η − βj,η| ≥ u)du

≤
∫

R+

quq−1
{
1 ∧ 2jdP(|β̂j,η − βj,η| ≥ u)

}
du (35)

In order to prove eq. (24), we need to find an upper bound to right-hand-side of eq. (35). However
we have shown earlier in eq. (26) that

P(|β̂j,η − βj,η| ≥ u) ≤ I(u) + II(u)

Upper bound for II(u). Recall from Section 5 that |γ∗j,η| ∼ ωdσ%j,η|ξ|/
√
n, where ξ ∼ N (0, 1)

conditionally on the Ti’s. Therefore we can write, for any t > 0,

P(|γ∗j,η| ≥
u

2
) = P(ωdσ%j,η|ξ| ≥

u

2

√
n; %2j,η > t) + P(ωdσ%j,η|ξ| ≥

u

2

√
n; %2j,η ≤ t)

, A1(u) +A2(u)
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We use a regular Gaussian tail-inequality to bound A2(u),

A2(u) = E1{ωdσ%j,η |ξ|≥u
2

√
n}1{%2j,η≤t} = E1{%2j,η≤t}E[1{ωdσ%j,η |ξ|≥u

2

√
n}|T1, . . . , Tn]

≤ E1{%2j,η≤t}

{
1 ∧ 4σωd%j,η

u
√
2πn

exp

(
− u2n

8ω2
dσ

2%2j,η

)}

≤ 4ωdσ
√
t

u
√
2πn

exp

(
− u2n

8ω2
dσ

2t

)

In order to find an upper bound for A1(u), we use the independence of the Ti’s from the Vi’s
together with the fact that ‖ψj,η‖∞ ≤ C∞2jd/2, and thus %j,η ≤ C∞2jd/2. We write indeed

A1(u) = P(ωdσ%j,η|ξ| ≥
u

2

√
n; %2j,η > t) = EE

[
1{ωdσ%j,η |ξ|≥u

2

√
n}|T1, . . . , Tn

]
1{%2j,η>t}

≤ EE

[
1{|ξ|≥ u

2ωdσC∞
√
n2−jd/2}|T1, . . . , Tn

]
1{%2j,η>t}

≤ E

{
1 ∧ 4C∞ωdσ2jd/2

u
√
2πn

exp

(
− u2

8ω2
dσ

2C2
∞
n2−jd

)}
1{%2j,η>t}

≤
{
1 ∧ 4C∞ωdσ2Jd/2

u
√
2πn

exp

(
− u2

8ω2
dσ

2C2
∞
n2−Jd

)}
P(%2j,η > t)

≤
{
1 ∧ 4C∞ωdσ

u
√
2πC0

exp

(
− u2C0

8ω2
dσ

2C2
∞

)}
exp (−ν∗(C0, t) logn) (36)

where the last inequality is a direct application of Lemma 10.1 with t ∈ (‖ψj,η‖22,∞).
Upper bound for I(u). We can write

ζ∗j,η − βj,η =
ωd
n

∑

i≤n
{f(Ti)ψj,η(Ti)− Ef(Ti)ψj,η(Ti)}

Since ‖ψj,η‖∞ ≤ C∞2
jd
2 , we have ‖f(.)ψj,η(.)−Ef(Ti)ψj,η(Ti)‖∞ ≤ 2‖f‖∞C∞2

jd
2 ≤ 2‖f‖∞C∞2

Jd
2 .

Moreover we have w2 , E{f(Ti)ψj,η(Ti)− Ef(Ti)ψj,η(Ti)}2 ≤ ‖f‖2∞‖ψj,η‖22. We can thus apply a
Bernstein-type inequality to find

P

(
|ζ∗j,η − βj,η| ≥

u

2

)
= P


ωd
n
|
∑

i≤n
{f(Ti)ψj,η(Ti)− Ef(Ti)ψj,η(Ti)}| ≥

u

2




≤ 2 exp

(
− nu2

8ω2
dw

2 + 8
3ωd‖f‖∞C∞2

Jd
2 u

)

And, using the convexity of the exponential map, we get,

exp

(
− nu2

8ω2
dw

2 + (8/3)ωd‖f‖∞C∞2Jd/2u

)
≤ exp

(
− nu2

16ω2
dw

2

)

+ exp

(
− nu

(16/3)ωd‖f‖∞C∞2Jd/2

)

Upper bound to E supη∈Zj
|β̂j,η−βj,η|q. We have shown above that we can write P(|β̂j,η−βj,η| ≥

u) ≤ I(u) + II(u) ≤ I(u) + {A1(u) + A2(u)} and we have computed upper bounds to the three
terms on the right-hand-side. Let’s now use these results to actually prove eq. (24). Notice that
for x, y ∈ R+ we have 1 ∧ (x + y) ≤ 1 ∧ x + 1 ∧ y. As the three terms A1(u), A2(u) and I(u) are
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positive, we deduce from eq. (35) that

E sup
η∈Zj

|β̂j,η − βj,η|q ≤
∫

R+

quq−1{1 ∧ 2jdI(u)}du

+

∫

R+

quq−1{1 ∧ 2jdA1(u)}du+
∫

R+

quq−1{1 ∧ 2jdA2(u)}du
(37)

We proceed to bound the three integrals that appear on the right-hand-side of eq. (37). Notice
first that, since 2Jd ≤ n/C0,

∫

R+

quq−1{1 ∧ 2jdA1(u)}du

≤
∫

R+

quq−12JdA1(u)du

≤ ne−ν∗(C0,t) logn

∫

R+

q

C0
uq−1

{
1 ∧ 4ωdσC∞

u
√
2πC0

exp

(
− u2C0

8ω2
dσ

2C2
∞

)}
du

= C(q)n−ν∗(C0,t)+1

where we have denoted the integral on the right-hand-side of the before-last line by C(q). Therefore,
in order to get eq. (24), it is enough to choose t such that ν∗(C0, t) − 1 ≥ q/2, which is always
possible since ν∗(C0, t) is a positive, strictly increasing and unbounded function of t for t > ‖ψj,η‖22.
Thus we can pick any t ≥ tq, where tq , [ν−1

∗ (C0, .)](1 + q/2), with obvious notations. Let’s now
fix t > tq and turn to the integral of A2(u). Notice first that for u2 ≥ 42jdω2

dσ
2t/n, that is

u ≥ u∗ , 4
√
jdω2

dσ
2t/n, we have

2jd exp

(
− u2n

8ω2
dσ

2t

)
≤ exp

(
− u2n

16ω2
dσ

2t
− u2n

16ω2
dσ

2t
+ jd

)
≤ exp

(
− u2n

16ω2
dσ

2t

)

Thus we can write∫

R+

quq−1{1 ∧ 2jdA2(u)}du

≤
∫

0≤u≤u∗
quq−1du+

∫

u≥u∗
quq−1

{
1 ∧ 2jdA2(u)

}
du

≤ (4
√
dt)qj

q
2n− q

2 +

∫

u≥u∗
quq−1

{
1 ∧ 4ωdσ

√
t

u
√
2πn

2jd exp

(
− u2n

8ω2
dσ

2t

)}
du

≤ (4
√
dt)qj

q
2n− q

2 +

∫

u≥u∗
quq−1

{
1 ∧ 4ωdσ

√
t

u
√
2πn

exp

(
− u2n

16ω2
dσ

2t

)}
du

≤ (4
√
dt)qj

q
2n− q

2 + n− q
2

∫

v≥4
√
jdω2

dσ
2t

qvq−1

{
1 ∧ 4ωdσ

√
t

v
√
2π

exp

(
− v2

16ω2
dσ

2t

)}
dv

≤ C′(q)(j + 1)
q
2n− q

2

where the before last inequation results from the change of variable v = u
√
n and the last in-

equation from the fact that, for j ≥ 0, the integral on the domain v ≥ 4
√
jdω2

dσ
2t is smaller

than the integral on v ∈ R
+. Finally, we deal with the integral of I(u) in eq. (37). It can be

bounded using the same technique as for the integral of A2(u). We have indeed, for u ≥ u∗ ,

(jωd/
√
n)max(4w

√
2d, 32d‖f‖∞C∞/3),

2jd
{
exp

(
− nu2

16ω2
dw

2

)
+ exp

(
− u

√
n

(16/3)ωd‖f‖∞C∞

)}

≤ exp

(
− nu2

32ω2
dw

2

)
+ exp

(
− u

√
n

(32/3)ωd‖f‖∞C∞

)
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Thus we can write
∫

R+

quq−1{1 ∧ 2jdI(u)}du

≤
∫

0≤u≤u∗
quq−1du+

∫

u≥u∗
quq−1

{
1 ∧ 2jdI(u)

}
du

≤ aqjqn− q
2 +

∫

u≥u∗
quq−11 ∧

{
exp

(
− nu2

32ω2
dw

2

)
+ exp

(
− u

√
n

32
3 ωd‖f‖∞C∞

)}
du

≤ C′′(q)(j + 1)qn− q
2

where in the last equation we have made the change of variable v = u
√
n and used the fact that for

j ≥ 0 the resulting integral is bounded by a constant, since ω2
dw

2 ≤ 2ωd‖f‖2∞C2
2 . Which concludes

the proof of eq. (24).
Proof of eq. (23). We could prove eq. (23) using the same arguments as for eq. (24). However,
we can also see eq. (23) as a direct consequence of Rosenthal inequality (see Petrov (1995, p. 54)).
We have indeed, for q > 0,

E|β̂j,η − βj,η|q ≤ C(q)(E|ζ∗j,η − βj,η|q + E|γ∗j,η|q)
Recall that we have γ∗j,η = ωd

∑
Viψj,η(Ti)/n. The {ωdViψj,η(Ti)}i≤n are iid with EωdViψj,η(Ti) =

0 and E{ωdViψj,η(Ti)}2 = ω2
dσ

2‖ψj,η‖22 ≤ Cωdσ
2 and, for q ≥ 2, E|ωdViψj,η(Ti)|q = ωqdE|Vi|q‖ψj,η‖qq ≤

C2jd(
q
2−1)ωq−1

d ≤ Cωq−1
d 2Jd(

q
2−1). Thus, for q ≥ 2, we have

E|γ∗j,η|q = E|
∑

ωdViψj,η(Ti)/n|q

≤ C
{
n1−q

E|ωdV ψj,η(T )|q + n− q
2

(
E{ωdV ψj,η(T )}2

) q
2

}

≤ C
{
n1−qCωq−1

d 2Jd(
q
2−1) + n− q

2ω
q/2
d σq

}
≤ Cωq−1

d n− q
2

where the last inequality comes from the fact that 2Jd ≤ n/C0. And for 0 < q ≤ 2,

E|γ∗j,η|q = E|n−1
∑

ωdViψj,η(Ti)|q ≤
{
E|n−1

∑
ωdViψj,η(Ti)|2

} q
2

=
{∑

E|n−1ωdViψj,η(Ti)|2
} q

2 ≤ Cω
q/2
d σqn− q

2

In the same way, for q ≥ 2, denote Xi = ωdf(Ti)ψj,η(Ti)− Eωdf(Ti)ψj,η(Ti). Notice that we have
EXi = 0 and,

EX2
i ≤ ω2

dEf(T )
2ψj,η(T )

2 ≤ ‖f‖2∞C2
2ωd,

E|Xi|q ≤ CωqdEf(T )
qψj,η(T )

q ≤ Cωq−1
d ‖f‖q∞Cqq 2Jd(

q
2−1)

So that

E|ζ∗j,η − βj,η|q = E|n−1ωd
∑

{f(Ti)ψj,η(Ti)− Ef(Ti)ψj,η(Ti)}|q

≤ C(n1−qωq−1
d ‖f‖q∞n

q
2−1 + n− q

2ω
q/2
d ‖f‖q/2∞ ) ≤ Cωq−1

d n− q
2

And for 0 < q ≤ 2, E|ζ∗j,η − βj,η|q ≤ C‖f‖q∞ωq/2d n− q
2 , which finishes to prove eq. (23).

Let’s turn to the proof of Proposition 8.2 in the stochastic thresholding case.
We start with the proof of eq. (13). We break down the problem into four cases,

J∑

j=0

2jγE sup
η∈Zj

|β~
j,η − βj,η|z
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≤
J∑

j=0

2jγE sup
η∈Zj

|β̂j,η − βj,η|z1{|β̂j,η|≥κj,ηt(n)}1{supη∈Zj
|βj,η|≥

κj,η
2 t(n)}

+

J∑

j=0

2jγE sup
η∈Zj

|β̂j,η − βj,η|z1{|β̂j,η|≥κj,ηt(n)}1{supη∈Zj
|βj,η|<

κj,η
2 t(n)}

+

J∑

j=0

2jγE sup
η∈Zj

|βj,η|z1{|β̂j,η|<κj,ηt(n)}1{supη∈Zj
|βj,η|≥2κj,ηt(n)}

+
J∑

j=0

2jγE sup
η∈Zj

|βj,η|z1{|β̂j,η|<κj,ηt(n)}1{supη∈Zj
|βj,η|<2κj,ηt(n)}

, Bb+Bs+ Sb+ Ss

We then bound separately each of the four terms Bb, Ss, Sb, Bs. Let’s start with Bb,

Bb ≤
J∑

j=0

2jγE sup
η∈Zj

|β̂j,η − βj,η|z1{supη∈Zj
|βj,η|≥

κj,η
2 t(n)}

≤ C
J∑

j=0

2jγ(j + 1)zn− z
2

(
E1{supη∈Zj

|βj,η|≥
κj,η

2 t(n)}

) 1
2

where the last inequality comes as a direct application of Cauchy-Schwarz inequality and eq. (24).
We can now apply Lemma 10.2, eq. (21) to the term on the right-hand-side with gj,η = supη∈Zj

|βj,η|
and s = s0 , ‖ψj,η‖22/2 to get

Bb ≤ C

J∑

j=0

2jγ(j + 1)zn− z
2 sup
η∈Zj

|βj,η|lt(n)−l + C

J∑

j=0

2jγ(j + 1)zn− z
2n− ν0(C0,s0)

2

≤ Cn− z
2 t(n)−l(J + 1)z

J∑

j=0

2jγ sup
η∈Zj

|βj,η|l + Cn− z
2 (J + 1)z2Jγn−C0

m−
2

≤ Ct(n)z−l(J + 1)z
J∑

j=0

2jγ sup
η∈Zj

|βj,η|l + Cn− z
2 (J + 1)zn

γ
d−C0m−

2

where m− has been defined in Lemma 10.1 and the last inequality uses the fact that 2Jd ≤ n/C0.
The term on the far right is of the good order as soon as γ/d − C0m

−/2 < 0 since in that case

(J + 1)znγ/d−C0m
−/2 → 0 as n→ ∞. Hence the term on the far right is of the good order as soon

as C0 > 2γ/dm−.
Let’s now turn to Ss. We can apply Lemma 10.2, eq. (20) with gj,η = supη∈Zj

|βj,η| and t = t∗ =

3‖ψj,η‖22/2. This leads to

Ss ≤
J∑

j=0

2jγ sup
η∈Zj

|βj,η|z
(
C sup
η∈Zj

|βj,η|l−zt(n)z−l + n−ν∗(C0,t∗)

)

≤ C
(
t(n)z−l + n−C0m

−
) J∑

j=0

2jγ sup
η∈Zj

|βj,η|l ≤ Ct(n)z−l
J∑

j=0

2jγ sup
η∈Zj

|βj,η|l

where the before last inequality uses Lemma 10.2, eq. (22) and the last inequality is valid as soon
as C0m

− ≥ (z − l)/2. In particular, it is enough to take C0 ≥ z/2m−. Let’s now turn to Bs. We

24



have, using eq. (24), eq. (25) and Cauchy-Schwarz inequality,

Bs ≤
J∑

j=0

2jγE sup
η∈Zj

|β̂j,η − βj,η|z1{supη∈Zj
|β̂j,η−βj,η|≥

κj,η
2 t(n)}1{supη∈Zj

|βj,η|<2κj,ηt(n)}

≤
J∑

j=0

2jγ

{
E sup
η∈Zj

|β̂j,η − βj,η|2z
} 1

2 {
2jdP

(
|β̂j,η − βj,η| ≥

κj,η
2
t(n)

)} 1
2

≤
J∑

j=0

2jγ
{
C(j + 1)2zn−z} 1

2
{
2jd2n−$

4

} 1
2 ≤ C2J{γ+

d
2 }(J + 1)zn− z

2n−$
8

≤ C(J + 1)zn
γ
d+ 1

2−$
8 n− z

2 ≤ Cn− z
2

since 2Jd ≤ n/C0 and for $ > 4(2γd + 1), (J + 1)zn
γ
d+ 1

2−$
8 → 0 as n → ∞. Finally, notice that

Lemma 2.1, eq. (7) and the fact that f ∈ L∞ lead to |βj,η| ≤ C2−j
d
2 . And this together with

eq. (25) allows us to write

Sb ≤
J∑

j=0

2jγE sup
η∈Zj

|βj,η|z1{supη∈Zj
|βj,η−β̂j,η|≥κj,ηt(n)}1{supη∈Zj

|βj,η|≥2κj,ηt(n)}

≤
J∑

j=0

2jγC2−jz
d
2 2jdP{|βj,η − β̂j,η| ≥ κj,ηt(n)} ≤ Cn−$

2

J∑

j=0

2j{γ+d−d
z
2 }

Here two cases arise. On the one hand, if γ+d−d z2 ≤ 0, that is z ≥ 2(γd+1), we have asymptotically
Sb ≤ Cn−$

2 logn ≤ Cn− z
2 for $ > z. On the other hand, if γ + d− d z2 > 0, that is z < 2(γd + 1),

we have Sb ≤ Cn−$
2 2J{γ+d−d

z
2 } ≤ Cn−$

2 + γ
d+1− z

2 ≤ Cn− z
2 for $ ≥ 2(γd + 1). Therefore, it is

enough to pick $ > max(z, 2{ γd + 1}) in order to get Sb ≤ Cn−z/2.
Let’s now turn to the proof of eq. (14). We proceed in exactly the same way as in the
previous paragraph. We start by breaking down the problem into four cases,

J∑

j=0

2j(γ−d)E
∑

η∈Zj

|β~
j,η − βj,η|z

≤
J∑

j=0

2j(γ−d)E
∑

η∈Zj

|β̂j,η − βj,η|z1{|β̂j,η|≥κj,ηt(n)}1{|βj,η|≥
κj,η

2 t(n)}

+

J∑

j=0

2j(γ−d)E
∑

η∈Zj

|β̂j,η − βj,η|z1{|β̂j,η|≥κj,ηt(n)}1{|βj,η|<
κj,η

2 t(n)}

+

J∑

j=0

2j(γ−d)E
∑

η∈Zj

|βj,η|z1{|β̂j,η|<κj,ηt(n)}1{|βj,η|≥2κj,ηt(n)}

+

J∑

j=0

2j(γ−d)E
∑

η∈Zj

|βj,η|z1{|β̂j,η|<κj,ηt(n)}1{|βj,η|<2κj,ηt(n)}

, Bb+Bs+ Sb+ Ss .

We then bound separately each of the four terms Bb, Ss, Sb, Bs. Using eq. (23), we get, for any
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l ≥ 0,

Bb ≤
J∑

j=0

∑

η∈Zj

2j(γ−d)E|β̂j,η − βj,η|z1{|βj,η|≥
κj,η

2 t(n)}

≤
J∑

j=0

∑

η∈Zj

2j(γ−d)
{
E|β̂j,η − βj,η|2z

} 1
2
{
E1{|βj,η|≥

κj,η
2 t(n)}

} 1
2

We can now apply Lemma 10.3, eq. (23) to the left expectation and Lemma 10.2, eq. (21) to the
right expectation with gj,η = |βj,η| and s = s0 to get

Bb ≤ Cn− z
2 t(n)−l

J∑

j=0

2j(γ−d)



∑

η∈Zj

|βj,η|l

+ C

J∑

j=0

∑

η∈Zj

2j(γ−d)n− z
2−

C0m−
2

≤ Ct(n)z−l
J∑

j=0

2j(γ−d)



∑

η∈Zj

|βj,η|l

 + Cn− z

2+
γ
d−

C0m−
2

where the last inequality uses the fact that #Zj ≈ 2jd and 2Jd ≤ n/C0. In particular, the far right
term is of the good order as soon as C0 ≥ 2γ/dm−. Let’s now take l ∈ [0, z] and turn to Ss. If we
apply Lemma 10.2, eq. (20) with gj,η = |βj,η| and t = t∗, we get

Ss ≤
J∑

j=0

2j(γ−d)
∑

η∈Zj

|βj,η|zE1{|βj,η|<2κj,ηt(n)}

≤ Ct(n)z−l
J∑

j=0

2j(γ−d)




∑

η∈Zj

|βj,η|l


+ n−C0m
−

J∑

j=0

2j(γ−d)




∑

η∈Zj

|βj,η|z




≤ C
(
t(n)z−l + n−C0m

−
) J∑

j=0

2j(γ−d)



∑

η∈Zj

|βj,η|l



≤ Ct(n)z−l
J∑

j=0

2j(γ−d)



∑

η∈Zj

|βj,η|l



where the before last equation uses Lemma 10.2, eq. (22) with gj,η = |βj,η| and the last equation
is valid as soon as C0m

− ≥ z−l
2 , so that it is enough to take C0 ≥ z/2m−. Let’s now turn to Bs.

We use Lemma 10.3, eq. (23) and eq. (25), and the fact that #Zj ≈ 2jd to show that

Bs ≤
J∑

j=0

2j(γ−d)E
∑

η∈Zj

|β̂j,η − βj,η|z1{|β̂j,η−βj,η|≥
κj,η

2 t(n)}

≤
J∑

j=0

2j(γ−d)
∑

η∈Zj

(
E|β̂j,η − βj,η|2z

) 1
2

P

{
|β̂j,η − βj,η| ≥

κj,η
2
t(n)

} 1
2

≤ C
J∑

j=0

2jγn− z
2n−$

4 ≤ Cn− z
2+

γ
d−$

4 ≤ Cn− z
2

where, as usual, the before last inequality uses the fact that 2Jd ≤ n/C0 and the last inequality
is valid as soon as $ ≥ 4 γd . Let’s now turn to Sb. Notice again that f bounded implies that
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|βj,η| ≤ C2−
jd
2 . This together with eq. (25) and #Zj ≈ 2jd leads us to

Sb ≤
J∑

j=0

2j(γ−d)E
∑

η∈Zj

|βj,η|z1{|βj,η−β̂j,η|≥κj,ηt(n)}

≤ C

J∑

j=0

2j(γ−d)2jd2−jd
z
2P{|βj,η − β̂j,η| ≥ κj,ηt(n)}

≤ C
J∑

j=0

2j{−d
z
2+γ}n−$

2 ≤ Cn−$
2

J∑

j=0

2j{γ+d−d
z
2 }

Here we face the same dichotomy as at the end of the previous paragraph. This concludes the
proof of eq. (13).
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