Prospective surveillance of drain-associated meningitis/ventriculitis in a neurosurgery and a neurologic intensive care unit.

Simone Scheithauer, Uli Bürgel, Yu-Mi Ryang, Susann Koch, Johannes Schiefer, Helga Häsner, Gerhard Haase, Sebastian Werner Lemmen

To cite this version:

HAL Id: hal-00552735
https://hal.archives-ouvertes.fr/hal-00552735
Submitted on 6 Jan 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Prospective surveillance of drain-associated meningitis / ventriculitis in a neurosurgery and a neurologic intensive care unit.

Running title: Surveillance of drain-associated meningitis

Simone Scheithauer*1, Uli Bürgel2, Yu-Mi Ryang2, Gerhard Haase3, Johannes Schiefer4, Susann Koch5, Helga Häfner1, and Sebastian Lemmen1

1 Department of Infection Control and Infectious Diseases, University Hospital, RWTH Aachen, Germany
2 Department of Neurosurgery, University Hospital, RWTH Aachen, Germany
3 Institute of Medical Microbiology, University Hospital, RWTH Aachen, Germany
4 Department of Neurology, University Hospital, RWTH Aachen, Germany
5 Division of Infectious Diseases, Department of Internal Medicine, University Cologne, Germany

*corresponding author: Simone Scheithauer, Department of Infection Control and Infectious Diseases, UK Aachen, RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
Phone: +49 241 8035036, Fax: +49 241 8082540, E-mail: sscheithauer@ukaachen.de
Abstract:

Objectives - There are currently no data available on drain-associated infection occurrence related to the number of drainage-days, and thus drain-associated infection rates. Therefore, we conducted a prospective surveillance study to determine drain-associated infection rates and drainage-days of hospital-acquired external ventricular drain- (EVD) and lumbar drain- (LD) associated meningitis/ventriculitis in a neurosurgery (NSICU) and a neurologic intensive care unit (NICU).

Methods - All patients admitted in 2005 and 2006 were documented. Data on age, admitting diagnosis, type and duration of drain, duration of hospital stay and occurrence of meningitis were recorded and analysed statistically.

Results – A total of 1333 patients were included amounting to 3023 drainage days (DD). After exclusion of 15 contaminations, a total of 26 cases of meningitis were reported accounting for an overall device-associated meningitis rate of 8.6 infections/1000 DD. Infections associated with LD seemed to occur more frequently (19.9/1000 DD) compared to EVD (6.3/1000 DD). The presence of intraventricular blood and previous trauma were significant risk factors for infection (p=0.003; p=0.04). Finally, the length of stay was significantly longer in meningitis patients (p=0.0003). Coagulase negative staphylococci (CoNS) were the main pathogen (56%) causing meningitis followed by S. aureus (25%).

Conclusions - To the best of our knowledge, this study represents the first to provide data on EVD- as well as LD-associated meningitis rates calculated per 1000 DD; a parameter that is well established for other invasive devices such as central venous and urinary tract catheters. However, further prospective studies are needed to investigate possible risk factors for meningitis.
INTRODUCTION

Nosocomial infection rates mainly correspond with the severity of illness and the exposure to invasive devices [1]. External ventricular drains (EVD) and lumbar drains (LD) are commonly used to control hydrocephalus and to monitor and decrease intracranial pressure.

Ventriculostomy-related infections are a serious problem in up to 40% of patients [2-5]. In contrast to shunt infections, infections derived from the use of devices are almost always classified as nosocomial due to the requirement of hospitalization [6, 7]. To date, there have been studies on the incidence (IR) of meningitis, causative organisms and drain-specific data in both the neurosurgical and the neurological setting [8-11]. However, there have been no studies correlating meningitis with drain-specific device-days (DD), and therefore, there are no data on drain-associated incidence rates (DA-IR) relating meningitis to drainage-days (DD).

The definition of drain-associated meningitis is still not clearly defined and open to discussion in the literature [12]. This may therefore lead to infection rates being overestimated when using the CDC definition due to defining contaminations as infections. The aim of this study was to test the suitability of the CDC definition for drainage-associated meningitis and to identify the possible underlying risk factors for meningitis cases by determining utilization rates (UR) and drain-associated meningitis rates (DA-IR).

METHODS

Study wards and patients

The study was performed prospectively from 1 January 2005 to 31 December 2006. The neurosurgical ICU (NSICU) is a fourteen-bed ward and the neurological ICU (NICU) is a seven-bed ward; both care for adult patients only. To determine the total number of patients and patient-days, only patients who stayed longer than 24 hours were included. Each EVD and LD was counted separately to calculate the number of EVD- as well as LD-days, and the duration of drainage was documented for all patients in the NICU throughout the study and for the patients in the NSICU for 2006.
LD and EVDs were routinely inserted under sterile conditions at the patient’s bedside, and seldom (<5%) in the operating theatre. The "Portex Epidural Catheter" and "Liquor Drainage Catheter Set" (both Smiths Medical, Kirchseeon, Germany) were used for EVD and LD, respectively. Note that neither antibiotic nor silver-impregnated catheters were used. A written protocol was followed for drainage placement, and the preferred insertion point of the EVD was the Kocher point on the right side with no tunnelling being carried out. No antibiotics were given prophylactically and no prophylactic catheter changes were performed. EVD- and LD-related infections were recorded only when the patients were admitted for longer than 48 hours. When infection was suspected, white cell count, protein and glucose levels for cerebrospinal fluid (CSF) and C-reactive protein serum levels (CRP), total white blood cell counts (WBC) as well as microbiologic examination were performed daily. Otherwise tests were routinely carried out 3-4 times a week. CSF sampling was carried out by aseptic techniques following a written protocol by the neurosurgeon or the neurologist. Microbiological examination was performed using conventional culture techniques as well as the BD Phoenix automated microbiology system (Becton Dickinson Diagnostic Systems, Heidelberg, Germany).

Admitting diagnoses of patients needing drainage therapy were SAH (55%), ICB (24%), SAH+ICB (4%), neoplasm (6%), infection (3%), and others (8%). In 7.5%, bleedings followed trauma. Since no differences were found for the admitting diagnoses and surgical interventions for the NSICU and NICU patients, data were pooled for patients with meningitis.

**Surveillance and data collection**

Surveillance was performed by an experienced infection control team and instructed staff members using a nursing documentation sheet and mid-night statistics. The following parameters were collected: sex, age, admitting diagnosis, surgical procedures, type of drainage, clinical signs indicative for meningitis / ventriculitis, parameters to determine inflammation from the serum and CSF, causative organism and frequency of isolation, resistance pattern, and initiation of...
antibiotics for the reason of meningitis/ventriculitis. Firstly, each detection of a pathogen in the CSF and / or at the tip of the drain was documented as meningitis / ventriculitis according to the CDC definition. Moreover, the combination of at least one typical clinical sign indicating meningitis (e.g neck stiffness), at least one pathologic parameter in the CSF (elevated cell count, decreased glucose level in our cases) and the initiation of antibiotics due to suspicion of meningitis as defined by the CDC (second criterion of the case definition). Secondly, contaminations were excluded after investigation of these cases suspicious for contamination only according to the criteria derived from our results. Finally, meningitis cases were excluded if meningitis followed a systemic infection (e.g. central venous line sepsis).

For correlation of meningitis with drainage-day, admitting diagnosis, age data were available for all NICU patients cared with drainage and for all NSICU patients with drainage admitted during 2006. Student’s t-test (level of significance p < 0.05; CI 95%) and Chi-square test were used to calculate means, differences, and odds ratios.

RESULTS

Microbiology

In 40 nosocomial drain-associated cases of meningitis, a pathogen was isolated. In four patients, more than one episode of ventriculitis with different pathogens was detected. In general, Coagulase negative staphylococci (CoNS) was found to be the main pathogen, followed by Staphylococcus aureus (SA). Blood stream infection was found to occur in only one case after meningitis (due to SA). Interestingly, in four EVD-/LD-associated infections, methicillin-resistant SA (MRSA; 10%) was isolated accounting for an MRSA rate of 57% (4/7) for all cases of S. aureus– induced meningitis. Finally, two-thirds of CoNS were found to be oxacillin resistant, whereas none of the other pathogens showed any unusual antibiotic-resistance pattern. Data on species, frequency of the isolated organism, relation to the device and fulfilling the CDC case definition are provided in table 1.
### Table 1: Causative organisms and diagnosis of infection according to the CDC definition

<table>
<thead>
<tr>
<th>Causative organism</th>
<th>EVD</th>
<th>LD</th>
<th>(\Sigma) (%)</th>
<th>Criterion 1 only (%)</th>
<th>Criterion 1+2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Sigma) (CoNS)</td>
<td>13</td>
<td>16</td>
<td>29 (73)</td>
<td>25 (86)</td>
<td>4 (14)</td>
</tr>
<tr>
<td>(\Sigma) (S. aureus), divided into</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- S. aureus, MSSA</td>
<td>3</td>
<td>4</td>
<td>7 (18)</td>
<td>3 (43)</td>
<td>4 (57)</td>
</tr>
<tr>
<td>- S. aureus, MRSA</td>
<td>2</td>
<td>1</td>
<td>3 (8)</td>
<td>2 (67)</td>
<td>1 (33)</td>
</tr>
<tr>
<td>Enterococcus faecalis</td>
<td>1</td>
<td>0</td>
<td>1 (2.5)</td>
<td>0 (0)</td>
<td>1(100)</td>
</tr>
<tr>
<td>Acinetobacter baumannii</td>
<td>1</td>
<td>0</td>
<td>1 (2.5)</td>
<td>0 (0)</td>
<td>1(100)</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>1</td>
<td>0</td>
<td>1 (2.5)</td>
<td>0 (0)</td>
<td>1(100)</td>
</tr>
<tr>
<td>Candida albicans</td>
<td>1</td>
<td>0</td>
<td>1 (2.5)</td>
<td>0 (0)</td>
<td>1(100)</td>
</tr>
<tr>
<td>(\Sigma) (all microorganism)</td>
<td>20</td>
<td>20</td>
<td>40</td>
<td>28 (70)</td>
<td>12 (30)</td>
</tr>
</tbody>
</table>

#### Legend of Table 1:
- **Criterion 1**: detection of a microorganism in CSF
- **Criterion 2**: at least one clinical symptom + at least one positive laboratory result + starting of antimicrobial therapy

#### Definition of meningitis

Patients diagnosed with meningitis from CSF analysis did not often comply with the second criterion of the CDC definition, especially when it was CoNS-induced. For example, only in 13 of 41 patients (32%), could clinical signs be described. A decreased glucose level in CSF was detected in 15 of the 41 (37%) meningitis patients and was found in all cases of meningitis due to *S. aureus, E. faecalis*, Gram-negative rods and yeasts. In contrast, in 90% (37/41) of our patients, WCC were elevated in the CSF and ranged from 16 and 4270 with an average of 868 cells / ml CSF specimen. Of note was that more than 90% of analysed CSF specimens were at least moderately bloody (++) and more than 50% were highly blood stained (+++). In 22 of 41 cases (54%), patients were prescribed antibiotics against a possible meningitis.

To ascertain whether the frequency of isolating CoNS allows us to distinguish true infections from contaminations we subdivided the patients with regard to the number of positive CSF results. Only cases in which a positive CSF specimen was followed by at least one negative one were documented as ‘isolation once’. We found that isolating CoNS twice or more seemed to be
indicative of meningitis infection, whereas isolating CoNS in only one sample seemed to be indicative of contamination only (see table 2).

<table>
<thead>
<tr>
<th>CDC definition:</th>
<th>Isolation once (N=15) (%)</th>
<th>Isolation twice or more (N=10) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criterion 1 only</td>
<td>15 (100)</td>
<td>6 (60)</td>
</tr>
<tr>
<td>Criterion 1+2</td>
<td>0 (0)</td>
<td>4 (40)</td>
</tr>
<tr>
<td>LD</td>
<td>9 (60)</td>
<td>4 (40)</td>
</tr>
<tr>
<td>EVD</td>
<td>6 (40)</td>
<td>6 (60)</td>
</tr>
<tr>
<td>Symptomatic +</td>
<td>0 (0)</td>
<td>4 (40)</td>
</tr>
<tr>
<td>WBC CSF (M/μl)</td>
<td>341</td>
<td>1064</td>
</tr>
<tr>
<td>Glc level CSF (mg/dl)</td>
<td>65</td>
<td>64</td>
</tr>
<tr>
<td>Protein CSF (mg/dl)</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>Antibiotic therapy +</td>
<td>3 (20)</td>
<td>7 (70)</td>
</tr>
</tbody>
</table>

Table 2: Frequency of isolating CoNS in correlation to diagnostic criteria

Device utilization and nosocomial infection rates

During the two-year prospective surveillance study, a total of 1333 (NSICU: N = 746; NICU: N = 587) patients (P) were enrolled accounting for a total of 11822 (NSICU: N = 7046; NICU: N = 4776) patient-days (PD). A total of 3023 drainage-days (DD) were observed of which 503 were LD-days (LD-D) and 2520 EVD-days (ED-D). The majority of catheters were used on the NSICU with 2732 DD, accounting for 2267 ED-D and 465 LD-D. On the NICU, a total of 291 DD were counted of which 253 were ED-D and 28 LD-D. 37 out of 1333 patients accounted for 41 episodes of nosocomial device-associated meningitis / ventriculitis with 37 and 4 infections occurring in the NSICU and NICU, respectively. Results for the device utilization rate (UR), the incidence rate (IR) of meningitis / ventriculitis (calculated per 100 patients = 100 P), the incidence densities (ID) and the device-associated meningitis / ventriculitis rates (DA-IR, calculated per drainage-days) as well as the formulas used to derive the results are provided in table 3. Exclusion of the cases with contaminants only resulted in considerably Seite: 7
lower overall DA-IR (8.6 versus 13.6 infections per 1000 drainage-days; EVD: 6.3 versus 8.7 infections per 1000 drainage-days; LD: 19.9 versus 37.8 infections per 1000 drainage-days).

### Table 3: Formulas for calculation and the derived results

<table>
<thead>
<tr>
<th></th>
<th>DUR: DD x 100 PD</th>
<th>IR: DAI x 100 P</th>
<th>ID: DAI x 1000 PD</th>
<th>DA-IR: DAI x 1000 DD</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD(NSICU)</td>
<td>6.6</td>
<td>1.3</td>
<td>1.4</td>
<td>21.5</td>
</tr>
<tr>
<td>EVD(NSICU)</td>
<td>32.2</td>
<td>1.7</td>
<td>1.8</td>
<td>5.7</td>
</tr>
<tr>
<td>Σ (NSICU)</td>
<td>38.8</td>
<td>3.1</td>
<td>3.3</td>
<td>8.4</td>
</tr>
<tr>
<td>LD(NICU)</td>
<td>0.8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>EVD(NICU)</td>
<td>5.3</td>
<td>0.5</td>
<td>0.6</td>
<td>11.9</td>
</tr>
<tr>
<td>Σ (NICU)</td>
<td>6.1</td>
<td>0.5</td>
<td>0.6</td>
<td>10.3</td>
</tr>
<tr>
<td>Σ (LD)</td>
<td>4.3</td>
<td>0.8</td>
<td>0.8</td>
<td>19.9</td>
</tr>
<tr>
<td>Σ (EVD)</td>
<td>21.3</td>
<td>1.2</td>
<td>1.1</td>
<td>6.3</td>
</tr>
<tr>
<td>Σ</td>
<td>25.6</td>
<td>2.0</td>
<td>2.2</td>
<td>8.6</td>
</tr>
</tbody>
</table>

**Legend for Table 1:**

DAI: device-associated infections; DA-IR: device-associated infection rate (calculated per device-days); DD: device-day; ID: incidence-density; IR: incidence rate; urological ICU; P: patient; PD: patient-day

**Characterization of meningitis and meningitis patients:**

The mean age of patients having had meningitis was 49.09 years (SD: 12.75; range: 26-77) and no difference to drainage-patients without infection was found (53.47 years, SD: 15.35; range: 15-85; p=0.20). The mean length of hospital stay was 34.70 (SD: 19.18; range: 4-113) days for patients with drain and without meningitis compared to 51.46 (SD: 26.64; range: 7-114) days for meningitis patients. The differences between patients without and with infection were statistically significant (p =0.0003) and for EVD were 34.48 days (SD: 20.82) without infection versus 55.56 days (SD: 25.38) with infection (p= 0.0006). The mortality in the meningitis group (3/26, in one case due to infection) did not differ significantly from the mortality in patients with drains and without meningitis (OR: 1.34, CI 95: 0.35-5.05; p=0.67).
Meningitis occurred more often in patients with LD than EVD (Table 1); however, the difference was not statistically significant (Table 4). Association of admitting diagnosis with infection was seen only for trauma previous to bleeding. Detection of intraventricular blood by CCT was significantly correlated with meningitis (Table 4).

<table>
<thead>
<tr>
<th>Meningitis</th>
<th>OR (CI 95%)</th>
<th>p (&lt;0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD versus EVD</td>
<td>1.39 (0.58-3.30)</td>
<td>0.46</td>
</tr>
<tr>
<td>Previous trauma</td>
<td>3.21 (1.00-10.33)</td>
<td>0.04</td>
</tr>
<tr>
<td>Intraventricular blood (CCT; NSICU)</td>
<td>4.93 (1.57-15.45)</td>
<td>0.003</td>
</tr>
<tr>
<td>LD placement &gt;9 days</td>
<td>1.38 (0.29-6.48)</td>
<td>0.68</td>
</tr>
<tr>
<td>EVD placement &gt; 9 days</td>
<td>0.61 (0.25-1.48)</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Table 4: Risk factors analysis for meningitis

The mean duration of drainage placement was 11.11 days (SD: 7.33; range: 1-35) for EVD in the noninfected patients and 12.56 days (SD: 9.02; range: 1-37) in meningitis patients with no significant difference (p=0.48). The mean duration of LD-placement in the non-infected patients was 6.92 days (SD: 4.91, range: 1-22) in contrast to 8.20 days (SD: 5.98; range: 3-23) in the meningitis group with no significant difference (p=0.49). However, the longer EVD placement differed significantly from the LD duration (p=0.0003).

Drainage duration of more than 9 days did not correlate with meningitis infection in our group.

For correlation of the occurrence of meningitis and the drainage day – before and after excluding contaminations – see Figure 1.

DISCUSSION

The literature on surveillance data about nosocomial infections, knowledge about the pathophysiology as well as risk factors is steadily increasing [13, 14]. However, despite there being many studies on and subsequently guidelines about preventing infections, especially those that are device-associated, drain-related infection occurrence and number of drainage-days, and thus drain-related infection rates are lacking [15-17], thereby severely hampering meaningful
comparison and benchmarking and the development of effective disease prevention

guidelines/measures. Intraventricular haemorrhage (IVH) was previously identified as a risk
factor for meningitis with reported IR in up to 37.5/100P [2, 3, 18]. Therefore, patients in this
study have to be classified as a high risk group and IVH was also identified to correlate with
meningitis. In our study, we obtained a mean device-associated incidence rate (DA-IR) of 8.6
infections per 1000 drainage-days after eliminating contaminants, which to our knowledge
represent the first reported DA-IRs calculated per DD. DA-IRs per DD can be used as a
surveillance parameter and is well established for other device-associated infections, e.g. central-
line associated blood stream infection, and is accepted to represent the most stable and valid
parameter for these device-associated infections [19].

However, there are difficulties in comparing published data, especially the surveillance parameter.
For example, some investigators document the overall, not only device-associated infections, and
in some studies, data on meningitis and ventriculitis are presented separately [8, 10], while others
are divided into LD- and EVD-associated meningitis. For example, Schade et al. (2005 and 2006
[15, 16]) calculated an IR of 7/100 P with LD and 15/100 P with EVD and Orsi et al. (2006)
obtained IR of 3/100 P with LD or EVD [17]. A basic difference is due to comparison of
infections in 100 patients by some [8, 10] and in 100 patients with drainage by others [15-17].
Moreover, mainly IR and ID (calculation per 100 P or per PDs) are given, but DA-IR calculated
per device-days (DA-IR) are not [4, 5, 8, 10, 12, 20-25]. Calculating the incidence rate (IR) per
100 patients in our group with an IR of 3.08/100 pts (0.7 in NICU and 5.0 in NSICU) fall within
the broad range of published data on meningitis associated with shunt or drain [11, 12, 15-17, 20-
28]. In other studies where the device-days were taken into account, the infections were related to
the number of device kits or procedures, but not to device-days [11, 22]. For example, Coplin and
coworkers calculated the LD-associated IR to be 4.2% related to kits [22]. In comparison to our
results, Dettenkofer et al. reported slightly lower IRs in the NICU (1.2/100 P) than in the NSICU
(1.8/100 P) [1, 3]. However, this apparent discrepancy in our study population was not confirmed
when comparing DA-IR (NICU: 10.3; NSICU: 8.4 infections per 1000 drainage-days). Thus, the
difference seems only to be simulated due to the varying UR for both ICUs. In contrast, the risk of infection seems to be higher for LD with a DA-IR of 19.9 infections per 1000 drainage-days than for EVD with a DA-IR of 6.3 infections per 1000 drainage-days in our study. There is no obvious explanation for this finding, and thus, further studies are needed. To summarize, DA-IRs calculated per device-days is accepted to represent the most stable and valid parameter, that can be used as a benchmark to help develop effective preventative measures, thereby lowering the level of infection and improving patient outcome. Finding CoNS to be the most frequent pathogen of drain-associated meningitis (56%) was not surprising [2, 29]. Data published on shunt infections showed staphylococcal species to be the cause of at least 60% of infections and mainly due to CoNS, followed by Gram-negative rods found in up to 20% of cases [8, 12, 20, 22, 25, 30, 31]. It is standard practice to follow the CDC definitions for which every detected microorganism has to be evaluated as a potential causative organism [2, 8, 10, 17, 29]. However, some investigators only included bacteriologically proven infections [22, 24], and others excluded cases when CoNS and other skin commensals like Corynebacterium ssp. were isolated by using the investigators own definitions and in these case, they were classified as contaminants or colonization of the catheter only [16, 32]. However, care must be taken not to oversimplify possible causative organisms such as CoNS and other factors, e.g. frequency of isolation should also be taken into consideration to help make a more accurate diagnosis in the cases of CoNS [5, 8, 12, 16, 20-25]. Of note is that studies on shunt infections have already shown that the absence of fever and indicators of meningitis does not rule out the possibility of meningitis infection [17, 33]. This finding is partly to be expected when one considers the low virulence of CoNS compared to, e.g. S. aureus. A non-specific and unsuspicious presentation of drain-associated meningitis makes a rapid and appropriate diagnosis difficult. Moreover, pathological CSF parameters also have to be interpreted with caution since patients with shunts or drainages often show abnormal CSF profiles regardless of infection [17, 33]. There is also no clear cut-off value on how to interpret elevated white cell counts by different degrees of blood-stained CSF although patients with SAH or ICB have been reported to show elevated cell counts of more than 100/mm³
in the case of bacteriologically proven meningitis [22, 34]. In addition, whether the detection of CoNS or other skin commensals in one single CSF specimen is sufficient to diagnose drain-associated meningitis is questionable [20-22]. As known from the blood culture diagnosis, the frequency of isolating CoNS is a well-established additional parameter to help between discriminate contamination and infection [35]. Therefore, we investigated whether the frequency of CSF samples with CoNS in our setting is of additional value in discriminating true meningitis from contaminations only. None of our patients in whom CoNS was detected only once showed clinical signs of meningitis. The misinterpretation of CoNS contaminants as indicative of true infections has implications for both patient care and hospital quality assurance. Excluding the cases diagnosed by isolating CoNS only once resulted in considerable lower device-associated infection rates (8.6 versus 13.6 infections per 1000 drainage-days) in our patient group. The modified case definition since January 2008 (National Reference Laboratory for the Surveillance of Nosocomial Infections, Berlin, Germany) takes into consideration the possibility of misinterpretation of contaminants [36]. Therefore, we would like to suggest the number of CSF samples with isolation of CoNS as an additional criterion in discriminating true meningitis infections from contaminations. We found that trauma bleeding after head injury and the presence of intraventricular blood were significant risk factors for meningitis. In the presented study, we found no obvious relationship between infection and drainage-day. Meningitis patients showed a significantly longer duration of hospital stay than drainage-patient without meningitis. In addition to our risk factor analysis, the techniques of drainage placement (e.g. tunnelling), the influence of prophylactically-given antibiotics and the impact of the place where the insertion procedure was carried out are of interest and should be evaluated in further studies.

In conclusion, to the best of our knowledge, we present the first IRs calculated in regard to device-days for both EVD- and LD-associated meningitis / ventriculitis in a NSICU and NICU. We would like to encourage the implementation of a routine surveillance program for both EVD- and LD-associated meningitis / ventriculitis in hospitals caring for those patients. A significant
reduction of device-associated infections like central-line-associated blood stream infection could be proven by generating these data [37].

Our findings show that risk factors for meningitis were the presence of intraventricular blood and previous trauma. In addition, the length of hospital stay was significantly longer in patients with meningitis. However, the commonly used definition of drain-associated meningitis / ventriculitis [by the CDC; 38] may be of limited capacity to exclude true contaminants, thus resulting in an overreporting of infections, especially overestimating the role of CoNS. Therefore, we would like to suggest that the number of isolated CoNS be taken into account as an additional criterion to rule out contaminants. Finally, further investigations are warranted in order to provide a more effective framework for better diagnosing and analysing risk factors of infection to improve patient outcome.

Results were partially presented as an oral presentation at the 60th annual meeting of the DGHM, Dresden, Germany on 21-24 September 2008.

**Competing interests:** none declared

**Funding:** none

The corresponding author (Simone Scheithauer) has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive licence on a worldwide basis to the BMJ Publishing Group Ltd and its Licensees to permit this article (if accepted) to be published in JNNP and any other BMJPGL products to exploit all subsidiary rights, as set out in our licence.

**REFERENCES**


Occurrence of meningitis related to the drainage-day

all "cases" (N=41)

after excluding contaminants (N=26)

<table>
<thead>
<tr>
<th>Number of meningitis cases</th>
<th>Duration of drainage (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3, 5</td>
</tr>
<tr>
<td>1</td>
<td>7, 9, 11</td>
</tr>
<tr>
<td>0</td>
<td>13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37</td>
</tr>
</tbody>
</table>

Legend:
- LD
- EVD