PdZn or ZnPd: Charge transfer and Pd-Pd bonding as the driving force for the tetragonal distortion of the cubic crystal structure
Matthias Friedrich, Alim Ormeci, Juri Grin, Marc Armbrüster

To cite this version:
Matthias Friedrich, Alim Ormeci, Juri Grin, Marc Armbrüster. PdZn or ZnPd: Charge transfer and Pd-Pd bonding as the driving force for the tetragonal distortion of the cubic crystal structure. Journal of Inorganic and General Chemistry / Zeitschrift für anorganische und allgemeine Chemie, Wiley-VCH Verlag, 2010, 636 (9-10), pp.1735. 10.1002/zaac.201000097. hal-00552466

HAL Id: hal-00552466
https://hal.archives-ouvertes.fr/hal-00552466
Submitted on 6 Jan 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
PdZn or ZnPd: Charge transfer and Pd-Pd bonding as the driving force for the tetragonal distortion of the cubic crystal structure

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Zeitschrift für Anorganische und Allgemeine Chemie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>zaac.201000097.R1</td>
</tr>
<tr>
<td>Wiley - Manuscript type:</td>
<td>Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>06-Apr-2010</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Friedrich, Matthias; Max-Planck-Institut für Chemische Physik fester Stoffe
Ormeci, Alim; Max-Planck-Institut für Chemische Physik fester Stoffe
Grin, Juri; Max-Planck-Institut für Chemische Physik fester Stoffe
Armbrüster, Marc; Max-Planck-Institut für Chemische Physik fester Stoffe |
| Keywords: | ZnPd, PdZn, Chemical bonding, ELI, Homogeneity range |
PdZn or ZnPd: Charge transfer and Pd-Pd bonding as the driving force for the tetragonal distortion of the cubic crystal structure

Matthias Friedrich, Alim Ormeci, Yuri Grin, Marc Armbrüster#

#corresponding author, e-mail: research@armbruester.net, Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany

Dedicated to the 60th birthday of Prof. Dr. Bernd Harbrecht

Abstract:
The intermetallic compound PdZn was reported to possess two modifications, the tetragonal CuAu-type low-temperature phase and the cubic CsCl-type high-temperature phase. The existence of the cubic high-temperature phase at the equiatomic composition could not be proven experimentally. Calculations of the total energy reveal a minimum at $c/a = 1.155$, clearly excluding the cubic structure at the equiatomic composition in the system Pd-Zn. Analysis of the chemical bonding applying the electron localizability approach reveals charge transfer from Zn to Pd and proves direct Pd-Pd interactions in the (001) plane to be the main reason for the tetragonal distortion of the cubic CsCl-type structural pattern for ZnPd.

Keywords: PdZn, ZnPd, chemical bonding, ELI, homogeneity range
Introduction

The tetragonal distortion of the CsCl type of structure towards the CuAu type of structure has been subject of debate over several decades. Johansson and Linde were the first to explain the tetragonal lattice of CuAu by ascribing the distortion to the different atomic radii of Cu and Au [1]. Schubert showed that the ratio of the atomic radii does not linearly correlate with the ratio of the axes [2]. Hence, the influence of the atomic radii seemed not to be the only driving force for the distortion. The argument, that the tetragonal lattice is formed due to favoured heteroatomic interactions like in tetragonal NiZn [3] – one Ni atom is surrounded by eight Zn atoms, but only by four Ni atoms – was rejected by comparison to PtCu. The latter is not distorted tetragonally, it is slightly rhombohedral; every atom is surrounded by 6 atoms of each kind [2]. Dehlinger suggested another driving force for the distortion [4]. The tetragonal lattice results in new Brillouin zones leading to additional Bragg reflections. Since these allow accommodating electrons in an energetically favourable way, the Fermi energy is decreased by the distortion. Counter arguments for this thesis are supported by the crystal structures of NiZn, PdCd and PtHg which do not show intense additional reflections but still form the CuAu type of structure. Schubert’s model of the Ortskorrelation [2] tried to explain the tetragonal structure by the contribution of a certain number of valence electrons of each atom to stabilization of the crystal structure. Neumann et al. analysed several compounds realizing the CuAu structure for influence of ionic bonding on the structure. Results showed a correlation between the degree of tetragonality and the enthalpy of formation or degree of ionic bonding, respectively [5]. However, this is contradictory since ionic interactions should favour the more isotropic undistorted CsCl-type. Experimental and quantum chemical investigations of TiAl (CuAu type of structure) resulted in the description of covalently bonded Ti 4\(^4\) nets in the structure to which the tetragonal distortion was assigned [6, 7]. High-pressure experiments on CuAu [8] revealed that the atomic size ratio plays only a secondary role for the tetragonality in CuAu type structures. More important are band structure effects, resulting in an energetically favourable way to accommodate the electrons. As already suggested by Schubert [2] and Neumann et al. [5], a single aspect might not solely explain the tetragonal distortion in CuAu type structures.
The equiatomic phase in the binary system Pd-Zn is usually described with the formula PdZn. The tetragonal structure of the room temperature modification was first reported in 1950 by Nowotny et al. [9]. Later Nowotny et al. [10] and Köster et al. [11] investigated the high temperature region at the composition Pd$_2$Zn and Pd$_2$Zn$_3$ both of which realize the cubic CsCl structure type. The authors remained unsure, whether the phase ranges of Pd$_2$Zn and Pd$_2$Zn$_3$ merge at high temperatures or if two separate phases exist. To our best knowledge, no experimental evidence of the cubic CsCl-type crystal structure at 50 at.-% Pd at elevated temperatures has been reported so far. The latest cumulative phase diagram in [12] is based on earlier work of [13] where the high temperature region is shown as tentative.

Investigating chemical bonding by means of electron localization approach has proven to be an efficient tool in exploring chemical stability and catalytic properties of intermetallic compounds [14, 15]. For example, the stability of PdGa as a catalyst in the semi-hydrogenation of acetylene to ethylene could be understood by analysing the chemical bonding using the electron localizability indicator [16, 17]. In this context it is worth mentioning, that the intermetallic compound PdZn (better to be described as ZnPd, see the bonding analysis below) plays an important role as catalyst in the steam reforming of methanol [18, 19]. The formation of the intermetallic compound was detected \textit{in situ} when applying Pd/ZnO as a catalyst, accompanied with a huge increase in selectivity. The density of states of ZnPd and other compounds realizing the CuAu or CsCl type of structures was used to draw conclusions about their catalytic properties in the steam reforming of methanol [20].

In this study, the chemical bonding in the tetragonal and cubic structures of ZnPd is explored using quantum chemical calculations through the electron localizability indicator (ELI). Furthermore, new experimental data on the binary Pd-Zn phases around 50 at.-% Pd are presented.

Experimental

\textit{Synthesis of tetragonal ZnPd}

All procedures are carried out in an argon-filled glove box with H$_2$O and O$_2$ concentrations below 0.1 ppm. Elemental Zn (99.9999\%, powder, ChemPur) and Pd (99.9\%, powder, Chempur) are weighed with a composition Zn$_{50}$Pd$_{50}$. The mixture is filled in a quartz glass ampoule. After evacuating and sealing the tube, the ampoule is
placed in a furnace, and the temperature is increased with 5 K/h upon the melting point of Zn (693 K) and finally raised to 1123 K with 1 K/min, where it is held for 6 days. The ampoule is cooled down and the sintered product is ground, sealed into an evacuated quartz glass ampoule again and annealed at 1173 K for 7 days. After quenching in water, the powder is analysed by X-ray powder diffraction (image plate Guinier camera G670, Huber, Cu Kα, λ = 1.54056 Å, quartz monochromator, 3° < 2θ < 100°; internal standard LaB₆, a = 4.15692 Å).

Investigation of the homogeneity range of tetragonal ZnPd

Samples containing 46 at.-% and 64 at.-% Pd, respectively, were prepared according to the above synthesis route. The samples were finally annealed at 1173 K for 5 days. After quenching in water, powders are analysed by X-ray powder diffraction and WDX spectroscopy (CAMECA SX 100, W filament, 25 kV).

Synthesis of cubic ZnPd

To obtain the cubic (HT) modification of ZnPd, several quenching attempts were made, all starting from a phase pure powder sample of tetragonal ZnPd. The challenge is melting the compound while minimizing loss of zinc due to evaporation. The first attempt consisted of heating the sample in a thin-walled closed quartz glass ampoule to 1503 K, by referring to [11], followed by annealing for seven hours and finally rapid quenching the ampoule in cold water. Another experiment to obtain the HT modification started with inductive heating of the initial compound inside an open glassy carbon crucible under inert argon atmosphere to 1673 K. After reaching this temperature the crucible is turned upside down and the melt is poured onto a stainless steel plate. Measuring the density of the quenched products by means of a Helium pycnometer (AccuPyc 1330, Micromeritics) was used to obtain information about the composition of the products.

Quantum chemical calculations

The tight-binding linear-muffin-tin-orbital (TB-LMTO) program [21] in the atomic sphere approximation (ASA) and all-electron full-potential local orbital (FPLO) scheme [22] are used for quantum chemical calculations on tetragonal and cubic ZnPd. The issue of stability regarding the tetragonal and cubic crystal structures is
addressed by carrying out FPLO total energy calculations within local density (LDA) and generalized gradient (GGA) approximations. For LDA Perdew-Wang [23] and for GGA Perdew-Burke-Ernzerhof [24] parametrizations are used.

The following crystal structure model was used for tetragonal ZnPd: space group \(P4lmmm\) (No. 123), Pd in Wyckoff position 1\(a\) at 0 0 0, Zn in Wyckoff position 1\(d\) at 0.5 0.5 0.5 with cell parameters \(a = 2.8931(1)\ \text{Å}\) and \(c = 3.3426(2)\ \text{Å}\) as determined experimentally. Calculations on cubic ZnPd are based on the following structure model: space group \(Pm\bar{3}m\) (No. 221), Pd in 1\(a\) at 0, 0, 0, Zn in 1\(b\) at 0.5, 0.5, 0.5. Since no experimental lattice parameter for cubic ZnPd is available at 50 at.-% Pd, \(a = 3.0513\ \text{Å}\) was calculated by linear extrapolation of the cell parameters of cubic Zn\(_3\)Pd\(_2\) and cubic ZnPd\(_2\) [10]. For LMTO-ASA calculations, no interstitial empty spheres were necessary in either structure, because it was possible to reach the total unit cell volumes by atomic spheres with acceptable overlap (\(\leq 14\%\)). The following radii of the atomic spheres are applied for tetragonal ZnPd: \(r(\text{Pd}) = 1.51\ \text{Å}\), \(r(\text{Zn}) = 1.48\ \text{Å}\). For cubic ZnPd, the applied radii of the atomic spheres are \(r(\text{Pd}) = 1.52\ \text{Å}\), \(r(\text{Zn}) = 1.49\ \text{Å}\). The density of states (DOS) is calculated using a grid of \(55^3\) k-points for tetragonal ZnPd and \(58^3\) k-points for cubic ZnPd, respectively.

Chemical bonding analysis is based on the concept of electron localizability. The electron localizability indicator (ELI, \(\chi\)) [25] is evaluated in ELI-D according to [26, 27]. ELI can be calculated by both FPLO [28] and TB-LMTO methods. The topology of ELI is analysed using the program DGrid [29] with integration of the electron density in ELI basins, a procedure similar to that in the quantum theory of atoms in molecules (QTAIM) proposed by Bader [30].

Results and discussion

Synthesis of tetragonal and cubic ZnPd

Single phase material of tetragonal ZnPd was obtained after annealing the pre-reacted powder at 1173 K as confirmed by X-ray powder diffraction (Fig. 1). The compound is hard and brittle with silvery metallic lustre. Contrary to previously reported synthesis routes which always had to deal with evaporating zinc, this method is capable of preparing the compound with the initial equiatomic Pd:Zn ratio. The cell parameters were determined as \(a = 2.8931(1)\ \text{Å}\) and \(c = 3.3426(2)\ \text{Å}\). The samples for the homogeneity range determination consisted of tetragonal ZnPd and cubic ZnPd\(_2\).
or cubic Zn$_3$Pd$_2$, respectively, in accordance to the published phase diagram. Unit cell parameters as well as the composition of ZnPd in the mixtures are shown in Table 1.

The synthesis of cubic ZnPd in an open glassy carbon crucible, quenched from melt, only yielded zinc poor samples with compositions of Zn$_{0.66}$Pd$_{1.34}$ (according to the density measurements) due to evaporation of zinc. The evaporation of zinc can be avoided if the initial compound is placed inside a quartz glass ampoule which then is quenched from 1503 K. Nevertheless, single phase material of tetragonal ZnPd was obtained instead of cubic ZnPd. Hence, the existence of cubic ZnPd (50 at.-% Pd) could not be proven experimentally using the preparation procedures applied.

On the stability of the cubic structure

Since $c/a = 1$ in the tetragonal space group $P4/mmm$ gives the cubic structure, total energy calculations in that space group were performed to compare the energies for different c/a ratios at a given unit cell volume. The results obtained by GGA at the experimental volume of the unit cell are shown in Fig. 2. The lowest total energy is obtained at the experimental c/a value of \sim1.155, while the energy of the cubic structure ($c/a = 1$) is higher by \sim 10 meV/atom. To determine the volume dependence of the c/a ratio, the c/a ratios of the tetragonal structure are optimized for different unit cell volumes by both LDA and GGA (Fig. 2). In both cases, c/a decreases monotonically with decreasing volume, but even at a volume compression of \sim35%, the c/a ratio is around 1.09, far from the cubic limit of 1. These results suggest that at larger volumes, which should be attained at elevated temperatures due to thermal expansion, the lowest total energies will be obtained at larger c/a values, which is in clear contradiction to the assumption that the tetragonal structure will transform to the cubic structure at higher temperatures. The theoretical equilibrium volume obtained by GGA (LDA) is 3.8% larger (4.5% smaller) than the experimental volume. Both results are within the expected range of deviations for each functional.

As would be expected for both compounds, the major contributions in the DOS originate from the Zn-d and Pd-d states (TB-LMTO-ASA results, Fig. 3). The main difference in the density of states is detected around the Fermi energy. In the cubic structure a higher contribution by Pd-d states to the DOS at the Fermi energy is observed, compared to the tetragonal structure. The local peak in the density of states close below the Fermi energy indicates a possible instability of the cubic crystal
structure in agreement with the total energy calculations. In tetragonal ZnPd, this local peak close to the Fermi energy splits into two smaller peaks at -1 eV and +0.5 eV, respectively. This change in the electronic structure suggests a Peierls-like distortion stabilising the tetragonal structure in ZnPd.

The topology of calculated electron density for both, the cubic and the tetragonal structure, reveals very similar basins defined by the zero-flux surfaces in the density gradient, the QTAIM atoms (Fig. 4, top). The volume of the QTAIM Pd (16.65 Å3) is smaller than the average value of 22.3 Å3 between the atomic volumina of the elemental palladium (29.4 Å3) and zinc (15.2 Å3). The volume of QTAIM Zn (11.32 Å3) is even smaller than for metallic zinc. In the chemically similar system Al-Pt [31] this indicated atomic interactions between the components and formation of Pt anions and Al cations. Indeed, integration of the electron density within the QTAIM reveals charge transfer from Zn to Pd for both structures and both calculation methods, in accordance with their electronegativities after Pauling [32]. Following the IUPAC nomenclature, we therefore suggest to describe the compound as ZnPd. Integration of the electron density obtained by the FPLO calculation yields Zn$^{0.4+}$Pd$^{0.4-}$, revealing the important role of the charge transfer in the formation of the cubic and tetragonally distorted body-centred-like structural patterns in the system Zn-Pd.

The reasons for the tetragonal distortion are visualized by the analysis of the electron localizability indicator for both structural motifs (Fig. 4, middle and bottom). For both structures, the distribution of ELI-D in the inner shells (especially the penultimate third one) around the zinc nuclei is very close to spherical. The basins of the ELI attractors in the valance region are multi-synaptic implying multi-centre Zn-Pd bonding interactions (not shown in the figure). In combination with the charge transfer, this suggests polar interaction between Zn and Pd. Contrary to zinc, in the tetragonal structure the penultimate shell of palladium is significantly structured in the (001) plane compared to weaker structuring in the (100) plane. Such a structuring proved to be a fingerprint for the direct (covalent) interaction between the palladium atoms [33, 34]. This interaction is also reflected by small ELI-D maxima between the Pd atoms along [100] (Fig. 4, middle). In cubic ZnPd, the structuring is less pronounced as illustrated by the structuring index (the difference between the highest ELI-D value in the examined shell and the ELI-D value at which the localization domain is without a "hole" [35] which is 0.037 for the tetragonal structure and 0.012 for the cubic one). Furthermore, no maxima in ELI-D were calculated between the Pd
atoms. Thus, the direct Pd-Pd bonding within the 4^4 nets in the (001) plane is the main reason for the tetragonal distortion of the cubic structure in case of ZnPd.

Conclusions

The existence of the cubic high-temperature phase of equiatomic composition in the binary system Pd-Zn could not be proven experimentally and remains uncertain. Tetragonal ZnPd possesses a homogeneity range of 13.8 at.-% at 1173 K. Calculations of the total energy reveal a minimum at $c/a = 1.155$, clearly excluding the cubic pattern at the equiatomic composition in the system Zn-Pd. Analysis of the chemical bonding applying the electron localizability approach revealed the charge transfer from Zn to Pd, justifying the formula ZnPd instead of PdZn. In addition, direct Pd-Pd interactions in the (001) plane were shown to be the main reason for the tetragonal distortion of cubic ZnPd.
References

Tables

Table 1: Composition and lattice parameters of the tetragonal ZnPd phase in the two-phase samples

<table>
<thead>
<tr>
<th>Initial composition / at.-%</th>
<th>Composition by WDXS / at.-%</th>
<th>Lattice parameters / Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn₃₆Pd₆₄</td>
<td>Zn₃⁷.₁Pd₆₂₉</td>
<td>(a = 2.9532(6))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(c = 3.269(1))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(c/a = 1.107)</td>
</tr>
<tr>
<td>Zn₅₄Pd₴₆</td>
<td>Zn₅₀.₉Pd₴₉.₁</td>
<td>(a = 2.8878(2))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(c = 3.3622(3))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(c/a = 1.164)</td>
</tr>
</tbody>
</table>
(a) Experimental and (b) calculated X-ray powder diffraction pattern of tetragonal ZnPd.

573x398mm (150 x 150 DPI)
(top) Total energy per atom vs. \(c/a\) ratio is obtained within GGA for tetragonal ZnPd at the experimentally observed unit cell volume of 13.989 Å\(^3\). The minimum was observed at the experimental \(c/a\) value of \(\sim 1.155\), the cubic structure with \(c/a = 1\) has a much higher energy.

(bottom) Axial ratio \(c/a\) vs. unit cell volume for GGA and LDA calculations (bottom). The arrow marks the experimentally determined \(c/a\) ratio and volume.
Total and partial electronic DOS for tetragonal ZnPd (CuAu-type, top) and cubic ZnPd (CsCl-type, bottom) as obtained by TB-LMTO-ASA.
Chemical bonding in ZnPd: (top) QTAIM basins of Pd (blue) and Zn (green) in tetragonal ZnPd (FPLO calculation) with the according electronic populations revealing the charge transfer from Zn to Pd. (middle) ELI-D distribution in the (100), (010) and (001) planes in tetragonal ZnPd shows strong structuring of the penultimate shell of Pd in the (001) plane as well as small ELI-D maxima between Pd atoms along [100]. (bottom) ELI-D distribution in the (100), (010) and (001) planes in cubic ZnPd shows weaker structuring of the penultimate shell of Pd in all three planes.

155x292mm (600 x 600 DPI)