

# The Ternary System Nickel-Silicon-Titanium Revisited

Franz Weitzer, Masaaki Naka, Natalya Krendelsberger, Frank Stein, Cuiyun He, Yong Du, Julius C Schuster

# ▶ To cite this version:

Franz Weitzer, Masaaki Naka, Natalya Krendelsberger, Frank Stein, Cuiyun He, et al.. The Ternary System Nickel-Silicon-Titanium Revisited. Journal of Inorganic and General Chemistry / Zeitschrift für anorganische und allgemeine Chemie, 2010, 10.1002/zaac.201000017. hal-00552442

# HAL Id: hal-00552442 https://hal.science/hal-00552442

Submitted on 6 Jan 2011

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



Zeitschrift für Anorganische und Allgemeine Chemie

# The Ternary System Nickel-Silicon-Titanium Revisited

| Journal:                         | Zeitschrift für Anorganische und Allgemeine Chemie                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID:                   | zaac.201000017.R1                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Wiley - Manuscript type:         | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Date Submitted by the<br>Author: | 19-Feb-2010                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Complete List of Authors:        | Weitzer, Franz; Universität Wien, Innovative Materials Group<br>Naka, Masaaki; Osaka University, Joining and Welding Research<br>Institute<br>Krendelsberger, Natalya; CEST- Center of Electrochemical Surface<br>Technology<br>Stein, Frank; MPI f. Eisenforschung GmbH<br>He, Cuiyun; MPI f. Eisenforschung GmbH<br>Du, Yong; Central South University, State Key Lab for Powder<br>Metallurgy<br>schuster, julius; Universität Wien, Innovative Materials Group |
| Keywords:                        | Ni-Si-Ti, ternary system, constitution, phase equilibria, ternary phases                                                                                                                                                                                                                                                                                                                                                                                           |
|                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



ZAAC

19.2.10

# The Ternary System Nickel-Silicon-Titanium Revisited

# Franz Weitzer <sup>[a]</sup>, Masaaki Naka <sup>[b]</sup>, Nataliya Krendelsberger <sup>[a,c]</sup>, Frank Stein <sup>[d]</sup>, Cuiyun He <sup>[d,e]</sup>, Yong Du <sup>[a,e]</sup>, and Julius C. Schuster <sup>\*[a]</sup>

Dedicated to Professor Rüdiger Kniep on the Occasion of his 65<sup>th</sup> Birthday

Keywords: Ni-Si-Ti; ternary system; constitution; phase equilibria; ternary phases;

\* Prof. Dr. J.C. Schuster, Fax: +431-4277-9524, eMail: julius.schuster@univie.ac.at

<sup>[a]</sup> Innovative Materials Group, Universität Wien, Währinger Str. 42, 1090 Wien, Austria

<sup>[b]</sup> Joining and Welding Research Institute, Osaka University, 11-1 Mihogaoka, Ibaraki 567, Osaka, Japan

<sup>[c]</sup> CEST-Center of Electrochemical Surface Technology, Viktor Kaplan Str.2, 2700 Wr. Neustadt, Austria

<sup>[d]</sup> Max-Planck-Institut f. Eisenforschung GmbH, Max-Planck-Str.1, D-40237 Düsseldorf, Germany

<sup>[e]</sup> State Key Lab for Powder Metallurgy, Central South University, 410083 Changsha, Hunan, P.R.China

**Abstract**. The constitution of the ternary system Ni-Si-Ti is investigated over the entire composition range using x-ray diffraction (XRD), energy dispersive x-ray spectroscopy (EDS), differential thermal analysis (DTA) and metallography. The solid state phase equilibria are determined for 900 °C. Eight ternary phases are found to be stable. The crystal structures for the phases  $\tau_1$ NiSiTi,  $\tau_2$ Ni<sub>4</sub>Si<sub>7</sub>Ti<sub>4</sub>,  $\tau_3$ Ni<sub>40</sub>Si<sub>31</sub>Ti<sub>13</sub>,  $\tau_4$ Ni<sub>17</sub>Si<sub>7</sub>Ti<sub>6</sub> and  $\tau_5$ Ni<sub>3</sub>SiTi<sub>2</sub> are corroborated. For the remaining phases the compositions are determined as Ni<sub>6</sub>Si<sub>41</sub>Ti<sub>53</sub> ( $\tau_6$ ), Ni<sub>16</sub>Si<sub>42</sub>Ti<sub>42</sub>( $\tau_7$ ), and Ni<sub>12</sub>Si<sub>45</sub>Ti<sub>43</sub> ( $\tau_8$ ). The reaction scheme linking the solid state equilibria with the liquidus surface is amended to account for these newly observed phases . The discrepancies between previous experimental conclusions and modeling results are addressed. The liquidus surface is dominated by the primary crystallisation field of  $\tau_1$ NiSiTi, the only congruently melting phase.

## Introduction

In a previous presentation on the system Ni-Si-Ti a liquidus projection derived from experimental data was shown [1]. In the course of that work large areas of the isothermal section at 900 °C were determined, though several tie lines were established only tentatively. Based on these data a thermodynamic description of the entire system was derived by Du et al. [2]. The overall agreement between experiment and model was reasonable but the thermodynamic description deviated in several details from the conclusions derived from the experimental data set. In order to resolve these issues the present study was undertaken. As a first step a brief account on the equilibria observed at 900 °C was presented already [3]. The present paper gives a full documentation of the results for this temperature as well as for the reaction scheme regarding the issues of disagreement between the conclusions from the previous, less complete experimental data set and the thermodynamic modeling.

A comprehensive and critical review of the literature data of the Ni-Si-Ti ternary system is given in [2]. The binary systems used for the present study are based on [4] but are supplemented with

regard to several invariant temperatures as accepted in previous studies [5] (binary Ni-Si), [6] (binary Ni-Ti), and [7,8] (binary Ti-Si).

## Experimental

In addition to the about 50 ternary samples prepared in the previous study 20 ternary Ni-Si-Ti samples were newly synthesized by arc melting under high purity argon (from ingots of 99.99 wt.% pure Ni, Si and Ti; all supplied by Johnson Matthey Alfa Products, Karlsruhe, Germany) followed by heat treatment in evacuated quartz tubes at temperatures of 900, 1000 and 1100 °C for up to 1 month. All samples were quenched from the annealing temperature by dropping the quartz tube in cold water. Phase identification was done by X-ray powder diffraction (XRD) using image foil equipped Guinier type chambers (model 670, Huber Diffraktionstechnik, Rimsting, Germany), Cu-K $\alpha_1$  radiation, 99.9999 wt.% pure Ge as internal standard), and for data handling and treatment the software packages CSD [9] and STRUKTUR [10]. Phase compositions were determined by energy dispersive spectroscopy (EDS) in a scanning electron microscope (model XL-30-ESEM-FEG, Philips, Einhoven, Netherlands) equipped with  $EDAX^{\odot}$ microanalysis system "Genesis" (S-UTW-Si-(Li)-detector type saphire) and FEI software. Thermal analysis (DTA) was carried out in alumina crucibles under a stream of 99.999 wt.% pure Ar between room temperature and 1500 °C with a heating and cooling rate of 5 K/min using a DTA apparatus (model 701L, from Bähr Thermoanalyse GmbH, Hüllhorst, Germany). The temperature was measured with Pt-Pt/Rh thermocouples calibrated to the melting temperatures of Al (660.3 °C), Ag (961.8 °C), Au (1064.2 °C), Si (1413.8 °C), and Ni (1455.2 °C). The DTA signals read from the heating curves were used. For selected alloys DTA measurements were made up to 1650 °C using a SETSYS-18 DTA from Setaram, France.

## **Results and discussion**

## Isothermal section at 900°C and all-solid-state reactions

At 900 °C eight ternary phases are found to be stable. For the phases  $\tau_1$  to  $\tau_5$  the crystal structures are known (Table 1). XRD and EDS data consistently indicate, that only  $\tau_5 Ni_3 SiTi_2$  has a noticeable homogeneity range. The other ternary phases are line compounds having very narrow homogeneity ranges centering at their crystallographically nominal compositions ( $\tau_1$  to  $\tau_4$ ) or at the EDS-determined compositions  $Ni_6Si_{41}Ti_{53}$  ( $\tau_6$ ),  $Ni_{16}Si_{42}Ti_{42}$  ( $\tau_7$ ) and  $Ni_{12}Si_{45}Ti_{43}$  ( $\tau_8$ ). Fig. 1 shows the tie lines determined. This isothermal section establishes phase equilibria in four different composition regions, where our previous data [1] (reproduced in [2]) were only tentative:

*Phase equilibria between binary titanium silicides and*  $\tau_1 NiSiTi$  *and/or*  $\tau_2 Ni_4 Si_7 Ti_4$ . For this composition region the literature data are quite controversial proposing a tie line TiSi +  $\tau_1$  for 750 °C [15], a tie line Ti<sub>5</sub>Si<sub>3</sub> +  $\tau_2$  for 1000 °C [16], or the occurrence of a ternary phase Ni<sub>1</sub>Si<sub>4</sub>Ti<sub>4</sub> coexisting with  $\tau_1$ ,  $\tau_2$ , TiSi and Ti<sub>5</sub>Si<sub>4</sub> (but not with Ti<sub>5</sub>Si<sub>3</sub>) at 1100 °C [17]. Because these reports make it apparent, that equilibrium is difficult to achieve within the quadrangle  $\tau_1$  +  $\tau_2$  + TiSi + Ti<sub>5</sub>Si<sub>3</sub>, we not only investigated samples annealed at 900 °C but also samples

annealed at 1000 °C (Table 2). Three ternary phases are identified by EDS and XRD:  $\tau_6$  at the composition Ni<sub>6</sub>Si<sub>41</sub>Ti<sub>53</sub>,  $\tau_7$  at the composition Ni<sub>16</sub>Si<sub>42</sub>Ti<sub>42</sub>, and  $\tau_8$  at the composition Ni<sub>12</sub>Si<sub>45</sub>Ti<sub>43</sub>. The XRD patterns of all three phases are similar, but extremely complicated. The XRD pattern of the last phase ( $\tau_8$ ) indicates this phase to be isostructural to the phase  $\tau_9$  of the system Fe-Si-Ti [8]. Furthermore,  $\tau_8$  corresponds to the phase Ni<sub>1</sub>Si<sub>4</sub>Ti<sub>4</sub> reported by Hu et al. [17]. The tie lines observed in the present study corroborate for 900 °C all tie lines found for this phase at 1100 °C [17]. We find, however, in addition the phase  $\tau_6$  within the phase triangle  $\tau_8 + Ti_5Si_4 + Ti_5Si_3$  and the phase  $\tau_7$  within the phase triangle  $\tau_1 + Ti_5Si_4 + \tau_8$  (Fig. 1).

*Occurrence of*  $Ni_3Si_2$  *at* 900 °C. No θNi<sub>2</sub>Si is observed within the composition range  $\delta Ni_2Si - NiSi - \tau_3Ni_{40}Si_{31}Ti_{13}$  in samples which were quenched from 900 °C to ambient. Instead Ni<sub>3</sub>Si<sub>2</sub> is found (Table 2). DTA measurements, however, made clear that the absence of  $\theta Ni_2Si$  as well as the appearance of Ni<sub>3</sub>Si<sub>2</sub> in these samples at room temperature does not represent equilibrium, but rather is due to insufficient quenching rates achieved by the experimental procedure applied. Thus, samples #19 and #20 consisted after quenching from the annealing temperature of  $\delta Ni_2Si$ ,  $Ni_3Si_2$ , and  $\tau_3$ . Both show upon heating a DTA signal at  $822\pm1$  °C (onset), which coincides with the temperature of  $821\pm2$  °C reported for the formation of  $\theta Ni_2Si$  from  $\delta Ni_2Si + Ni_3Si_2$  in binary Ni-Si [18,19]. Furthermore, the DTA peak at  $862\pm1$  °C in samples #17 and #18 (consisting of NiSi, Ni\_3Si\_2, and  $\tau_3$  after quenching from the annealing temperature) has to be associated with the decomposition of  $Ni_3Si_2$  into  $\theta Ni_2Si + NiSi$ , which is reported to occur in the binary at  $860\pm2$  °C [18] or 865 °C [19], respectively. Upon cooling both DTA peaks occur, too. Thus, at 900 °C no Ni\_3Si\_2 exists in the phase field  $\theta Ni_2Si - NiSi - \tau_3$  (Fig. 1).

*Homogeneity range of*  $Ni_3(Si, Ti)$ . The extensive substitution of Si by Ti in Ni<sub>3</sub>Si [20] is corroborated. The lattice parameters increase with the Ti-content monotonously from a = 0.3504 nm for binary Ni<sub>3</sub>Si (Cu<sub>3</sub>Au-type, L1<sub>2</sub>, *Pm*-3*m*, cP4[21]) to a = 0.35374(6) nm for Ni<sub>73.9</sub>Si<sub>20.0</sub>Ti<sub>6.1</sub> in sample #27, and to a = 0.35644(7) nm for Ni<sub>75.1</sub>Si<sub>12.7</sub>Ti<sub>12.2</sub> in sample #29 (Table 2). Thus, about half of the Si atoms are replaced by Ti. The latter phase is in equilibrium with Ni<sub>3</sub>Ti and  $\tau_4Ni_{17}Si_7Ti_6$  (Fig. 2a). For these two phases the compositions measured do not significantly deviate from the nominal compositions.

*Coexistence of*  $\tau_1$ *NiSiTi and NiTi.* Previous literature consistently reports a tie line between Ti<sub>5</sub>Si<sub>3</sub> and  $\tau_5$ Ni<sub>3</sub>SiTi<sub>2</sub> (for 750 °C [15], for 1000 °C [16], for 1100 °C [17]) as well as the occurrence of a ternary phase with the approximate composition Ni<sub>5</sub>SiTi<sub>6</sub> [17,18]. Only Xu and Jin [22] reported a sample equilibrated at 900 °C in which NiTi coexists with  $\tau_1$ NiSiTi. However, Ni<sub>3</sub>Ti was observed as third phase in this sample, which indicates that this sample was not in equilibrium. Previous results from our own samples were not conclusive either: XRD data from powdered samples did not allow to identify NiTi, because this phase "disappears" during pulverization due to its ductility. The EDS data on the other hand were "corrupted" due to the very small particle size in these samples (eg. in Table 2 the composition found for Ti<sub>5</sub>Si<sub>3</sub> in sample #37).

In the present investigation supplementary XRD using polished sample plates was conducted for a few samples in a conventional diffractometer. The XRD patterns obtained (Fig. 3) allowed the

clear identification of NiTi having at room temperature monoclinic B19'-type crystal structure (spacegroup  $P2_1/m$ ), which forms from the cubic B2-type structure by a martensitic transformation upon quenching the phase to room temperature [22]. Furthermore extended annealing produced sufficient grain growth for reliable EDS analysis (Table 2). Thus the existence of the three-phase fields NiTi +  $\tau_1$  + Ti<sub>5</sub>Si<sub>3</sub> (sample #40, Fig. 2b) as well as NiTi +  $\tau_1$  +  $\tau_5$  at 900 °C is unambigously observed. No ternary phase with a composition Ni<sub>5</sub>SiTi<sub>6</sub> is found. Small DTA signals at 1066±1 °C (samples #36 and #37) indicate an all solid state reaction, however. To identify the origin of these DTA signals annealing experiments at 1100 °C were conducted. The results of these experiments show, that the tie line NiTi +  $\tau_1$  changes at 1066 °C to Ti<sub>5</sub>Si<sub>3</sub> +  $\tau_5$  upon heating (Table 2, samples #37 and #39).

### Reaction scheme involving the liquid phase and liquidus projection

The reaction scheme showing all invariant equilibria involving the liquid phase as well as the allsolid-state reactions documented in the previous section is given in Figs. 4a-c. It is derived from (1) the above described new results regarding the isothermal section at 900 °C prompting in part a reinterpretation of the DTA signals, as well as (2) from DTA measurements of new alloys specifically designed to probe all modeling results by Du et al. [2] disagreeing with our previous conclusions which were based purely on experimental evidence [1]. The present results clarify the following issues:

Formation of the ternary phases  $\tau_2$ ,  $\tau_6$ ,  $\tau_7$ , and  $\tau_8$ . Due to the lack of data our first assumption about invariant reactions involving the liquid phase in the Si-rich composition region was quite tentative [1]. None of the high melting phases  $\tau_6$ ,  $\tau_7$ , or  $\tau_8$  was considered. The formation of  $\tau_2$ was assumed to be by peritectic reaction from  $L + \tau_1 + TiSi$ . The latter assumption was modified already by [2] to  $p_{max}$ :  $L + \tau_1 = \tau_2$ . This is corroborated in the present study by microstructure evidence of the as cast samples showing primary  $\tau_1$  surrounded by seams of  $\tau_2$ . Combining microstructure and DTA-data (Table 2) shows, that the phases  $\tau_6$ ,  $\tau_7$ , and  $\tau_8$  form all from the melt by peritectic reactions involving the phase  $Ti_5Si_4$ :  $P_1$ :  $L + Ti_5Si_3 + Ti_5Si_4 \Rightarrow \tau_6$  at a temperature above 1600 °C;  $P_2$ :  $L + Ti_5Si_4 + \tau_1 \Rightarrow \tau_7$  at 1545 °C; and  $P_3$ :  $L + Ti_5Si_4 + \tau_7 \Rightarrow \tau_8$ at 1497 °C (Fig. 4a). The fields of primary crystallisation of each of these phases are very limited (Fig. 5).

Formation of the ternary phase  $\tau_3$ . From the set of experimental data a peritectic reaction  $L + \tau_1 + \tau_4 \Rightarrow \tau_3$  was concluded [1], but modeling asked for a maximum in the temperature for the monovariant equilibrium  $L + \tau_1 = \tau_3$  [2]. The DTA for samples #23 as well as #24 (consisting after equilibration only of the phases  $\tau_1 + \tau_3$ ) clearly shows that the lowest onset temperature is  $1271\pm1$  °C, which is higher than the temperatures found in samples consisting either of  $\tau_1 + \tau_3 + \tau_2$  (1170 °C for sample #16) or  $\tau_1 + \tau_3 + \tau_4$  (1259 °C for sample #22). Thus, the model predicted formation of  $\tau_3$  in a peritectic maximum  $p_{max4}$ :  $L + \tau_1 \Rightarrow \tau_3$  is experimentally corroborated (Figs. 4a and b).

*Temperature maximum in the monovariant equilibrium*  $L = \theta Ni_2Si + \tau_3$ . DTA of samples #17-21 shows the liquidus temperatures to increase with decreasing silicon content (Table 2). Although

these samples contain after equilibration at 900 °C  $\delta Ni_2Si$  and/or  $\epsilon Ni_3Si_2$  rather than  $\theta Ni_2Si$ , they all undergo upon heating up solid state transformations resulting in the presence of  $\theta Ni_2Si + \tau_3$ (besides additional NiSi samples #17and #18 and  $\tau_4$  in sample #21, respectively). Thus, the temperature of the monovariant equilibrium L +  $\theta Ni_2Si + \tau_3$  increases from 950 °C (samples #17 and #18, E<sub>4</sub>: L = NiSi +  $\theta Ni_2Si + \tau_3$ ) to 1134 °C (sample #21, U<sub>15</sub>: L +  $\tau_4 = \theta Ni_2Si + \tau_3$ ). As the intermediate samples #19 and #20 melt at 1092 °C and 1118 °C respectively, no evidence for a maximum is observed. Thus, in this point the model prediction cannot be confirmed.

*Existence of a ternary eutectic*  $L = Ni_{31}Si_{12} + Ni_3Si + \tau_4$ . The corroboration and thus acceptance of the literature data [20] concerning the extensive substitution of Si by Ti in Ni<sub>3</sub>Si (Fig. 1) leads to the conclusion, that the monovariant equilibrium  $L + Ni_{31}Si_{12} + Ni_3Si$  is crossing this extended Ni<sub>3</sub>(Si,Ti) single phase region. This crossing involves the change from the binary peritectic reaction  $L + Ni_{31}Si_{12} \Rightarrow Ni_3Si$  to an eutectic reaction  $L \Rightarrow Ni_{31}Si_{12} + Ni_3Si$  in the ternary system at about 4-5 at. % Ti. With this finding a ternary eutectic  $E_2$ :  $L = Ni_{31}Si_{12} + Ni_3Si + \tau_4$  as predicted by modeling [2] becomes the most parsimonious interpretation of the DTA data in the Ni-rich corner (Fig. 4b).

Formation of the ternary phase  $\tau_5$ . Sample #41 was designed to test whether a maximum exist in the monovariant equilibrium L +  $\tau_1 = \tau_5$  as predicted by modeling [2]. DTA clearly shows that the melting temperature (1412 °C) in this sample (consisting only of the two phases  $\tau_1$  and  $\tau_5$ ) is higher than the respective onset temperatures in samples consisting either of  $\tau_1 + \tau_5 + \tau_4$  (1395 °C for sample #33) or  $\tau_1 + \tau_5 + Ti_5Si_3$  (1196 °C for sample #39). Thus, the model predicted formation of  $\tau_5$  in a peritectic maximum  $p_{max3}$ : L +  $\tau_1 \Rightarrow \tau_5$  is experimentally corroborated (Fig. 4c).

*Temperature maximum in the monovariant equilibrium*  $L = Ni_3Ti + \tau_5$ . The model predicted occurrence of such a maximum in  $L = Ni_3Ti + \tau_5$  requires the existence of a ternary eutectic  $L = Ni_3Ti + \tau_5 + \tau_4$ . Already Hao et al. [24] were searching for such a ternary eutectic. One of their samples had a composition within the phase triangle  $Ni_3Ti + \tau_5 + \tau_4$ , but no ternary eutectic was observed. Thus the model predicted existence of such a ternary eutectic is not supported by experimental data.

*Temperature maximum in the monovariant equilibrium*  $L = NiTi + \tau_5$ . Sample #35 was designed to test whether a maximum exist in the monovariant equilibrium  $L = NiTi + \tau_5$  as predicted by modeling [2]. DTA clearly shows that the melting temperature (1162 °C) in this sample (consisting only of the two phases NiTi and  $\tau_5$ ) is higher than the respective onset temperatures in samples consisting either of Ni<sub>3</sub>Ti + NiTi +  $\tau_5$  (1068 °C for sample #31) or NiTi +  $\tau_5$  + Ti<sub>5</sub>Si<sub>3</sub> (1137 °C for sample #37). Thus, the model prediction for the existence of  $e_{max4}$ :  $L = NiTi + \tau_5$  is corroborated by experiments. This temperature maximum in the monovariant equilibrium L + NiTi +  $\tau_5$  implies the existence of an additional ternary eutectic  $L = NiTi + \tau_5 + Ti_5Si_3$  [2]. The melting temperature for this eutectic (E<sub>1</sub> in Fig. 4c) is determined as 1137±1 °C in samples where  $\tau_5$  was not present at the beginning of the DTA run, but formed only during heating by the reaction  $\tau_1 + NiTi \Rightarrow \tau_5 + Ti_5Si_3$  (samples #37, 39, and 40). In samples with preexisting  $\tau_5$  the temperature observed was about 5K higher (sample #36), but still below  $e_{max5}$ :  $L = NiTi + Ti_5Si_3$ observed at 1146 °C in sample #42. Fig. 3 shows the liquidus projection derived from the reaction scheme (Figs. 4a-c) combined with the metallographic observations of the primary phases crystallizing (Table 3). The liquidus surface is dominated by  $\tau_1$ , the only ternary phase with a congruent melting point. The wide area of primary crystallisation of  $\tau_1$  together with its incongruently melting "satelite phases"  $\tau_2$ ,  $\tau_3$ ,  $\tau_4$ , and  $\tau_5$  is confined by a loop of connecting eutectic troughs. On the Si-rich side of the saddle point  $e_{max1}$  (between  $\tau_1$  and Ti<sub>5</sub>Si<sub>3</sub>) this trough descends monotonously from T > 1600 °C through several peritectics (formation of  $\tau_6$  and  $\tau_7$ ) and transition reactions and ends in the ternary eutectic E<sub>5</sub>:  $L = \tau_2 + NiSi_2 + NiSi$  at 935 °C. On the Ti-rich side of the saddle point e<sub>max1</sub> the eutectic ends in the ternary eutectic  $E_1$ :  $L = \tau_5 + NiTi + Ti_5Si_3$  at 1137 °C. Along the Ni-rich side the eutectic trough is separated from  $\tau_1$  by the primary crystallisation fields of  $\tau_2$ ,  $\tau_3$ ,  $\tau_4$ , and  $\tau_5$ , which all form in peritectic maxima from L +  $\tau_1$ . The eutectic trough itself crosses along the Ni-rich side (connecting  $E_5$  and  $E_1$ ) four maxima ( $e_{max6}$  between  $\tau_3$  and NiSi;  $e_{max3}$  between  $\tau_4$ and  $\theta Ni_2Si$ ;  $e_{max2}$  between  $\tau_4$  and  $Ni_3Ti$ ; and  $e_{max4}$  between  $\tau_5$  and NiTi) separated by three minima (E<sub>4</sub>:  $L = \tau_3 + NiSi + \theta Ni_2Si$ ; E<sub>2</sub>:  $L = \tau_4 + Ni_{31}Si_{12} + Ni_3Si$ ; and E<sub>3</sub>:  $L = \tau_5 + Ni_3Ti + Vi_3Si$ NiTi). The compositions of the latter two ternary eutectics were determined by EDS area scans as Ni<sub>70</sub>Si<sub>20.5</sub>Ti<sub>9.5</sub> (for E<sub>2</sub>) and Ni<sub>60.5</sub>Si<sub>4</sub>Ti<sub>35.5</sub> (for E<sub>3</sub>). Finally, the Ti-rich ternary eutectic E<sub>6</sub>: L = $Ti_5Si_3 + NiTi_2 + \beta(Ti)$  is found to have the composition  $Ni_{19}Si_7Ti_{74}$ .

#### Conclusions

The isothermal section at 900 °C for Ni-Si-Ti over the entire composition range is established. Eight ternary phases are stable at this temperature. Except for  $\tau_5$  all these ternary phases have very narrow homogeneity ranges. The crystal structures for the phases  $\tau_1$  to  $\tau_5$  are all corroborated. For the phases  $\tau_6$  to  $\tau_8$  the compositions were determinded. The phase  $\tau_8$ corresponds to the phase NiSi<sub>4</sub>Ti<sub>4</sub> reported by Hu [17]. No phase Ni<sub>5</sub>SiTi<sub>6</sub> is found. Based on these results and the interpretation of DTA and SEM/EDS data a reaction scheme linking the equilibria observed at 900 °C with the liquidus surface is derived. All ternary phases are stable up to the melt. Only  $\tau_1$  melts congruently. The phases  $\tau_2$ ,  $\tau_3$ ,  $\tau_4$  and  $\tau_5$  all form in peritectic maxima from L +  $\tau_1$ . The phases  $\tau_6$ ,  $\tau_7$  and  $\tau_8$  form in peritectic reactions from L + Ti<sub>5</sub>Si<sub>4</sub> + a third phase. Six ternary eutectics occur. A liquidus projection is derived by linking the reaction scheme with determinations of the primary phase crystallising and of the compositions determined by EDS for several of the ternary eutectics.

#### Acknowledgements

This work was in part financially supported by the Austrian Science Foundation (grants P12843 and P12113) and the Scientific-Technological Cooperation between Austria and the P.R. of China (ÖAD grant WTZ VII.B.9).

#### 

## References

- [1] J. C. Schuster, H. Takase, I. Nakade, and M. Naka, **2002**, in M. Naka (Ed.): *Designing of Interfacial Structures in Advanced Materials and their Joints*, JWRI, Osaka Univ., Osaka, Japan, p 443ff
- [2] Y. Du, C. He, J. C. Schuster, S. H. Liu, H. H. Xu, Int. J. Mater. Res. 2006, 97, 543.
- [3] F. Weitzer, N. Krendelsberger, J. C. Schuster, Adv. Appl. Plasma Sci. 2009, 7, 270.
- [4] T. B. Massalski (ed.), **1990**, *Binary Alloy Phase Diagrams*, 2<sup>nd</sup> ed., ASM Intl., Mater. Park, OH., USA.
- [5] S. Ackerbauer, N. Krendelsberger, F. Weitzer, K. Hiebl, J. C. Schuster, Intermetallics 2009, 17, 414.
- [6] J. C. Schuster, Z. Pan, S. H. Liu, F. Weitzer, Y. Du, Intermetallics 2007, 15, 1257.
- [7] S. H. Liu, F. Weitzer, J. C. Schuster, N. Krendelsberger, Y. Du, Intl. J. Mater. Res. 2008, 99, 705.
- [8] F. Weitzer, J. C. Schuster, M. Naka, F. Stein, M.Palm, Intermetallics 2008, 16, 273.
- [9] L. G. Akselrud, Y. N. Grin, P. Y. Zavalij, V. K. Pecharsky, V. S. Fundamensky, Coll.Abstr. 12<sup>th</sup> Eur. Crystallogr. Meeting, Moskow, 1989 in: Izv. Akad. Nauk SSSR, Moskov, 1989, 3, 155.
- [10] W. Wacha, master thesis, Vienna Inst. Technology, Vienna, Austria, 1989.
- [11] C. B. Shoemaker, D. P. Shoemaker, Acta Crystallogr. 1965, 18, 900.
- [12] W. Jeitschko, A. G. Jordan, P. A. Beck, Trans. Met. Soc. AIME 1969, 245, 335.
- [13] A. Grytsiv, X. Q. Chen, P. Rogl, R. Podloucky, H. Schmidt, G. Giester, V. Pomjakushin, J. Solid State Chem. 2007, 180, 733.
- [14] D. I. Bardos, K. P. Gupta, P. A. Beck, Trans. Met. Soc. AIME 1961, 221, 1087.
- [15] V. Ya. Markiv, E. I. Gladyshevskii, P. I. Kripyakevich, T. I. Fedoruk, *Izv. Akad. Nauk SSSR, Neorgan. Mater.* **1966**, *2*, 1317.
- [16] J. H. Westbrook, R. K. DiCerbo, A. J. Peat, 1958, GE Research Report 58-RL-2117, p1ff.
- [17] X. Hu, G. Chen, C. Ion, K. Ni, J. Phase Equilibria 1999, 20, 508.
- [18] Y. Du, J. C. Schuster, Metall. Trans. A 1999, 30A, 2409.
- [19] K. Richter, K. Chandrasekaran, H. Ipser, Intermetallics 2004, 12, 545.
- [20] K. Takasugi, D. Shindo, O. Izumi, M. Hirabayashi, Acta Met. Mater. 1990, 38, 739.
- [21] P. Villars, L. D.Calvert, **1985**, *Pearson's Handbook of Crystallographic Data for Intermetallic Phases*, ASM, Metals Park, OH, USA
- [22] H. H. Xu, Z. P. Jin, Trans. Nonferrous Met. Soc. China 1998, 8, 1
- [23] G. R. Purdy, J. G. Parr, Trans. Met. Soc. AIME 1961, 221, 636
- [24] G. Haour, F. Mollard, B. Lux, I. G. Wright, Z. Metallkd. 1978, 69, 149

# **Figure Captions**

Fig. 1: Solid state phase equilibria at 900 °C

**Fig. 2a:** SEM micrograph of sample #29 (Ni<sub>69.9</sub>Si<sub>9.7</sub>Ti<sub>20.4</sub>) equilibrated at 900 °C showing Ni<sub>3</sub>(Si,Ti) (grey phase) coexisting with Ni<sub>3</sub>Ti (bright phase) and  $\tau_4$  (dark phase) **Fig. 2b:**SEM micrograph of sample #40 (Ni<sub>27.6</sub>Si<sub>24.8</sub>Ti<sub>47.6</sub>) equilibrated at 900 °C showing coexistence of the phases NiTi (bright phase) +  $\tau_1$  (grey phase) + Ti<sub>5</sub>Si<sub>3</sub> (dark phase)

**Fig. 3:** XRD powder pattern (Cu-K $\alpha_1$  radiation) of a polished alloy plate (sample #38, Ni<sub>44.8</sub>Si<sub>10.1</sub>Ti<sub>45.1</sub> equilibrated at and quenched from 900°C) showing NiTi (B19'-type structure) coexisting with  $\tau_1$ NiSiTi

Fig. 4: Reaction scheme connecting the liquid phase with the solid state equilibria

- **a**) in the Si-rich region
- **b)** in the Ni-rich region

c) in the Ti-rich region Temperatures are given in °C

Fig. 5: Liquidus projection of the system Ni-Si-Ti

Page 9 of 24

ZAAC

| 1        |  |
|----------|--|
| 2        |  |
| 3        |  |
| 4        |  |
| с<br>6   |  |
| 7        |  |
| 8        |  |
| 9        |  |
| 10       |  |
| 11       |  |
| 12       |  |
| 13       |  |
| 15       |  |
| 16       |  |
| 17       |  |
| 18       |  |
| 19       |  |
| 20<br>21 |  |
| 22       |  |
| 23       |  |
| 24       |  |
| 25       |  |
| 26       |  |
| 21       |  |
| 20       |  |
| 30       |  |
| 31       |  |
| 32       |  |
| 33       |  |
| 34<br>35 |  |
| 36       |  |
| 37       |  |
| 38       |  |
| 39       |  |
| 40       |  |
| 41       |  |
| 42       |  |
| 44       |  |
| 45       |  |
| 46       |  |
| 47       |  |
| 48       |  |
| 49<br>50 |  |
| 51       |  |
| 52       |  |
| 53       |  |
| 54       |  |
| 55       |  |
| 57       |  |
| 58       |  |
| 59       |  |
| 60       |  |

| Table 1: Ternary Ni-Si-Ti phases: crys | tal structures, lattice | e parameters and compositions |
|----------------------------------------|-------------------------|-------------------------------|
|----------------------------------------|-------------------------|-------------------------------|

|                                                                   | structure type                                          | L            | attice parameters | (nm)           | ratio             |              |                   |
|-------------------------------------------------------------------|---------------------------------------------------------|--------------|-------------------|----------------|-------------------|--------------|-------------------|
| phase                                                             | Pearson code                                            | literature   | observed          | observed       | $V_{max}/V_{min}$ | composition  | at. % Ni/ Si/ Ti  |
|                                                                   | space group                                             |              | (Vmin)            | (Vmax)         |                   |              |                   |
| τ <sub>1</sub> NiSiTi,                                            | Co <sub>2</sub> Si-type                                 | a = 0.6148   | a = 0.6144(3)     | a = 0.6145(1)  | 1.007             | nominal      | 33.3/33.3/33.3    |
| (E-phase)                                                         | oP12                                                    | b = 0.3670   | b = 0.3668(1)     | b = 0.3687(1)  |                   | obs. at      | 33±2/33±4/34±2    |
|                                                                   | Pnma (#62)                                              | c = 0.7017   | c = 0.7011(1)     | c = 0.7021(2)  |                   |              |                   |
|                                                                   |                                                         | ref. [11]    |                   |                |                   |              |                   |
| $\tau_2 Ni_4 Si_7 Ti_4$                                           | Co <sub>4</sub> Ge <sub>7</sub> Zr <sub>4</sub> -type   | a = 1.2575   | a = 1.25452(8)    | a = 1.2574(1)  | 1.004             | nominal      | 26.7/46.7/26.7    |
| (NiSi <sub>2</sub> Ti,                                            | tI60                                                    | c = 0.4945   | c = 0.49354(5)    | c = 0.4942(1)  |                   | obs. at      | 27±1/44±2/29±1    |
| V-phase)                                                          | I4/mmm (#139)                                           | ref. [12]    |                   |                |                   |              |                   |
| τ <sub>3</sub> Ni <sub>40</sub> Si <sub>31</sub> Ti <sub>13</sub> | Pd <sub>40</sub> Si <sub>31</sub> Y <sub>13</sub> -type | a = 1.7173   | a = 1.7162(2)     | a = 1.7217(2)  | 1.006             | nominal      | 47.6/36.9/15.5    |
| (Ni <sub>4</sub> Si <sub>3</sub> Ti,                              | hP168                                                   | c = 0.7861   | c = 0.7879(5)     | c = 0.7851(3)  |                   | obs. at      | 47.0/38.5/14.5    |
| G"-phase)                                                         | P6/mmm (#191)                                           | ref. [1]     |                   |                |                   |              | in ref. [1]       |
| $\tau_4 Ni_{17} Si_7 Ti_6$                                        | (partially) filled                                      | a =          | a = 1.1222(1)     | a = 1.12557(5) | 1.003             | nominal      | 57.7/23.3/20.0    |
| (G-phase,                                                         | Mn <sub>23</sub> Th <sub>6</sub> -type                  | 1.12595(2)   |                   |                |                   | obs. at      | 57±1/24±1/19±1    |
| T-phase)                                                          | cF120                                                   | ref. [13]    |                   |                |                   |              |                   |
|                                                                   | Fm-3m (#225)                                            |              |                   |                |                   |              |                   |
| $\tau_5 Ni_3 SiTi_2$                                              | MgZn <sub>2</sub> -type                                 | a = 0.479    | a = 0.47806(6)    | a = 0.48135(2) | 1.020             | nominal      | 50/16.7/33.3      |
| (G'-phase,                                                        | hP12, C14                                               | c = 0.755    | c = 0.7668(2)     | c = 0.77111(4) |                   | obs. at      | 51/17/32          |
| λ-phase)                                                          | <i>P</i> 6 <sub>3</sub> / <i>mmc</i> (#194)             | ref. [14]    |                   |                |                   | (coex. with  | $Ni_3Ti + NiTi$ ) |
|                                                                   |                                                         |              |                   |                |                   |              | 43/22/35          |
|                                                                   |                                                         |              |                   |                |                   | (coex. with  | $NiTi + \tau_1$ ) |
| $\tau_6$                                                          |                                                         |              |                   |                |                   | obs. at      | 6/41/53           |
| τ <sub>7</sub>                                                    |                                                         |              |                   |                |                   | obs. at      | 16/41-42/42-43    |
| τ <sub>8</sub>                                                    |                                                         |              |                   |                |                   | "nominal"    | 11.1/44.4/44.4    |
| (NiSi <sub>4</sub> Ti <sub>4</sub> ,                              |                                                         | ref. [17]    |                   |                |                   | obs. at      | 12±1/45/43±1      |
| H-phase)                                                          |                                                         |              |                   |                |                   |              |                   |
| Ni <sub>5</sub> SiTi <sub>6</sub>                                 |                                                         |              |                   |                |                   | "nominal"    | 41.7/8.3/50.0     |
| (F-phase,                                                         |                                                         | ref.[17, 18] |                   |                |                   | not observed | ł                 |
| X-phase)                                                          |                                                         |              |                   |                |                   |              |                   |

| 2          |  |
|------------|--|
| Ζ          |  |
| 3          |  |
| Δ          |  |
| 7          |  |
| 5          |  |
| 6          |  |
| 7          |  |
| 1          |  |
| 8          |  |
| Ō          |  |
| 9          |  |
| 10         |  |
| 11         |  |
| 11         |  |
| 12         |  |
| 13         |  |
| 10         |  |
| 14         |  |
| 15         |  |
| 40         |  |
| 16         |  |
| 17         |  |
| 10         |  |
| 10         |  |
| 19         |  |
| 20         |  |
| 20         |  |
| 21         |  |
| 22         |  |
| 22         |  |
| 23         |  |
| 24         |  |
| 25         |  |
| 20         |  |
| 26         |  |
| 27         |  |
| ~~         |  |
| 28         |  |
| 29         |  |
| 20         |  |
| 30         |  |
| 31         |  |
| 20         |  |
| зz         |  |
| 33         |  |
| 31         |  |
| 54         |  |
| 35         |  |
| 36         |  |
| 00         |  |
| 37         |  |
| 38         |  |
| 20         |  |
| 39         |  |
| 40         |  |
| 11         |  |
| 41         |  |
| 42         |  |
| 43         |  |
| 4.4        |  |
| 44         |  |
| 45         |  |
| 10         |  |
| 40         |  |
| 47         |  |
| <u>4</u> 8 |  |
| 40         |  |
| 49         |  |
| 50         |  |
| F 4        |  |
| DI         |  |
| 52         |  |
| 52         |  |
| 55         |  |
| 54         |  |
| 55         |  |
| 55         |  |
| 56         |  |
| 57         |  |
| E0         |  |
| 28         |  |
| 59         |  |

| Table2: Results of EDX, XRD, and therr | hal characterization of representative samples |
|----------------------------------------|------------------------------------------------|
|----------------------------------------|------------------------------------------------|

|          | compo | osition | (at %) | )              |                                 | EDS 1 | results | (at %) |                       |
|----------|-------|---------|--------|----------------|---------------------------------|-------|---------|--------|-----------------------|
|          |       |         | Ĺ      |                | phases                          |       |         | Ì      | DTA signals (°C)      |
| alloy    | Ni    | Si      | Ti     | heat treatment | identified                      | Ni    | Si      | Ti     | on heating at a       |
| #        |       |         |        |                | by XRD                          |       |         |        | rate of 5 K/min       |
| 1        | 3     | 42      | 55     | 1000 °C, 4w    | Ti <sub>5</sub> Si <sub>4</sub> | 0.3   | 45.3    | 54.4   | no signal below       |
|          |       |         |        |                | Ti <sub>5</sub> Si <sub>3</sub> | 0.2   | 39.1    | 60.7   | 1600 °C               |
|          |       |         |        |                | $\tau_6$                        | 5.2   | 41.1    | 53.7   |                       |
| 2        | 8.4   | 36.2    | 55.4   | 900 °C, 6d     | Ti <sub>5</sub> Si <sub>3</sub> | 1.5   | 36.2    | 62.3   | no signal below       |
|          |       |         |        |                | $\tau_1$                        | 33.9  | 32.3    | 33.8   | 1600 °C               |
|          |       |         |        |                | $\tau_6$                        | 6.7   | 38.1    | 55.2   |                       |
| 3        | 20    | 37      | 43     | 1000 °C, 4w    | Ti <sub>5</sub> Si <sub>3</sub> | 0.9   | 39.2    | 59.9   | (1597) U <sub>1</sub> |
|          |       |         |        | ,              | $\tau_1$                        | 31.3  | 35.6    | 33.1   | 1605 ?                |
|          |       |         |        |                | τ <sub>6</sub>                  | 6.3   | 41.2    | 52.5   |                       |
| 4        | 6.5   | 40.6    | 52.9   | 1000 °C. 4w    | τ1                              | 31.7  | 34.8    | 33.5   | 1545 P <sub>2</sub>   |
|          |       |         |        |                | $\tau_{c}$                      | 5.8   | 40.8    | 53.4   | 1578 U <sub>2</sub>   |
|          |       |         |        |                | Ti <sub>5</sub> Si <sub>4</sub> | 1.0   | 44.0    | 55.0   | 1595 U <sub>1</sub>   |
| 5        | 15    | 42.5    | 42.5   | 1000 °C. 4w    | Ti <sub>5</sub> Si <sub>4</sub> |       |         |        | 1497 P <sub>2</sub>   |
| -        |       |         |        |                | $\tau_7$                        |       |         |        | 1545 P <sub>2</sub>   |
|          |       |         |        |                | $\tau_{o}$                      |       |         |        | 2                     |
| 6        | 10.0  | 43.1    | 46 9   | 1000 °C 2w     | Ti <sub>s</sub> Si <sub>4</sub> | 0.5   | 43 5    | 56.0   | 1495 P <sub>2</sub>   |
| Ŭ        | 10.0  | 15.1    | 10.9   | 1000 0,20      | $\tau_{7}$                      | 16.1  | 40.9    | 43.0   | 1195 13               |
|          |       |         |        |                | $\tau_{0}$                      | 11.9  | 44.2    | 43.9   |                       |
| 7        | 5     | 45      | 50     | 1000 °C 4w     | TiSi                            | 1.0   | 49.5    | 49.5   | 1452 IL               |
| <i>'</i> | 5     | 15      | 50     | 1000 C, IW     | TisSi                           | 0.3   | 44 0    | 55 7   | 1152 04               |
|          |       |         |        |                | $\tau_{0}$                      | 12.0  | 44 4    | 43.6   |                       |
| 8        | 24.8  | 45.4    | 29.8   | 900 °C 6d      | τ,                              |       |         |        | 1353 Us               |
| Ũ        |       |         | _>.0   | ,              |                                 |       |         |        | 1476 U <sub>2</sub>   |
|          |       |         |        |                |                                 |       |         |        |                       |
| 9        | 25.1  | 40.0    | 34.8   | 900 °C 6d      | τ.                              | 31.5  | 35.6    | 32.9   | 1353 IL               |
| /        | 20.1  | 10.0    | 51.0   | 900°C, 04      |                                 | 27.0  | 44 5    | 28.5   | 1555 06               |
|          |       |         |        |                | τ <sub>2</sub>                  | 12.0  | 45.5    | 42.5   |                       |
| 10       | 0     | 16      | 15     | 1000 °C 4w     |                                 | 0.4   | 50.4    | 10.2   | (1070) U              |
| 10       | 2     | 40      | 43     | 1000 C, 4w     | 1151<br>~                       | 26.6  | 12 7    | 30.7   | $(1070) U_{18}$       |
|          |       |         |        |                | τ <sub>2</sub>                  | 11 7  | 45.0    | 43 3   | (1320) U <sub>2</sub> |
| 11       | 10.0  | 55.2    | 217    | 000 °C 6d      | TiSi                            | 11./  | 45.0    | -5.5   | 1260 U                |
| 11       | 10.0  | 55.5    | 54.7   | 900 C, 0u      | T1512<br>TiSi                   |       |         |        | $1209 U_8$<br>1221 U  |
|          |       |         |        |                | 1151                            |       |         |        | 1321 07               |
| 12       | 10.0  | 60.0    | 20.1   | 000 °C 64      | (Si)                            |       |         |        | 1067 IL.              |
| 12       | 10.0  | 07.9    | 20.1   | 900 C, 0u      | TiSi                            |       |         |        | 1222 liqu             |
|          |       |         |        |                | 1131 <sub>2</sub>               |       |         |        | 1222 IIYu.            |
| 12       | 20.0  | 60.0    | 10.2   | 000 °C 64      | (Si)                            |       |         |        | 045 U                 |
| 15       | 20.0  | 09.0    | 10.2   | 900 C, 00      | (SI)<br>NiSi                    |       |         |        | 1068  U               |
|          |       |         |        |                | TNISI2                          |       |         |        | 1188 liqu             |
|          |       |         |        |                | $\tau_2$                        |       |         |        | 1100 liqu.            |

Page 11 of 24

ZAAC

| -  |      |         |      |                   |                                 |      |                      |      |                                                   |
|----|------|---------|------|-------------------|---------------------------------|------|----------------------|------|---------------------------------------------------|
| 14 | 35.2 | 55.1    | 9.6  | 900 °C, 6d        | NiSi <sub>2</sub>               |      |                      |      | 935 E <sub>5</sub>                                |
|    |      |         |      |                   | NiSi                            |      |                      |      | 952 U <sub>21</sub>                               |
|    |      |         |      |                   | $\tau_2$                        |      |                      |      |                                                   |
| 15 | 44.9 | 45.3    | 9.8  | 900 °C 6d         | NiSi                            |      |                      |      | 954 U.a                                           |
| 15 | .,   | ч. Э. Э | 7.0  | 700°C, 00         |                                 |      |                      |      | 1206 liqu                                         |
|    |      |         |      |                   | $\tau_2$                        |      |                      |      | 1200 liqu.                                        |
|    |      |         |      |                   | $\tau_3$                        |      |                      |      | 1229 iiqu.                                        |
| 16 | 34.9 | 39.7    | 25.4 | 900 °C, 6d        | $\tau_1$                        |      |                      |      | 1170 $U_{14}$                                     |
|    |      |         |      |                   | $\tau_2$                        |      |                      |      |                                                   |
|    |      |         |      |                   | $\tau_2$                        |      |                      |      |                                                   |
| 17 | 50   | 45      | 5    | 900 °C 8d         | NiSi                            |      |                      |      | 862 bin Ni-Si                                     |
| 1, | 20   |         | 5    | 900°C, 0 <b>u</b> | Ni-Si-                          |      |                      |      | 951 F.                                            |
|    |      |         |      |                   | <b>TTTTTTTTTTTTT</b>            |      |                      |      | 551 L <sub>4</sub>                                |
| 10 | 514  | 41.7    | ( 0  | 000.90 (1         | NIC:                            |      |                      |      | (9(2)) him Ni Gi                                  |
| 18 | 51.4 | 41./    | 0.8  | 900 °C, 6d        | NISI                            |      |                      |      | (863) bin. NI-SI                                  |
|    |      |         |      |                   | $N1_3S1_2$                      |      |                      |      | 950 E <sub>4</sub>                                |
|    |      |         |      |                   | $\tau_3$                        |      |                      |      | 1218 liqu.                                        |
|    |      |         |      |                   |                                 |      |                      |      | 1436 liqu.                                        |
| 19 | 56.2 | 37.0    | 6.8  | 900 °C, 6d        | Ni <sub>3</sub> Si <sub>2</sub> |      |                      |      | 822 bin. Ni-Si                                    |
|    |      |         |      |                   | δNi <sub>2</sub> Si             |      |                      |      | 1092 E <sub>4</sub> $\rightarrow$ U <sub>15</sub> |
|    |      |         |      |                   | $\tau_2$                        |      |                      |      | 1173 ligu.                                        |
|    |      |         |      |                   | •3                              |      |                      |      | 1245 liqu                                         |
| 20 | 56.5 | 36.5    | 7.0  | 900 °C 4w         | NiaSia                          |      |                      |      | (820) bin Ni-Si                                   |
| 20 | 50.5 | 50.5    | 7.0  | 700°C, 4W         | Ni.Si                           |      |                      |      | (320) one result                                  |
|    |      |         |      |                   | 11251                           |      |                      |      | 1110 $E_4 \rightarrow U_{15}$                     |
|    |      |         |      |                   | $\tau_3$                        |      |                      |      | 11/9 liqu.                                        |
|    |      |         |      |                   |                                 |      |                      |      | 1240 liqu.                                        |
| 21 | 56.6 | 33.4    | 10.0 | 900 °C, 6d        | δNi <sub>2</sub> Si             |      |                      |      | 1134 U <sub>15</sub>                              |
|    |      |         |      |                   | $\tau_3$                        |      |                      |      | 1184 $e_{max3}$                                   |
|    |      |         |      |                   | $	au_4$                         |      |                      |      |                                                   |
| 22 | 44.7 | 32.1    | 23.2 | 900 °C. 6d        | τ.                              |      |                      |      | 1259 U <sub>9</sub>                               |
|    |      |         |      | ,                 | $\tau_{2}$                      |      |                      |      | 1446 ligu                                         |
|    |      |         |      |                   |                                 |      |                      |      |                                                   |
| 22 | 17 ( | 26.0    | 16.6 | 000.00 (1         | 14                              |      |                      |      | 12(0                                              |
| 23 | 47.6 | 36.9    | 15.5 | 900 °C, 6d        | $\tau_1$                        |      |                      |      | 1269 $p_{max4}$                                   |
|    |      |         |      |                   | $\tau_3$                        |      |                      |      |                                                   |
| 24 | 42   | 35.5    | 22.5 | 900 °C, 4w        | $\tau_1$                        |      |                      |      | 1273 p <sub>max4</sub>                            |
|    |      |         |      |                   | $\tau_3$                        |      |                      |      |                                                   |
| 25 | 62.3 | 27.5    | 10.2 | 900 °C 6d         | δNi2Si                          |      |                      |      | 1176 U <sub>12</sub>                              |
|    | 02.5 | 27.0    | 10.2 | 900°C, 0 <b>u</b> | Ni <sub>2</sub> Si              |      |                      |      | 1184                                              |
|    |      |         |      |                   | <b>N1</b> 31 <b>5</b> 112       |      |                      |      | max3                                              |
| 26 | 70   | 25      | -    | 000 00 01         | 14<br>N: 0'                     |      |                      |      | 1005 E                                            |
| 26 | /0   | 25      | 5    | 900 °C, 8d        | $N1_{31}S1_{12}$                |      |                      |      | 1095 E <sub>2</sub>                               |
|    |      |         |      |                   | N1 <sub>3</sub> S1              |      |                      |      | 1155 liqu.                                        |
|    |      |         |      |                   | $	au_4$                         |      |                      |      | 1208 liqu.                                        |
| 27 | 69.2 | 20.4    | 10.4 | 900 °C, 6d        | Ni <sub>3</sub> Si              | 73.9 | 20.0                 | 6.1  | 1093 E <sub>2</sub>                               |
|    |      |         |      | -                 | $\tau_4$                        | 57.3 | 25.3                 | 17.4 | 1290 liqu.                                        |
| 28 | 75   | 12.5    | 12.5 | 900 °C 4w         | Ni <sub>2</sub> Si              | 75.2 | 13.2                 | 11.6 | 1106 E <sub>2</sub> →U <sub>2</sub>               |
| 20 | , 5  | 12.5    | 12.0 | 200 C, IW         | τ.                              | 59 A | 23.5                 | 17.1 | 1163 liqu                                         |
| 20 | 60.0 | 07      | 20.4 | 000 %7 (1         | Vi C:                           | 75 1 | 12.7                 | 12.2 | 1103 IIYU.                                        |
| 29 | 09.9 | 9./     | 20.4 | 900°C, 60         | 1N1301                          | 13.1 | $  \frac{12.}{17}  $ | 12.2 | 1119 U <sub>17</sub>                              |
|    |      |         |      |                   | IN13 I 1                        | /4.9 | 1./                  | 23.4 | 1198 liqu.                                        |
|    | -    |         |      |                   | $\tau_4$                        | 57.6 | 25.7                 | 18.7 |                                                   |
| 30 | 70   | 7       | 23   | 900 °C, 8d        | Ni <sub>3</sub> Ti              |      |                      |      | $1224 e_{max2}$                                   |
|    |      |         |      |                   |                                 |      |                      |      |                                                   |

|     |               | 1    | 1    |                                         |                                 |              | r    | r         | 1204 1                 |
|-----|---------------|------|------|-----------------------------------------|---------------------------------|--------------|------|-----------|------------------------|
|     |               |      |      |                                         | $\tau_4$                        |              |      |           | 1304 liqu.             |
| 31  | 56.7          | 8.1  | 35.2 | 900 °C, 6d                              | Ni <sub>3</sub> Ti              | 73.7         | 0.8  | 25.5      | 1068 E <sub>3</sub>    |
|     |               |      |      |                                         | NiTi                            | 52.9         | 1.1  | 46.0      |                        |
|     |               |      |      |                                         | $\tau_5$                        | 49.6         | 17.4 | 33.0      |                        |
| 32  | 57.7          | 15.7 | 26.6 | 900 °C, 6d                              | Ni <sub>3</sub> Ti              |              |      |           | 1180 U <sub>12</sub>   |
|     |               |      |      |                                         | $	au_4$                         |              |      |           | 1392 U <sub>5</sub>    |
|     |               |      |      |                                         | $\tau_5$                        |              |      |           |                        |
| 33  | 45.0          | 25.1 | 29.9 | 900 °C, 6d                              | $\tau_1$                        |              |      |           | (1395) U <sub>5</sub>  |
|     |               |      |      |                                         | $\tau_{4}$                      |              |      |           | 1487 p <sub>max2</sub> |
|     |               |      |      |                                         | τ.                              |              |      |           |                        |
|     |               |      |      |                                         | - 5                             |              |      |           |                        |
| 34  | 47            | 27   | 26   | 900 °C. 2w                              | τ.                              |              |      |           | 1487 p <sub>max2</sub> |
| 5.  | - /           |      | -0   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                 |              |      |           | Pinax2                 |
| 35  | 19.5          | 75   | 13   | 900 °C /w                               | τ.                              | 16.7         | 10.1 | 3/1 2     | 1162 e .               |
| 55  | т <i>у</i> .5 | 1.5  | 75   | 700 C, 4W                               | US<br>NJTJ                      | 51.6         | 10   | <u>47</u> | $1102$ $C_{max4}$      |
| 26  | 45            | 15   | 40   | 000 °C 4w                               |                                 | 22.0         | 22.0 | 22.2      | (1067) 11              |
| 30  | 43            | 15   | 40   | 900 C, 4w                               | $\tau_1$                        | 52.9<br>12 2 | 22.9 | 25.2      | (1007) u<br>1144 E     |
|     |               |      |      |                                         | $\tau_5$                        | 43.5         | 1 0  | 10.0      | 1144 D <sub>1</sub>    |
| 27  | 10            | 1.5  | 1.5  | 000.00 4                                | N111                            | 49.1         | 1.7  | 49.0      | (10(())                |
| 31  | 40            | 15   | 45   | 900 °C, 4w                              | $\tau_1$                        | 33.5         | 33.3 | 33.2      | (1066) u               |
|     |               |      |      |                                         | 11 <sub>5</sub> S1 <sub>3</sub> | 13.5         | 30.5 | 56        | $113/ E_1$             |
|     |               |      |      | 1100.00 01                              | N111                            | 47.4         | 2.9  | 49./      |                        |
|     |               |      |      | 1100 °C, 2d                             | $\tau_5$                        |              |      |           |                        |
|     |               |      |      |                                         | Ti <sub>5</sub> Si <sub>3</sub> |              |      |           |                        |
|     |               |      |      |                                         | N1T1                            |              |      |           |                        |
| 38  | 44.8          | 10.1 | 45.1 | 900 °C, 6d                              | NiTi                            | 49.4         | 2.0  | 48.6      | 1140 E <sub>1</sub>    |
|     |               |      |      |                                         | $\tau_1$                        | 34.7         | 29.8 | 35.5      | 1167 liqu.             |
| 39  | 30.1          | 25.0 | 44.9 | 900 °C, 6d                              | Ti <sub>5</sub> Si <sub>3</sub> |              |      |           | 1137 E <sub>1</sub>    |
|     |               |      |      |                                         | $\tau_1$                        |              |      |           | 1198 U <sub>11</sub>   |
|     |               |      |      |                                         | NiTi                            |              |      |           |                        |
|     |               |      |      | 1100 °C, 2d                             | Ti <sub>5</sub> Si <sub>3</sub> |              |      |           |                        |
|     |               |      |      |                                         | $\tau_1$                        |              |      |           |                        |
|     |               |      |      |                                         | $\tau_5$                        |              |      |           |                        |
| 40  | 27.6          | 24.8 | 47.6 | 900 °C, 6d                              | Ti <sub>5</sub> Si <sub>3</sub> | 2.0          | 36.7 | 61.3      | 1136 E <sub>1</sub>    |
|     |               |      |      |                                         | $\tau_1$                        | 34.0         | 31.9 | 34.1      | (1205) U <sub>11</sub> |
|     |               |      |      |                                         | NiTi                            | 49.2         | 2.1  | 48.7      |                        |
| 41  | 41.5          | 25.0 | 33.5 | 900 °C, 4w                              | $\tau_1$                        | 33.5         | 33.4 | 33.1      | 1412 p <sub>max3</sub> |
|     |               |      |      |                                         | $\tau_5$                        | 49.4         | 18.7 | 31.9      | _                      |
| 42  | 36.4          | 10.5 | 53.1 | 900 °C. 4w                              | Ti <sub>5</sub> Si <sub>3</sub> | 6.0          | 31.2 | 62.8      | 1146 e <sub>max5</sub> |
|     |               |      |      | ,                                       | NiTi                            | 49.4         | 1.0  | 49.6      | muxy                   |
| 43  | 16.5          | 25.7 | 57.8 | 900 °C. 6d                              | Ti <sub>5</sub> Si <sub>3</sub> | 1.8          | 36.9 | 61.3      | 959 U <sub>19</sub>    |
|     |               |      |      | ,                                       | NiTi                            | 49.3         | 1.0  | 49.7      | 1129 liqu.             |
|     |               |      |      |                                         | NiTi <sub>2</sub>               | 32.0         | 1.8  | 66.2      |                        |
| 44  | 30.1          | 9.6  | 60.3 | 900 °C, 4w                              | Ti <sub>5</sub> Si <sub>3</sub> |              |      |           | 960 U <sub>19</sub>    |
|     |               |      |      |                                         | Ni Ti <sub>2</sub>              |              |      |           | 1105 liqu.             |
|     |               |      |      |                                         | NiTi                            |              |      |           | *                      |
| 45  | 15.0          | 16.9 | 68.1 | 900 °C. 6d                              | Ti <sub>5</sub> Si <sub>3</sub> | 1            | 1    | 1         | 918 E <sub>6</sub>     |
|     |               |      |      | - ,                                     | NiTi <sub>2</sub>               |              |      |           | Ĭ                      |
|     |               |      |      |                                         | α(Ti)                           |              |      |           |                        |
| 46  | 7.0           | 25.3 | 67.8 | 900 °C. 6d                              | Ti <sub>5</sub> Si <sub>2</sub> |              |      |           | 920 E <sub>6</sub>     |
| . • |               |      | 0    |                                         |                                 | 1            | I    | I         | 0                      |

| 1        |
|----------|
| 2        |
| 3        |
| 4        |
| с<br>С   |
| 7        |
| 8        |
| 9        |
| 10       |
| 11       |
| 12       |
| 13       |
| 14       |
| 10       |
| 17       |
| 18       |
| 19       |
| 20       |
| 21       |
| 22       |
| 23       |
| 24<br>25 |
| 20       |
| 27       |
| 28       |
| 29       |
| 30       |
| 31       |
| 32       |
| 33       |
| 34       |
| 36       |
| 37       |
| 38       |
| 39       |
| 40       |
| 41       |
| 42       |
| 43<br>11 |
| 44       |
| 46       |
| 47       |
| 48       |
| 49       |
| 50       |
| 51       |
| 52       |
| 53<br>54 |
| 0-       |

|  |  |  | NiTi <sub>2</sub> |  |  |
|--|--|--|-------------------|--|--|
|  |  |  | α(Ti)             |  |  |

| sample c | ompositio | on (at. %) | ) primary pha                   | ase additional observations                                                                     |
|----------|-----------|------------|---------------------------------|-------------------------------------------------------------------------------------------------|
| Ni       | Si        | Ti         |                                 |                                                                                                 |
| 85.9     | 3.8       | 10.3       | (Ni)                            |                                                                                                 |
| 76.6     | 2.6       | 20.8       | Ni <sub>3</sub> Ti              | $+ eu (Ni_3Ti + Ni_3Si) at (73/13.7/13.3)$                                                      |
| 62.8     | 4.2       | 33.0       | Ni <sub>3</sub> Ti              | $+ eu (Ni_3Ti + \tau_5)$                                                                        |
| 60.4     | 4.0       | 35.6       | $E_3$                           | = eu (Ni <sub>3</sub> Ti + $\tau_5$ + NiTi) at (60.5/4.0/35.5)                                  |
| 54.1     | 3.6       | 42.3       | NiTi                            | + (secondary) Ni <sub>3</sub> Ti + $\tau_5$                                                     |
| 35.0     | 1.5       | 63.5       | NiTi                            | + eu (NiTi <sub>2</sub> + $\beta$ (Ti)) at (21.8/3.6/74.6)                                      |
| 25.0     | 4.8       | 70.2       | NiTi <sub>2</sub>               | + $E_6$ (NiTi <sub>2</sub> + Ti <sub>5</sub> Si <sub>3</sub> + $\beta$ (Ti)) at (18.8/6.9/74.3) |
| 14.3     | 4.0       | 81.7       | β(Ti)                           | + eu (NiTi <sub>2</sub> + $\beta$ (Ti)) at (20.9/3.6/75.5)                                      |
| 83.0     | 11.6      | 5.4        | (Ni)                            |                                                                                                 |
| 71.1     | 12.7      | 16.2       | Ni <sub>3</sub> Ti              | + (secondary) $\tau_4$                                                                          |
| 66.4     | 12.2      | 21.4       | $	au_4$                         | $+ eu (Ni_3Ti + \tau_4)$                                                                        |
| 62.3     | 12.1      | 25.6       | $	au_4$                         | + eu ( $\tau_4 + \tau_5$ ) at (60.5/9.3/30.2)                                                   |
| 54.8     | 8.1       | 37.1       | $	au_5$                         | + (secondary) Ni <sub>3</sub> Ti                                                                |
| 50.6     | 8.2       | 41.2       | $\tau_5$                        | + (secondary) $Ti_5Si_3$ + NiTi                                                                 |
| 45.5     | 11.9      | 42.6       | $\tau_1$                        | + eu ( $\tau_1$ + Ti <sub>5</sub> Si <sub>3</sub> ) at (35.5/15.5/49)                           |
| 40.7     | 10.3      | 49.0       | Ti <sub>5</sub> Si <sub>3</sub> | + (secondary) NiTi                                                                              |
| 62.7     | 16.0      | 21.3       | $	au_4$                         |                                                                                                 |
| 59.5     | 17.7      | 24.8       | $	au_4$                         | + eu ( $\tau_4 + \tau_5$ ) at (58.1/13.0/28.9)                                                  |
| 50.6     | 17.4      | 32.0       | $	au_1$                         | + (secondary) $\tau_5$                                                                          |
| 49.4     | 18.0      | 32.6       | $\tau_1$                        | + (secondary) $Ni_{31}Si_{12}$                                                                  |
| 41.1     | 15.9      | 42.9       | $\tau_1$                        |                                                                                                 |
| 75.5     | 21.4      | 3.1        | $Ni_{31}Si_{12}$                | + $E_2$ (Ni <sub>31</sub> Si <sub>12</sub> + $\tau_4$ + Ni <sub>3</sub> Si) at (70/20.5/9.5)    |
| 67.9     | 20.0      | 12.1       | $	au_4$                         | + (secondary) $Ni_{31}Si_{12}$                                                                  |
| 64.9     | 20.5      | 14.6       | $	au_4$                         | + eu ( $\theta$ Ni <sub>2</sub> Si + $\tau_4$ ) at (65/29.3/5.7)                                |
| 59.3     | 19.3      | 21.4       | $	au_4$                         |                                                                                                 |
| 48.7     | 21.1      | 30.2       | $\tau_1$                        | + (secondary) $\tau_4$                                                                          |
| 22.2     | 20.5      | 57.2       | Ti <sub>5</sub> Si <sub>3</sub> |                                                                                                 |
| 59.6     | 35.4      | 5.0        | θNi <sub>2</sub> Si             | + (secondary) NiSi + $\tau_3$                                                                   |
| 54.1     | 32.3      | 13.6       | $	au_1$                         |                                                                                                 |
| 49.6     | 32.9      | 17.5       | $	au_1$                         | + (secondary) $\tau_3$                                                                          |
| 45.3     | 33.5      | 21.2       | $	au_1$                         | + (secondary) $\tau_2$                                                                          |
| 23.7     | 35.6      | 40.7       | $	au_1$                         | + (secondary) $\tau_6$                                                                          |
| 16.0     | 33.7      | 50.3       | $	au_1$                         | + (secondary) $Ti_5Si_3$                                                                        |
| 6.3      | 30.4      | 63.3       | Ti <sub>5</sub> Si <sub>3</sub> | + (secondary) $\tau_1$                                                                          |
| 45.4     | 39.9      | 14.7       | $\tau_2$                        |                                                                                                 |
| 42.3     | 45.7      | 12.0       | $	au_2$                         | + (secondary) $NiSi + NiSi_2$                                                                   |
| 40.9     | 38.7      | 20.4       | $	au_1$                         | + (secondary) $\tau_2 + \tau_3$                                                                 |
| 36.6     | 45.5      | 17.9       | $	au_2$                         | + (secondary) $NiSi + NiSi_2$                                                                   |
| 30.9     | 37.1      | 32.0       | $\tau_1$                        | + (secondary) $\tau_2$                                                                          |

**Table 3:** Primary phases crystallizing (identified in as cast microstructures by EDS)

## Page 15 of 24

24.4

15.0

14.5

18.3

43.5

42.6

38.8

58.2

32.1

42.4

46.7

23.5

 $\boldsymbol{\tau}_1$ 

 $\tau_6$ 

Ti<sub>5</sub>Si<sub>3</sub>

 $\tau_2$ 

Wiley-VCH

+ (secondary)  $\tau_7$ 

+ (secondary)  $\tau_6 + \tau_7$ 

+ (secondary) NiSi + NiSi<sub>2</sub>

| 1      |        |
|--------|--------|
| 2      |        |
| 3      |        |
| 4      |        |
| 5      |        |
| 6      |        |
| 7      |        |
| ģ      |        |
| 0      |        |
| 3      | ^      |
| 1      | 4      |
| 1      | 1      |
| 1      | 2      |
| 1      | 3      |
| 1      | 4      |
| 1      | 5      |
| 1      | 6      |
| 1      | 7      |
| 1      | 8      |
| 1      | 9      |
| 2      | 0      |
| 2      | 1      |
| 2      | 2      |
| 2      | と<br>つ |
| 2      | ა<br>⊿ |
| 2      | 4      |
| 2      | 5      |
| 2      | 6      |
| 2      | 7      |
| 2      | 8      |
| 2      | 9      |
| 3      | 0      |
| 3      | 1      |
| 3      | 2      |
| 3      | 3      |
| 3      | 4      |
| 2      | 5      |
| 2      | 6      |
| ່<br>ວ | 7      |
| 3      | 1      |
| 3      | 8      |
| 3      | 9      |
| 4      | 0      |
| 4      | 1      |
| 4      | 2      |
| 4      | 3      |
| 4      | 4      |
| 4      | 5      |

 $\begin{array}{r} 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ \end{array}$ 



176x162mm (300 x 300 DPI)



81x61mm (200 x 200 DPI)

Page 19 of 24



81x61mm (200 x 200 DPI)











255x205mm (300 x 300 DPI)



269x201mm (300 x 300 DPI)





172x166mm (300 x 300 DPI)