Procalcitonin is a reliable marker of severe systemic infection in neutropenic haematological patients with mucositis

Loredana Sarmati, Angela Beltrame, Luca Dori, Gaetano Maffongelli, Laura Cudillo, Gottardo de Angelis, Alessandra Picardi, Licia Ottaviani, Maria G Cefalo, Adriano Venditti, et al.

To cite this version:
Loredana Sarmati, Angela Beltrame, Luca Dori, Gaetano Maffongelli, Laura Cudillo, et al.. Procalcitonin is a reliable marker of severe systemic infection in neutropenic haematological patients with mucositis. American Journal of Hematology, Wiley, 2010, 10.1002/ajh.21685 . hal-00552309

HAL Id: hal-00552309
https://hal.archives-ouvertes.fr/hal-00552309
Submitted on 6 Jan 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Procalcitonin is a reliable marker of severe systemic infection in neutropenic haematological patients with mucositis

<table>
<thead>
<tr>
<th>Journal:</th>
<th>American Journal of Hematology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>AJH-09-0833.R2</td>
</tr>
<tr>
<td>Wiley - Manuscript type:</td>
<td>Letters</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>09-Feb-2010</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Sarmati, Loredana; Clinical Infectious Diseases, Tor Vergata University, Rome, Pubblic Health Beltrame, Angela; Clinical Infectious Diseases, Tor Vergata University, Rome, Pubblic Health Dori, Luca; Clinical Infectious Diseases, Tor Vergata University, Pubblic Health Maffongelli, Gaetano; Clinical Infectious Diseases, Tor Vergata University, Rome, Public Health Cudillo, Laura; Haematology Stem Cell Transplant Unit, Tor Vergata University De Angelis, Gottardo; Haematology Stem Cell Transplant Unit, Tor Vergata University Picardi, Alessandra; Haematology Stem Cell Transplant Unit, Tor Vergata University Ottaviani, Licia; Oncohaematologic Unit, Tor Vergata University Cefalo, Maria; Oncohaematologic Unit, Tor Vergata University Venditti, Adriano; Oncohaematologic Unit, Tor Vergata University Amadori, Sergio; Oncohaematologic Unit, Tor Vergata University Arcese, William; Haematology Stem Cell Transplant Unit, Tor Vergata University Andreoni, Massimo; Clinical Infectious Diseases, Tor Vergata University, Rome, Pubblic Health</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Infections, Infections in immunocompromised hosts, Infectious disease</td>
</tr>
</tbody>
</table>
Procalcitonin is a reliable marker of severe systemic infection in neutropenic haematological patients with mucositis

Clinical Infectious Diseases, Tor Vergata University,
* Haematology Stem Cell Transplant Unit, Tor Vergata University,
**Oncohaematologic Unit, Tor Vergata University,
Rome, Italy

Running head: procalcitonin and mucositis

Corresponding author : Loredana Sarmati, MD
Clinical Infectious Diseases
Tor Vergata University
V. Montpellier 1
00133 Rome , Italy
Phone +390672596873
sarmati@med.uniroma2.it
Patients with neutropenia are exposed to a high risk for infections in which fever is often the unique symptom (1). Systemic infections remain the main cause of mortality in these patients therefore, the policy for infection management is to promptly administer empirical antibiotic therapy in order to avoid the increased risk of mortality related to the treatment delay (2). However, microbiological diagnostic tests are not sufficiently rapid, sensitive or specific to indentify the microbial causes of fever, and a considerable number of patients suffer febrile episodes over a prolonged period without a definite microbiological aetiology.

Procalcitonin (PCT) (3) has become increasingly popular as a novel marker of infection. Several studies have underscored its value in clinical conditions by identifying infectious processes (4, 5, 6). The use of this marker in haematological patients has provided controversial results and no agreement exists about the capacity of PTC to differentiate fever by other inflammatory processes such as mucositis and Graft versus Host diseases (GVHD) (7-11).

In order to evaluate the usefulness of PCT in diagnostic and therapeutic approaches to fever in haematological patients, we evaluated the values of PCT, C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) in the course of febrile neutropenia by assessing the influence of mucositis and GVDH on these three parameters.
The demographics and the clinical characteristics of the study population are shown in Table 1. One hundred and sixteen infectious events were observed, 50% of them occurring in patients with mucositis. Nine (30%) subjects out of 30 transplanted patients developed GVHD. FUO, pneumonia, sepsis and infection of CVC were the most common clinical features associated with fever.

In order to assess the power of the investigated inflammatory parameters in discriminating the clinical severity of infection episodes, the median values of PCT, CRP and ESR as measured during the major events were compared with those recorded during the minor events. During major infectious events, the PCT levels were significantly higher at any considered time-point (PCT1: 0.55 vs 0.13 ng/ml, p<0.001; PCT2: 1.04 vs 0.21 ng/ml, p<0.001; PCT3: 0.54 vs 0.16 ng/ml, p<0.001), CRP was significantly higher only at times one and two (CRP1: 112 vs 56 mg/dl, p=0.001; CRP2: 150 vs 104 mg/dl, p=0.02) and the ESR values were not significantly different at any time.

Figure 1 shows the results of the PCT and CRP determinations during febrile major and minor events in patients with and without mucositis. The analysis showed that the PCT values were significantly higher at all three time-points during major events compared to minor events, regardless of the presence of mucositis. On the contrary, the values of CRP were significantly higher at the time-point one in patients with major events and mucositis, and at time-point one and two in those with major events without mucositis, compared to patients with minor events.

The sensitivity and specificity of PCT and CRP to identify major infectious events in patients with mucositis was evaluated through ROC curves (Fig. 2). The area under the curve accounts for the statistical significance for PCT1 (68%; 95% CI: 54 to 82; p=0.016), PCT2 (68%; 95% CI: 53.9 to 81.7; p = 0.02) and PCT3 (65%; 95% CI: 51 to 80; p = 0.035). Otherwise, the area under the ROC
curve was statistical significant for CRP1 (68%, 95% CI: 54 to 81; p=0.019), but not for CRP2 (54%, 95% CI: 38.8 to 68.9; p = 0.6) and CRP3 (48%, 95% CI: 33 to 63; p = 0.8). Moreover, in patients with mucositis, PCT2 values of ≤ 0.5 ng/ml and ≤ 0.2 ng/ml discriminates major infectious events with sensitivities of 48% and 79% and specificities of 70% and 52%, respectively.

A bacterial isolate was obtained in 50/59 (85%) major infectious events and in 22/57 (38%) minor events. Gram-negative isolates were significantly more frequent during major events compared to minor events (44/59 vs. 4/57, p <0.001).

The PCT values, but not the CRP values, were significantly higher at all three time-points in patients with a Gram-negative isolate relative to patients with an isolate other than a Gram-negative (PCT1: 1.9 vs 0.2 ng/ml, p=0.001; PCT2: 3.5 vs 0.4 ng/ml, p<0.001; PCT3: 0.7 vs 0.4 ng/ml, p=0.005). Moreover, a PCT2 value of > 0.98 ng/ml was found to discriminate between the presence or absence of a gram-negative bacterial isolation during fever with a sensitivity of 80% and a specificity of 78%.

The study of PCT and CRP was conducted separately on the group of transplant patients with the occurrence of GVHD. To this end, only patients at risk of GVHD (allogeneic, haploidential and umbilical cord blood transplants) have been considered. GVHD occurred in 12 out of 30 patients, and it was skin-localised in 11/12 cases and bowel-localised in 1 case. Major infectious events occurred in 9/12 cases and in all of these patients high levels of PCT (>1.3 ng/ml) were detected at all three time points. During minor infectious events, the values of PCT1, 2 and 3 were < 0.2 ng/ml regardless of GVHD.
The present study shows that PCT is a reliable marker of infection in patients with haematological neoplasms and febrile neutropenia. A fair number of publications (7-11, 12-16) have evaluated the utility of PCT as a marker of infection in neutropenic patients with solid-organ cancer or haematological malignancy. Overall, these studies showed a correlation between an elevation of PCT and the presence of infection. However, in a recent review (9) that explored studies published between January 1990 and October 2006, the authors were unable to reach definitive conclusions about the usefulness of PCT in febrile neutropenia because of the heterogeneity of the populations evaluated and the variability of the results obtained in the different articles.

In our study, the significant increase of PCT during infectious events was not affected by inflammatory conditions such as mucositis and GVHD. To date, only two articles have addressed the role of PCT in haematological patients with neutropenic fever and mucositis and/or GVHD, and they came to conflicting conclusions. Both these studies used the LUMI Test B.R.A.H.M.S. to assess the levels of PCT. Blijlevens et al. (7) demonstrated the inability of PCT to discriminate between infection and other inflammatory conditions in 12 haematological transplanted patients. In particular, the authors found out that GVHD rather than infection accounted for the increase of PCT. Fleischhack et al. (11), in a study including paediatric patients with haematological or solid tumours without infections, concluded that chemotherapy-induced tissue damage (such as severe mucositis) did not cause considerable increases of the PCT plasma levels. Some considerations can be made to justify these different results. In the first study, the limited number of patients impacted the statistical evaluation of the results; in the second study, none of the patients was transplanted and half of the febrile events occurred in children with solid tumours.
In our study, the levels of PCT at all three time-points detected during the course of major infectious events in patients with and without mucositis were significantly higher than in patients with minor infections. Regarding the influence of GVHD on the PCT increase in our study population, although the sample size does not allow statistical evaluation, it is clear that the PCT was not affected by GVHD and values greater than 1 ng/ml are present only in patients with severe infections regardless of the simultaneous occurrence of GVHD.

In some studies (12, 17, 18) it was reported that PCT elevation could be significantly higher in patients with Gram-negative bacteraemia than in those with Gram-positive bacteraemia. Kocazeybek and coworkers (18) in a study on patients with infectious endocarditis found that the median serum PCT level of Gram-positive-related endocarditis was 2.92 ng/ml, whereas this level was 8.62 ng/ml in cases of endocarditis due to gram-negative bacteria. Charles and colleagues (17), in a review on bacteraemia in critically ill patients, observed that a high PCT value was found to be independently associated with Gram-negative bacteraemia and that a PCT level of 16.0 ng/ml yielded an 83% positive predictive value and a 74% negative predictive value. In our study, values of PCT of > 0.98 ng/ml were able to discriminate between the presence and absence of Gram-negative bacteraemia with a sensitivity of 80% and a specificity of 78%. This is of great importance in relation to the clinical severity of Gram-negative bacteraemia in patients with neutropenia and suggest the use of PCT in guiding the choice of empirical antibiotic therapy during febrile neutropenia.

In conclusion, our experience indicates that the determination of PCT at the given time-points might represent a valuable tool to predict the occurrence of major infectious episodes in patients with febrile neutropenia, even in presence of confounding associated conditions such as mucositis and/or GVHD. This would allow an early and appropriate antibiotic therapy to be
administered in a very high-risk population such as the one including patients with haematological malignancies and chemotherapy-related febrile neutropenia.

Methods

Patients

From January 2008 to December 2008, 116 febrile episodes occurring in 88 neutropenic patients were investigated. All the patients were affected with haematological neoplasms and 30 of them underwent stem cell transplantation (SCT).

Fever was defined as a single measurement of a temperature of 38.5°C or two or more measurements of 38°C. Neutropenia was defined as an absolute neutrophils count <1000/mm³. Infection events included all episodes of fever associated with evidence of microbiological isolations. Sepsis, septic shock, bacteraemia (BSI) and pneumonia were defined as major infectious events; a fever of unknown origin (FUO), infections of the site of insertion of the central venous catheter (CVC), sinusitis, Herpes simplex virus manifestations and folliculitis were defined as minor infectious events.

BSI was defined as a microbial growth in one blood culture bottle; however, at least two positive blood cultures bottles collected from different sites were required for microorganisms usually considered as potential contaminants (i.e., coagulase-negative Staphylococcus species). Haemoculture samples were collected upon the first appearance of fever and then on every occasion in which fever was ≥ 38°C. Sepsis was defined by the presence of fever or hypothermia, tachypnea and tachycardia. Instances of sepsis associated with hypotension not corrected by proper fluid therapy were scored as septic shock.
Pneumonia was assumed in cases in which typical clinical and radiological findings were seen on the chest radiograph obtained upon fever onset. CVC infection was suspected in presence of skin inflammation or vein thrombosis at the CVC insertion site. Episodes of fever not associated with microbiological or clinical evidence of infection were regarded as FUO.

Oral and gastrointestinal mucositis was defined and graded according to the Common Terminology Criteria for Adverse Events (CTCAE) version three (19). Acute GVHD was evaluated according to the standard criteria (20).

PCT, ESR and CPR evaluations

PCT was determined by a commercially available immunoluminometric assay, LUMI Test PCT kit (B.R.A.H.M.S. Diagnostica, Berlin Germany). Values greater than or equal to 0.5 ng/ml were considered to be pathological in accordance with the manufacturer's instructions (Al-Nawas & Shah, 1996). The precision of the test was estimated in accordance with CLSI guidelines EP5-A (evaluation of precision performance of clinical chemistry devices). The inter-assay coefficient variation at PCT value of 0.1 ng/ml was 15%, 0.2 ng/ml was 10% and >0.3 ng/ml was <6%.

ESR was determined with the VES Matic Cube 200 (Diesse Inc., FL 33012, USA), an automatic system using 1 ml of undiluted blood sample with K2-EDTA as an anticoagulant. Blood collected in the EDTA tube and accurately mixed was left to settle. By analogical sensors, the instrument automatically reads the erythrocyte sedimentation levels. The results obtained were compared with the Westergren method and then printed.

The CRP measurement was determined with the use of a Tina-quant immunoturbimetric kit for CRP (latex) highly sensitive assay (Roche). The measuring range is from 0.01 to 2 mg/dl. The turbidity resulting from the immunoprecipitation of CRP in the serum with a specific antibody, in the presence of polyethylene glycol, is measured as an increase in absorbance at 340 nm and is
proportional to the concentration of CRP in the sample. The samples were read with the Hitachi 704/705 instruments (Roche).

Blood samples to evaluate PCT, ESR and CRP were collected upon the first appearance of fever and then every day after until its resolution. For the statistical analysis, the values of three specific time-points were considered: time 1 (PCT1, ESR1 and CRP1) on the first day of fever, time 2 (PCT2, ESR2 and CRP2) on the day with the highest values during the febrile episode and time 3 (PCT3, ESR3 and CR3) on the last day of fever.

Statistical analysis

The statistical analysis was carried out using the Mann-Whitney U test for the medians of non-parametric data and Fischer’s Exact Test for the comparison of proportions. The sensitivity, specificity and area under the ROC (Receiving Operator Characteristic) curve were calculated for both PCT and CRP. For the statistical analysis, the data were stored by Excel 2003 and later processed using the software SPSS version 16.
References

11. Fleischhack G, Kambeck I, Cipic D, et al. Procalcitonin in paediatric cancer patients: its diagnostic relevance is superior to that of C-reactive protein, interleukin 6, interleukin 8, soluble interleukin 2 receptor and soluble tumour necrosis factor receptor II. British Journal of Haematology, 2000; 111, 1093-1102

17. Charles PE, Ladoire S, Aho S, et al. Serum procalcitonin elevation in critically ill patients at the onset of bacteraemia caused by either gram negative or gram positive bacteria. BMC Infectious Diseases 2008; 8:38 ,2334-8

Legends

Figure 1
PCT (a and c) and CRP (b and d) determinations during febrile major and minor events in patients with and without mucositis.

Figure 2.
Comparison between the PCT and CRP ROC curves in febrile events in the presence of mucositis according to major infectious events. A. PTC1, 68% (95% CI: 54 to 82; p=0.016); CRP1, 68% (95% CI: 54 to 81; p=0.019).
B. PCT2, 68% (95% CI: 53.9 to 81.7; p = 0.02); CRP2, 54% (95% CI: 38.8 to 68.9; p = 0.6).
C. PCT3, 65% (95% CI: 51 to 80; p = 0.035); CRP3, 48% (95% CI: 33 to 63; p = 0.8).
TABLE 1. Patients and febrile episode characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>N° (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total no. of patients</td>
<td>88</td>
</tr>
<tr>
<td>No. of non-transplanted patients</td>
<td></td>
</tr>
<tr>
<td>LMA*</td>
<td>40 (69)</td>
</tr>
<tr>
<td>LLA**</td>
<td>9 (16)</td>
</tr>
<tr>
<td>LMC***</td>
<td>1 (2)</td>
</tr>
<tr>
<td>LNH^</td>
<td>3 (5)</td>
</tr>
<tr>
<td>LT^^</td>
<td>1 (2)</td>
</tr>
<tr>
<td>LB^-^</td>
<td>2 (3)</td>
</tr>
<tr>
<td>No. of transplanted patients</td>
<td></td>
</tr>
<tr>
<td>Allogeneic</td>
<td>7 (23)</td>
</tr>
<tr>
<td>Autologous</td>
<td>14 (47)</td>
</tr>
<tr>
<td>Haploidentical</td>
<td>3 (10)</td>
</tr>
<tr>
<td>Umbilical cord Blood</td>
<td>6 (20)</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
</tr>
<tr>
<td>Median (range)</td>
<td>47 (16-70)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>52 (59)</td>
</tr>
<tr>
<td>Female</td>
<td>36 (41)</td>
</tr>
<tr>
<td>Total no. of febrile episodes</td>
<td>116</td>
</tr>
<tr>
<td>Sepsis</td>
<td>21 (18)</td>
</tr>
<tr>
<td>Septic shock</td>
<td>9 (8)</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>22 (19)</td>
</tr>
<tr>
<td>Bacteraemia</td>
<td>9 (8)</td>
</tr>
<tr>
<td>CVC*</td>
<td>20 (17)</td>
</tr>
<tr>
<td>FUO§</td>
<td>29 (25)</td>
</tr>
<tr>
<td>Other+</td>
<td>6 (5)</td>
</tr>
<tr>
<td>Febrile episodes associated with mucositis (in total)</td>
<td>58 (50)</td>
</tr>
<tr>
<td>Febrile episodes with GVHD (only in transplanted)</td>
<td>9 (30)</td>
</tr>
</tbody>
</table>

* LMA Acute myeloid leukaemia
** Acute Lymphatic leukaemia
*** Chronic myeloid leukaemia
^ Lymphoma non Hodgkin
^^ Burkitt Lymphoma
* Central venous catheter infection
§ Fever of unknown origin
+ Folliculitis, H. simplex, sinusitis
Figure 2