Finite element implementation of nearly-incompressible rheological models based on multiplicative decompositions

Abstract : The present work is concerned with the numerical integration of finite viscoelastic or viscoplastic models. A numerical integration scheme based on the definition of a flow direction and a flow amplitude as in elastoplasticity is proposed. The most original feature of this approach resides in a local correction of the direction and amplitude with a sub-stepping strategy. Comparisons with the results obtained using a classical tensorial integrator based on a Runge-Kutta-Fehlberg scheme are provided. The reliability of the present numerical scheme is investigated with three rheological models two are viscoelastic (Zener and Poynting-Thomson) and one is viscoplastic.
Type de document :
Article dans une revue
Computers and Structures, Elsevier, 2011, 89 (3-4), pp.411-421. 〈10.1016/j.compstruc.2010.11.013〉
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00551691
Contributeur : Stéphane Lejeunes <>
Soumis le : lundi 1 janvier 2018 - 18:18:06
Dernière modification le : mercredi 21 mars 2018 - 10:54:08
Document(s) archivé(s) le : mercredi 2 mai 2018 - 12:40:28

Fichier

article_VHEF_review.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Stéphane Lejeunes, Adnane Boukamel, Stéphane Meo. Finite element implementation of nearly-incompressible rheological models based on multiplicative decompositions. Computers and Structures, Elsevier, 2011, 89 (3-4), pp.411-421. 〈10.1016/j.compstruc.2010.11.013〉. 〈hal-00551691〉

Partager

Métriques

Consultations de la notice

138

Téléchargements de fichiers

37