]. A. Références, P. Bugeau, and . Perez, Bandwidth selection for kernel estimation in mixed multi-dimensional spaces, 2007.

A. Bugeau and P. Perez, Detection and segmentation of moving objects in highly dynamic scenes, 2007 IEEE Conference on Computer Vision and Pattern Recognition, 2007.
DOI : 10.1109/CVPR.2007.383244

URL : https://hal.archives-ouvertes.fr/hal-00551596

C. Christoudias, B. Georgescu, and P. Meer, Synergism in low level vision, Object recognition supported by user interaction for service robots, p.40150, 2002.
DOI : 10.1109/ICPR.2002.1047421

D. Comaniciu, An algorithm for data-driven bandwidth selection, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.25, issue.2, pp.281-288, 2003.
DOI : 10.1109/TPAMI.2003.1177159

D. Comaniciu and P. Meer, Distribution free decomposition of multivariate data, SSPR/SPR, pp.602-610, 1998.

D. Comaniciu and P. Meer, Mean shift: a robust approach toward feature space analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.5, pp.603-619, 2002.
DOI : 10.1109/34.1000236

S. Sheather and M. Jones, A reliable data-based bandwidth selection method for kernel density estimation, J. Royal Statist. Soc, vol.53, pp.683-690, 1991.

G. Terrell and D. Scott, Variable kernel density estimation . The Annals of Statistics, pp.1236-1265, 1992.
DOI : 10.1214/aos/1176348768

M. P. Wand and M. C. Jones, Multivariate plug-in bandwidth selection, Comput. Statist, vol.9, pp.97-116, 1994.

M. P. Wand and M. C. Jones, Kernel Smoothing, 1995.
DOI : 10.1007/978-1-4899-4493-1